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Slopes of hypergeometric systems

of codimension one

Maria Isabel Hartillo Hermoso

Abstract
We describe the slopes, with respect to the coordinates hyper-
planes, of the hypergeometric systems of codimension one, that is
when the toric ideal is gencrated by onc clement.

1. Introduction

The D-module theory generalizes the concepts in the classic theory of or-
dinary differential equations with holomorphic coefficients for a complex
variable .

We consider the Weyl algebra:

"471 :C(Ilr"wﬂ:ﬂiah--waﬂ)

that is, the ring of differential operators with polynomial coefficients in n
variables. This ring is not commutative, and the above elements verify
the relations: [zi,%;] = 0, [8:;,9;] = 0, and [0;,z;] = &;;. We can also
consider D,:
Dy =02y oy B 1Oy - 0,
with the same relations between the generators. We denote by (M} the left
ideal generated by the set M.
If we take an clement in Ay

P= G‘m(m)am s am—l(m)am_l R (lg(:l:), with am(I) ‘7": 0
it defines an ordinary differential equation.
Fuch’s condition [6] states that the point = = 0 is a regular singula
point if and only if we have the equality: m — val(an(z)) = MaX;=o,.,m{j -
val(a;(z))}, where val(a;(z)) is the order of a;(z) at z = 0.
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We can define a combinatorial object related to P, the Newton polygon,
defined as:

N(P) = convex hull ( U(j,j — wal(a;(z)) + (—N)z).

Clearly P has a regular singular point in & = 0 if and only if N(P) is a
quadrant. If not, we have a slope in M(P). The equation is regular if and
only if all the singular points are regular, i.e. if there are no slopes.

The generalization of irregularity in several variables is given by the ir-
regularity sheaf with respect to a hypersurface, which was introduced by
Mecbhkout (sce [10]). We also have the concept of slope of a D-module
with respeet to a hypersurface introduced by Laurent (7], which gencralizes
the analogous in one variable. Indeed the slopes of a module describe the
jumps in the Gevrey filtration of that sheaf [8]. We have that a D-module
in several variables is regular if and only if it has no slopes for all the hyper-
surfaces ([8]). In the next section we describe briefly the notion of slopes of
a D-module with respect to a smooth hypersurface.

The cases we study are the D-modules arising from the so-called hyper-
geometric systems ([4] and [11]). They arc defined from integer matrices of
maximal rank. Given A = (a;;) an d x n integer matrix with rank d, we can
define the toric ideal /4 C C[8] as the ideal generated by {8* — 8*|u,v € N*,
Aul = Av'}. We take 8 = (B1,...,84) € C* and we denote § = (64,...,0,),
where 8; = x;0; is an operator of the Weyl algebra. We denote by A6 — 3
the ideal generated by the operators 3 -, ai;8; — 8;, 7 = 1,...,d. Finally,
we can define the hypergeometric system of Gelfand-Kapranov-Zelevinski
as the system defined by the ideal Ha(8) = (14, Af* — ). The A,-module
Ha(B) = An/Ha(p) is a holonomic module ([4] and [1]).

Given two integer matrices A, A’, such that there exists G € GLy(Q)
with A’ = GA, we have Iy = Iy and Hy(f8) = Ha(GB). So, to study
the slopes of a hypergeometric system defined by an integer matrix we can
always consider the row-reduced form matrix.

A result by Hotta [5] tells that a hypergeometric system is regular if
the toric ideal is homogeneous with respect to the usual grading or, equiva-
lently, if (1,...,1) is in the ®-span of the rows of A. The aim of our work is
calculate the slopes for an irregular hypergeometric system of codimension
one. In first place, we consider the case when the semigroup is reduced.
Hence, we shall see that there always exist slopes with respect to the coor-
dinates hyperplanes z; = 0 and they can be detected from a generator of 14.
Secondly, we treat the non-reduced semigroup case, and we prove that there
are no slopes with respect to any coordinate plane at zero. Finally, we look
for slopes at infinity, and we find that the system has slopes with respect to
a coordinate hyperplanc.

<
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2. Slopes

for the explicit calculation of slopes of

: leorithm (|2
There exists an algorl (12]) n we defin

D-module with respect to a smooth hypersurface. In this sectio
what we call a slope with respect to z; = 0 at the Qrigin. .

The ring D = D, admits several filtrations. First, we consider the ﬁ]
tration defined by the order of the differential operators. We denote thi

filtration by Fi(D). Given a non-zcro opcrator

P = Zag(w)f)‘s
B

_*._‘._,.‘..___._.———-...—.-—

we consider

ordp(P) = max{|B,ag # 0}, Fi(D) = {P € D, such thatordp(P) < k}

This defines a filtration in D. In its associated graded ring, which is
polynomial ring in §, we consider the F-symbol:

op(P)= >, agl@)e’

B,18|=ord(P)
Given an ideal I in D we define the graded ideal:
g (I) = (or(P), P €I).

We can also consider the Malgrange-Kashiwara filtration with respect
z; = 0, denoted Vi (D). Given

P= Z amﬁzaaﬁ
a,f

we consider
OrdV(P) = max{ﬁj — Oy, Qo ?é 0}’
Vi(D) = P el such thatordy (P) < k}.

In its associated graded ring, which is isomorphic to a non commuta’
subring of D, we consider the V-symbol:

ov(P) = > gt EP.

(0. 8), Bj—j =ordy (P)

+ Given an ideal I in D we define the graded ideal:
gtV (I) = (ov(P), P € I).

*WT 3 T ———————




458 M.I. HARriLLo HERMOSO

Using the above filtrations we can define an ordered family of filtrations.
Given (p, ¢) # (0,0), non negative integers, we define the linear form over Q?,
given by L(a,b) = pa + ¢b. Then, given an operator as before, we define

ord, (P) = max{L(|B, 8; — o), aap # 0},
Ly(D) = {P € D, such that ord; (P) < k}.

In its associated graded ring, that is a polynomial ring in £if L # V, we
consider the L-symbol:

UL(P) = Z Cﬂﬂ,ﬁl'ﬂf’(j.

(e,3), L(|81,5; —&j)=ordL(P)

Given an ideal I in D we define the graded ideal:
g (I) = (o1(P), P I).

The L-filtration also describes the F' and V filtrations. Indeed we can order
these filtrations. Given L, L' defined by pairs (p, q) and (¢, q"), we say that
L < L'if and only if —p/q < —p'/¢'. Given a L-filtration we define its slope
as the ratio —p/q.

If L # V we can define de L-characteristic variety, noted Ch¥(I), as the
analytic varicty in C*" defined by the graded ideal gri(n).

Definition 1 (7] Let I be an ideal of D. The slopes of the D-module D/I
with respect to z; = 0, are the slopes of the linear forms L # F,V such that
Vert(I) is not bihomogeneous for the F and V filtrations.

Remark 1 In the case when we have a holonomic D-module D/, if we
find L a filtration with respect to z; = 0 such that (1:&,...,2,,) C
Ver"(I), then L is not a slope with respect to x; = 0 of this module, because

all the components of the L-characteristic variety are bihomogencous with
respect to F and V.

3. Slopes of hypergeometric systems of codimension one

Let A be a nx (n+ 1) integer matrix of rank n and let 5 € C*. We add by
now one condition: all the n x n minors of A are not zero. Using this fact
we can ensure that a generator w of the kernel of A has all its coordinates
different from zero. We denote P € C[d] the generator of the toric ideal.

Our aim is to calculate the slopes of the D-module Ha(3), so we assurme
that it is irregular. Then, P is not homogeneous with respect to the usual
grading. We have that P = " — 9", where u™ are the positive coordinates
of w and —u~ are the negative ones.

t
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Tity gt
We assume that |ut| # 0 and |u™| # 0. Without loss.of generality ‘Iu [
|u~| and we order the variables to have the first & coordinates those differen
from zero in ut.

Lemma 2 Let A be ann x (n+ 1) integer matriz with all its n x n mmfm
different from zero. We consider the variables ordered as before. Ha (8) he

no slopes with respect to the k first vartables.
Proof. We shall prove that Ha(3) has no slopes with respect to the hype

plane z1 = 0. - - .
Using the condition about the minors we can, taking into account
(=]

reduced form of A, obtain the operators in Hy (B):
Q1= mbx+ bt — ﬁi, Q@2 = asf3 + byt — .Bé, ooy Qn = @il + bty —

with a;,b; # 0, for all i and these elements generate AB*fl,@. Usglgtﬁ]
rcmarkul1 if we want to prove that a given L is not slope it is sufficien

prove that =6 € er®(H (). Hence we need an operator H € Hal,
such that o, (H) = zhigh, 1 C el

Let L be any slope with respect to the hypelrp ane z; = 0. b
the following sequence of elements S5; in H(B), with ordg(R;) < ordy

ord;(S;):
S] = 8{‘1832_183‘“ “'6?‘@1 ACL].JL'QP
= noSuEETe O + R
SQ = b1918‘1“3'2“_25§3 e BE“QI = ﬁ]_ZQSl
= BeoayTase - Okt + Ra.

S, = WrePETIENE - 0pFQh — taaSn
_ Bgugn o . 8% 4 R,
Sug-i—l = 5?26;‘231”35“;“#1 P 3;:" Q2 = U"ZISS'LLQ
b0t aR e O + Rupn.

S — b b'l2ﬂ5719;c2+u3416§:1 a:;u bt a:a Qz = a2I3Su2+u3—1
wg+uz 1
= LRt ean oyt - O + Rutus
g —_ b;ﬁz o b:k‘;]g?li‘l‘l’—u-l-i-tk—laflgk_l _ ﬂk—1$k8u2+---+uk41
ugeetug £

_ e TR 4 R

This finishes the proof.
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Theorem 3 Let A be annx (n+1) integer matriz with all its n x n minors
different from zero. We consider the variables ordered as before. The only
lsloplc)e of Ha(B) with respect to z; = 0, with § > k, is L; = w;F + (Ju*| —
u” V.

Proof. First, we prove that if we have a slope L with respect to @y =0,
L # Lj, then L is not slope of H4(3).
Let L' < Lj be any slope with respeet to z; = 0. Then oy(P)

Uy Uk

1§, and following the proof of lemma 2 we have that ordg(R;) z
Ol‘d{,l(P) = Ol'd,r,l(Si) and

O Sty = CTT ARG

Then L' is not a slope of H4(8) with respect to z; = 0.
Let L" > L; be any slope with respect to z; = 0, then o7(P) =

__glks . Un+1 n o
§cit o Eni1 - As before, we can obtain operators in H,(f):

Q’l = 6191 + dlgj N ;’, Q; = @by + dggj = g, e
Qi =il +di a6 — By, Q) = ci040 + di; — B
- B = epbhia+ dnf; — ﬁ::

with ¢;, d; # 0, and we can consider the following sequence of operators S}

in Hp(B), such that ordp«(R}) < ordp«(P) = ordp«(S!):

1 gkl qusgg tn g1/
5 G G i Qe + kT P
= _atk+1—1 Aupga Un 41 s
dk+13,13k+| 8k+2 "'8713-1 Tl
- k1= 2 gtikya Ungt A/
Sy de10;0. 57 "0 - 0541 Qhert — 1 Zean S
= 2 2 Alk41—2 QUi Unt1 1l
10707 Opis -0 + Ry,
Sr = g1 —1 ‘ifk+l—1 Uk+2 Al oyl 7
Ukt dk-H 9; ak+2 an+1 Qi1 — Ck+15’7k+15’uk“71
= k41 Alk+1 k42 tn41 ! I
dey1 05" Oy Gl + Ry
s = U g gt e =1gleT[—ui =1 i '
=2 ki1 450 d; dy 0; 03" @n— CnTns1Sjy- |1

= dUk+] s dlfj-ld?j*'] o el n+1 |u_'_”‘j i !
k41 =1 "5 dx 63 a} T RJu*lfuj‘

Thus, L” is not slope of H4(8) with respect to z; = 0. Then the only
possible slope is L;.

QLOFINS QF P TG PRSI ar el Budvlad A A0 AR il e st

Our next idea is similar to one in the work of Castro-Jiménez a
Takayama [3].

Now suppose that L; is not a slope. Then there is no slope, wh
implies that the L-characteristic variety Ch"(Ha(8)) is invariant for all L

pF + 4V}
First, we arc going to prove that:
(3.1) g (Ha(8)) = (or(P),gr" (A0" — B)).

The right hand side of the above equality is called in [1 1] the fake initial id
noted fing(H4()). We consider as in [11] the following exact sequence
modules over the algebra grf (D)/gr” (14):

B (er'(D)/er"(1a)) - & s grf(D)/er"(1a) — er'(D)/finp(Ha(8)) —
i=1
where d—l(Z?:l PL‘E-;) = Z?:l Pgﬂ'[»{ (Agt = ,6),,)

Since op((Af —B);)ei—ar((A8 —B):)e; clearly belongs to the kernel of
we can extend the exact sequence to the Koszul complex K B(exF(D/ 14,

-, g BT (D)1) 2 KE (" (D/14)) — 0

where
K@ (D/))= @ &' (D/len,
1<i < <ipsn
and "
cfp(ei,...,;F) = Z(*l)r_]UF((AHL =4 ﬁ)ir)eh---ﬁ.‘--ip'
r=1

We can also define the Koszul complex K7(D/14) as:

. — KB(D/1) 25 KA(D/1s) 2 KE(D/14) — 0.

where
Kf(D/IA) — EB D/[Aeh---ip
1< < <ip<n
and .
d.p(eil...ip) = Z(fl)’_l((ABt - ﬁ)ir)eil-‘-i?---i,,‘
r=1

This complex can be filtered by:

F(KAD/) = P  FapDflacii,

L€y <o <ipEn
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Clearly
KX (g™ (D/14)) = gr"(K2(D/14)).

Using this filtration it is easy to see that the sequence:
K7 (g (D/14)) — K§(@x"(D/14)) — & (Ha(B)) — 0

is exact if Hy(KZ(gr™(D/14))) = 0.

If t‘his sequence is exact we have proved statement 3.1, so all we need to
prove is Hy(K2(gr?(D/14))) = 0, or equivalently that {op(P),op((A8 —
Bh),...,0r((A6°=8),)} form a regular sequence in the commutative graded
ring grf (D).

It is sufficient to prove that {op(P), op((40"' —B)1),...,0r((40"'—B).)}
form a regular sequence in the commutative graded ring C(z)[¢]. Thosc
clements are homogencous so if we have that:

\/JF(P)= UF((AQ): - f()’)l)! v :UF((Agt - ﬁ)n)

is.thc maximal idcal of the graded ring, then they form a regular sequence.
Given A in row-reduced form, as in the proof of lemma 2, it suffices to prove
that

TR € {or(P),or((A8" — B)),...,or((A8" — B).)).

If we consider the elements:
1= 0r(Q1) = a122& + bz &1, QF = 0p(Qy) = azzals + byzi &y,

v Q:, = JF(QTL) = anIn£n+l <+ bnxnéla

H -1
S = §'&° .;1{3 e 'E?QT = ali'TzC’F(P)
— 61:1315;”“(5;2_1 :?;a f:k
"o +1 -2
Sy = hm§' LG Q) — mmn Sy

= 2.2 pul+2 rus—2 fug g
bizi& 2 30 &y

it _ us—1_up—1pup+ng—1pug Ug 1"
Sug - bl Il 61 3 TSk Ql _al‘rzsug—l
= U U cU s cUy Up
= bz1%§ R ST
' — pup | pte—l tgebup—1lut| =1~y 1
Su'2+---+u;c = b by 2 & k-1 ak713k5u2+.--+uk—1

= ... pte gratecbugelut
by it & L
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Then we have that:
ng(HA(ﬁ)) = (ﬁfl 2 '5}?’“, a1xaéy + b1z &y, @ Trt16ns1 + ba161)-
It is clear that

grf (Ha(B)) C (&1 &k 22k - - i)y

(gl Al gk: mlgla i 1In+1£?1+1> Y/ ng(HA(ﬁ))

So the characteristic variety is

(&1 &ry w161, -, Bnprbntr) = VETY (Ha(B)).

We are supposing that the characteristic variety is invariant, but if we te
L" > L, then using the operators Sj, .. 5 we have that:

a7 BT

and

<€k+l Ve £11+ls $1§1a . e |$11+1€71+1) © grL”(HA(}S))

and the component of the characteristic variety
* +1
T(Ek+1="':%+1=0)(cn

is not contained in any of ChY" (HA(8B)).

At the begining of this section we added the condition |u*| # 0 ¢
|u~| # 0. If we have |u™| = 0 this means that the gencrator of the tc
ideal is of the form P = 0" — 1. We now study this case.

Lemma 4 Let A be ann x (n+ 1) integer matriz, with all the n x n min
different from zero and I4 = (0¥ — 1). Then, Ha(3) has no slopes at
origin with respect to any r; = 0.

Proof. We shall prove that H4(3) has no slopes with respect to the hy]
plane z; = 0.
Using the condition about the minors we can, with a row reduced fi

of A, obtain the following opcrators in H4(f):
Ql = a16'2 e 519] - ﬁi, Qg = 0.263 + bgal — ﬁ;, § i g Qn = an9n+1 =+ bngl =

with @, b; # 0, for all i and these elements generate Aft — 3. Using
remark 1, if we want to prove that a given L is not a slope, it is suffic
to prove that z1& € \/gr¥(Ha(f)). Hence we need an operator I € H,
such that o (H) = z¥€f2.
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Let L be any slope with respect to the hyperplanc z; = 0. We have
the following sequence of clements S; in H4(3), with ord(R;) < ord,(P) =

ord(S;):
_ ) quz—1 quy 1.1,141
Sl = 61 82 63 H-H Ql — TE’D
_ Uy quz—1 Up
= 016:0,"6;° 5:?3 0+ By
= i) Otz —2 Aty 1Ln+1
Sy, = b19151 82 83 0 'n.+1 Ql — 1135,
e 202 qui que—2 qug lon -1
= b10707 057650 - anrl + .
_ usz—1 gug—1 quy qug un+1
Sup = BPTOETONOE - O3 Qr — 1228,
U3 Uz DU QU3 Uy
bi20% 91 Bl ---anﬂ + Ry,
A u2 | BUn+r—1 ug At 1 —1 g
SU2+"'+'“-n+1 = bl bn“ 91 a1 Qn = anwn-&-lsuz+---+un+1fl

= bY7..punngTI TG 4 R

15T sl TP

This finishes the proof.

In this casc the slopes arc at infinity, so we must perform the following

change of variables:

I
Ly = —=—, &L =Ty «:.u
I

al = 1'128111 6'2 =

To simplify the notation we change z} by z; and we note:

'
y Lol = Tntl,

’
“y 8n+1 —= (9n+1.

B =8(6+1)- (0+i—1).
The new system obtained is given by:

Ha(B)' = @' [u]™05? - -- Ot — 1, 12005 — bimdh — By, ...

.o an$n+lan+1 = bn$161 = ﬁra)-

T.heorern 5 Let A be ann x (n+1) integer matriz with all its n x n minors
different from zero and I4 = (0* —1). If we do the change of coordinates as
before, Ha(3) has only the slope Ly = w1 F + |u|V with respect to z; = 0.

Proof. First, we prove that if L # Ly, then L is not a slope of Ha(3)'.

\ Let be L' < L, any slope with respect to 21 = 0. Then oy (P') =
e - €01, we can consider the sequence of operators S! in H4(3),

SLOPES OF HYPERGROMETRIC SYSTEMS OF CODIMENSION ONI 4

such that ordp (R < ordp/(P') = ordy (S):

8 = —aP[A]EETIEN - O Q) + TP
= bebo ol B

o 1 1y yts—2 o ‘un+1
Sg = _bla'l 91[51] 1822 03%3 11+1 Q1 +G1$28
2 2 -2 LUn !
= Bapello]may e an;; .
' up—1, . u =1 U a1 Y 8
i = e Rl Y el A s A R ‘11-'52'91;271
_ g, A4 i Uy hp 1 !
= b 07 (600" 05 - - B + Ry,
! = ug tn b1 =11 gzt Fungr—1 wy oy
S’u2+ e _bl o 'bn * Ty 91 [61] QTL

!
+ anzn+15u;l+-"+un+]—1
_ puz L BRadl 060 glatettingd Uy !
= b bn” Z 61 [61] i Ru2+---+un+1'

Therefore L' is not a slope.

Let be L" > L, any slope with respect to z; = 0, then oz#(P') =1, a
it is clear that it is bihomogenous, so L” is not a slope.

The only possible slope is L;. Suppose that Ly is not a slope. Then f
L characteristic variety is invariant for all L = pF + ¢V'. We have that:

arV(Ha(B)) =1 and +/grf(Ha(B)) # 1.

Remark 2 We have supposed that all the n x n minors of our matriz w
different from zero. If the matriz A has an n x n minor equal to zero, 1
means that there exists an i such that Ha(8) = (2:0; — B, Ha (B')). Wh
A" denotes the matriz obtained from A taking out the i-th row and the 1
column, and (' is the vector 3 without the i-th element.

We can obtain, finally, a matriz B with all its minors different from 2
such that:

HA(B) = (1100 — B, - .-, 2305 — B;, He(6")),

after renaming the variables, where 8" = (Bi41,- -, Bns1)-

If we take L a slope with respect to x; = 0, with 1 < j it is easy to se

gr(Ha(B)) = (o0(2101 — Bu), ... or(z;8; — B;), e’ (Ha(8")),

and L is not a slope for Ha(B).
If we take L a slope with respect to z; = 0, with i > j we have:

gr"(Ha(B)) = (mé&, ..., 256, g (Ha(B8")),
and L is a slope for Ha(B) if and only if L is a slope for Hp(8").
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