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In this paper, we deal with single facility location problems in a general normed space in which
the existing facilities are represented by convex sets of points. The criterion to be satisfied by the
service facility is the minimization of an increasing, convex function of the distances from the
service facility to the closest point of each demand set. We obtain a geometrical characterization of
the set of optimal solutions for this problem. Two remarkable cases—the classical Weber problem
and the minimax problem with demand sets—are studied as particular instances of our problem.
Finally, for the planar polyhedral case, we give an algorithm to find the solution set of the considered
problems.

1. Introduction. The classical single facility location problem deals with the location
of a point in a real normed space X in order to minimize some function depending on the
distances to a finite number of given points (existing facilities or demand points).

The following question arises: Why do we have to consider points as existing facilities?
A natural extension is to represent existing facilities as sets of points. This means that
we can no longer use the natural distance induced by the norm in X. Therefore, a new
decision has to be made before dealing with the problem itself: Which kind of distance
measure should be used? Two different alternatives can be considered. The first takes the
average behavior into account, so that any point in the set is visited according to a given
probability distribution. This approach leads us to the minimization of expected distances as
discussed, for instance, in Drezner and Wesolowsky (1980) or Carrizosa et al. (1993). The
second alternative measures the distances to the closest points in the sets. Here, the goal is
not to serve all points of the set but just to reach the set. Therefore, rather than expected
distances, we have to consider the concept of infimal distance to sets. This approach is
quite general and includes as particular examples previous approaches in the literature, since
infimal distances reduce to regular distances when points are considered instead of sets (see
Boftey and Mesa 1996 for a good review on the location of extensive facilities on networks
and Brimberg and Wesolowsky 2000, 2002, and Muriel and Carrizosa 1995 for different
approaches to locating facilities relative to closest distances).

By allowing sets as clients and using the infimal distance to these sets, different real world
situations can be modeled better than in the classical approaches. This concept appears
quite naturally in two-level distribution models: Logistics companies usually distribute their
products from a central warehouse to medium-sized warehouses in each of the cities of
their distribution area (using large trailers). Then, these warehouses deliver the products to
final retailers or end customers in the respective city using their own vehicle fleets (small
size trucks or vans which can circulate through the city). In this model, the plant is the
facility to be located, and the closest points to the plant in each of the cities are the optimal
focations of the first-level problem for the local warchouses.

The simultaneous location of a hub together with airports for a given set of cities is
another example. The hub would be the facility to be located, and the airports for each city
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should be positioned at the closest point to the hub. A similar argument applies in the case of
the location of a recycling plant with respect to local garbage collection plants. Obviously,
the cities locate their garbage plants as far away as possible from the city center (to avoid
pollution and risks), while staying in their territory (county), and as close as possible to the
recycle plant (fo minimize transportation costs).

All the above applications are an example of a multilevel logistics system in which a
locational decision takes place on a higher level, and the transition points to the lower level
can still be chosen accordingly. In traffic planning, this concept applies to the location of a
service facility for several cities which should not be accessed by individual transportation
means. Therefore, designated park and ride areas for the cities are established at the closest
points to this service facility.

Finally, the location model with infimal distances is also directly applicable to the location
of a dam and distribution substations of any liquid. Again the locational decision has to be
made on the higher level (where the dam should be built) and the distribution substations
will be built at the boundary of cities as close as possible to the dam.

The common elements in all of these models are:

(1) A facility must be located.

(2) Existing facilities occupy some nonnegligible area.

(3) The closest points from the existing facilities to the new facility are important (to
minimize transportation cost or exposure to risk).

It is worth noting that there are also economic reasons to consider points in the boundaries
of the existing facilities: First of all, real estate is cheaper which results in a lower building
cost, and secondly, it might be difficult to get licenses to deliver inside the area of the
existing facilities without having a representative there.

The aim of this paper is to present a geometrical characterization of the set of optimal
solutions of this single-facility location problem with infimal distances. To this end, we
will use mainly convex analysis tools. We also address the important cases of the Weber
and minimax problem, which are studied in detail. For the very particular case of R? with
polyhedral norms, a constructive approach is developed. This type of analysis is not new
in location analysis. Similar types of optimization problems have deserved the study of
researchers, although when facilities are identified with points in their respective spaces.
The reader is referred to Durier and Michelot (1985), Durier (1992, 1995), Carrizosa and
Puerto (1995), and Puerto and Ferndndez (2000) for further details.

The rest of the paper is organized as follows. First, we introduce some basic tools and
definitions which will be used throughout the paper. In §2, the theory for dealing with set
facility location problems is developed. Section 3 studies the existence of optimal solutions
and develops optimality conditions based on geometric properties of the problem. In §4,
the relationship to some classical location problems is discussed. Section 5 is devoted to
the particularities in the planar polyhedral case for which we also give efficient solution
algorithms. The paper ends with some conclusions and extensions.

2. Basic tools and definitions. As mentioned in the introduction, everything takes place
in a general vector space X equipped with several norms. Let us denote by X* the topolog-
ical dual of X equipped with the norm vy and by y° its dual norm. The unit ball in X with
the norm vy (respectively X*) is denoted by B (respectively B°). The pairing between X
and X* will be indicated by (-, -). Nevertheless, for ease of understanding, the reader may
replace the space X by R”. In this case, the topological dual X* can be identified with X
and the pairing is the usual scalar product.

First, we restate some definitions which are needed throughout the paper. Let B; C X be
a symmeltric, closed, bounded convex set containing the origin in its interior, for [ € £ =
{1,2,..., M}. The norm with respect to B; is defined as

(1) v X — R, v,(x) :=1inf{r > 0: x € rB;}.
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The polar set By of B, is given by
(2) B :={peX" (p,x) <1, Vxe B},
and the normal cone to B, at x € X is given by
3) NB,-(X) ={peX" (p,y—x)<0, VyeBj}.

The case in which each vy, with i € 4 is a polyhedral norm in a finite dimensional
space, which means B; is a convex polytope with extreme points ext(B;) := {e}, ..., e} },
is studied in §5. In this case, we define fundamental directions S’i e 82;', as the directions
defined by 0 and €, . .. ,eiG’.

Let f: X - RU {400} be a convex function. A vector p € X is said to be a subgradient
of f at a point x € X if

F» = f)+p.y—x)

for each y € X. The set of all subgradients of f at x is called the subdifferential of f at x
and is denoted by df(x).
Given a closed set A; C X, we denote by /, (-) its indicator function, that is,

[ () = 0 if xe A,
AN T T 1o otherwise,

and we denote by o, (-) the support function of the set A;; i.e.,

04, (p) = sup(p, x) for any p € X*.

XEA;

Now, using Hiriart-Urruty and Lemarechal (1993), we know that

B? it x=0,
“) By(x) = {{Pi € B (p;, x) = v,(x)} if x #0,
(5) al, (x) =N, (x) VxeA,
6) o0, (1) = [a,. € Ay (w.a)) =sup{u, z>].

Let f, and f, be two functions from X to RU {+oo}. Their infimal convolution is a
function from X to RU {40} defined by

(fir® f2)(x) = inf{f, (x)) + £,(x,): %, +x, = x}
= inf{fi(y) + fo(x—)}.
yeX
Another important concept that we need to recall is that of the conjugate functions. Let f

be a function from X to RU {400} not identically equal to -+oo and minorized by some
affine function. The conjugate f* of f is the function defined by

F"(p) =sup{(p, x) — f(x): x € dom f} for any p € X*,

where dom f stands for the effective domain of the function f. It is a well-known result
from convex analysis that

(7) I, (p)=o0,(p)  forany peX*
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Finally, we will denote by ri(A) the relative interior of the set A C X, by bd(A) the
boundary of A, by cl(A) the closure of A, by co(A) the convex hull of A, and by cone(A)
the convex cone generated by the elements of the set A.

In the next section, we will discuss in more detail some properties of distances from a
point to a set.

2.1. Distance to a convex body. Lct us consider a convex set A; C X and an arbitrary
norm vy,. The distance from a point x € X to the set A; with the norm v, is defined as

d,(x, A) =inf{y,(x —a;): u; € A},

and the set of points proj, (x) :={a; € A;: d;(x, A;) = v,(x —a;)} is called the projection

of x onto A; with the norm’y,-. Note that this set is not necessarily a singleton, and can even

be empty if A, is not closed or not compact. Therefore, ensuring the nonemptyness of the

projection set, we will require the sets A; to be compact. The reader may notice that this is

a sufficient condition and that all the results may also be valid under different conditions.
First of all, we have that

di{x, A) = (,i,’;ﬁ yilx—a) = ig)f({l/\,(y) +y(x—y)}= (1/\, * ;) (x).

It follows that d.(-, A;) is a convex function since it is an infimal convolution of two
convex functions. Besides, by Corollary V1.4.5.5 in Hiriart-Urruty and Lemarechal (1993),
we obtain the following representation of the subdifferential of (-, A;):

ad;(x, A;) =l (a;) Ndy(x —a;) for any a; € proj, (x).

Observe that when x € A;, proj, (x) = {x}, and since 3y,(0) = Bf, we have dd,(x, A;) =
N, ()N B} if x € A;, while in general using (4) and (5) we obtain that

(8) dd;(x, Ay) = Ny (a) O {p; € B (pj, x —a;) =y (x —a;)} for any a; € proj, (x).
Remark 2.1, It is also possible to obtain the subdifferential set dd,(-, A,) in a different
way using the concept of level sets. The level set L7 (r) of the function (-, A;) with value

r>01is

Li(r) = {xeX: d(x.A) < r}.

Note that we can write L7 (r) = A, + rB;. Then, for any x = a,+rz with ¢, € A; and z € B;,
by Proposition 111.5.3.1 in Hirfart-Urruty and Lemarechal (1993), it follows that

Nl,;—’<,~)(x) =N, (a;) NNy (2).

Since by Theorem VI.1.3.5 in Hirlart-Urruty and Lemarechal (1993), the relation
Ny (x) = cone(dd;(x, A;)) holds and dd; must be a subset of B7, we obtain that

adi(x, A)) = N, (a)N{pe B {p,z) =v(2)}
Now using that x = a; +rz, we get
ad;(x, A;) = Ny, (a)N{pe B (p.x—a;)=v(x—ua)}

In the following, we give a description of the subdifferential set dd?(p;) based on the
representation of the distance to the set A; as infimal convolution as described above. Since
we have scen that d,(x, A;) = (I, *7,)(x) then by Theorem |, §3.4 in Joffe and Tihomirov
(1979), di = I +v;. Now by (7), I is the support function of A,, Le., I} =0, and
the conjugate of the norm v, 1s the indicator function of its unit dual ball, i.e., V=g
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Hence, since the qualification assumption of Moreau holds (recall that it requires one of the
functions to be continuous at one point of the effective domain of the other function; see
e.g., loffe and Tihomirov 1979), we have

) adi(p) = 8([:, +¥)(pi) = 8[:{, (p)+9y (p) = ‘9UA,(171‘) + NB;’ (p1) = C(py).

An interesting property of this family of sets (C,(p;)) is that the function d,(-, A,) is
linear within them. This result is proved in the next lemma.

LEMMA 2.1, For each p; € B, d,(-, A,) is an affine function within dd;(p;).

Proor. By Fenchel’s identity, we have that
xedd(p;) iff p,edd(x, A).
Thus, applying (8), for any x € dd;(p,), we get
di(x, Ay = py, x—a;) = (p;, x) — (i a;) for any a; € proj, (x).

Moreover, since p; € dd;(x, A;) we have that p; € N, (¢;) = do; (a;); and this is equivalent
to a; € doy (p;). Thus, (p;, a;) = o, (p;) for any a, € do, (p,); that is, (p,, ¢;) is constant
for any a; € do, (p;). Besides, since p; € N, (a;) for any q, € proj,, (x), we have that
(pi»a) <(p;, a;) for all a € A; that is, proj, (x) C da, (p;). Therefore, for any x € dd; (p,),
we get

4,06, A) = (pyx) =0, (p) o any a; € proj, (x),

and the result follows. [

It is also possible to give an alternative characterization of dd;(p;) in finite-dimensional
spaces. This expression will be used in §5 to develop an algorithm for the facility location
problem with infimal distances in R?. Let us denote by %, the set of all the faces of
any dimension of the set A; with i € /. That is to say, %, contains faces of any positive
dimension and extreme points. Recall that Y, is an exposed face of A, if ¥; = H,N A, for
some supporting hyperplane H, of A,.

For any p; € BYNN, (y;) and y, € ¥; an exposed face of A,, we introduce

(10) C(Y,, py) = {x: proj, (x) € ¥
and there exists a; € proj, (x); (p;, x —a;) =d;(x, A)}.

REMARK 2.2, In the definition of the set C(Y,, p;), we use the existence of a particular
point a; € proj, (x). Nevertheless, the definition does not depend on this a; because by
the convexity of A, if J; € ri(¥;) and p; € N, (3,), then p, € N, (y,) for any y, € ri(Y,)
(notice that N, (y;) is constant in ri(Y;)). Therefore, we have (p,,a—a;) <0 Va € A,.
In particular, for all a € proj, (x), we obtain that {p;, x —a) = {p;, x — ;) mcaning that
di(x, A;)) = (p;, x —a) for all a € proj, (x).

The following theorem shows that the set C(Y;, p;) coincides with dd*(p,) in finite-
dimensional spaces.

THEOREM 2.1.  Let X be finite dimensional and A; C X be a compact convex set, let Y,
denote the set of all its faces, and let v,(-) be a norm with unit ball B,.

(i) For any p; € By, there exists Y; € U, such that p; € N, (v;) for any y, € Y, and
Npo (p:) + 9o, (p;) = C(Y,, py).

(ii) Conversely, for any Y; € Y, such that p, € B} NNy () for any y; € Y, then C(Y,, p;) =
Nie () + do, (p;) = d; (p;).
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C(Yu,pl)
C(Ym, P:;)

C(Ympz)

FIGURE 1. Tllustration of Example 2.1.

Proor. Let x € Ny(p;) +da, (p;). Then there exists ¢ € Np.(p;) and a(x) € do, (p;)
such that x = a(x) +¢. Since g € Nge(p:), (v, q) = (p;»q) Vv € B¢. Therefore, v,(q) =
¥i(x—a(x)) = (p;, x —a(x)). Since 9o, (p;) = {y; € Az (P> ¥;) = SUP,ey, (pi, 2y}, it follows
that {(p;, a(x)) = sup, c, (P:>a;). Thus,

Y(x—a) = sup(v, x—a) = (px—a) = (p. x —a(x) = y,(x —a(x)) Va, € A,

veBy

As a result, d,(x, A,) = v.(x —a(x)). Now, it suffices to consider ¥, = {a, € A;: (p;,a) =
o4, (p;)} and we have N,,?([),)+(3(IA[(11,.) C C(Y;, py)-

Conversely, x € C(Y,, p,) if and only if there exists a{x) € Y¥; such that d,(x, A;) =
v.(x —a(x)) = {p;, x — a(x)). However, y;(x —a(x)) = sup,.; (v, x — a(x)). Therefore,
(v—p;, x=a(x)y <0 Vve B;. Thatis to say, g :=x —a(x) € N,,;(pi). Hence, x = a(x)+¢
with a(x) € Y, and g € Ny (p;). In addition, p; € N, (y;) for any ly,- €Y, and so (p;, a(x)) >
{p;» a;) Ya, € A;; that is, <’pi, a(x)) = sup, .4 {P:»a;). That means that a(x) € do, (p;) and
also implies that ¥; = {a; € A;: (p;, a;) = a4 (p;)} which concludes the proof. [

ExaMPLE 2.1. (See Figure 1) Consider R* with the /,-norm and a set A, := co{(l, 1),
(1, =), (=1,=1), (=1, D}. Let ¥, :=co{(1, 1), (1, =1)} and p, = (1, 0}, then

CY,,p)={xeR: x; 21,1 <x, <—1}.
For ¥, = {(—1, -1}, p, = (-1, —1), we have
C(Yp, po)={xeR%x; < —1,x, < —1}.
Finally, for Y, = {(—1, -1}, p3 = (—1,0),
C(Yip, p3) = {(x, —1): x < — 1}
3. Set facility location models. Let {1 ={A,,..., A, } be a family of sets in X, where

each A, i € Jl is a compact convex set. Let ®(-) be a monotone norm in R". Recall that a
norm & is said to be monotone on R if d(u) < O(v) for every u, v verifying |u;| < |v,|
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for each i =1,..., M (see Bavuer et al. 1961). We consider the following minimization
problem:
(Po (1)) inf F(x) := ®(d(x)),

RYSS

where d(x) = (d,(x, A,),...,d,(x, Ay)). A similar type of objective function has already
been considered in standard location analysis; that is, when the facilities are assumed to be
points in the framework space (see, e.g., Durier 1992, 1995; Carrizosa and Puerto 1995).
Here the novelty comes from considering sets as existing facilities. (The reader may also
note that for particular choices of the family 54, the former approaches reduce to the one pre-
sented in this paper.) We may assume without loss of generality that ﬂfi] A= (d(x)#0
for all x € X.) Indeed, if MY, A; # @, then the solution set would be N, A, (nonvoid)
with objective value of zero.

3.1. Existence of optimal solutions. First of all, the reader can see that the function
F =®od is convex on R provided that ® is monotone (see Proposition IV.2.1.8 in Hiriart-
Urruty and Lemarechal 1993). Our first result states a sufficient condition ensuring that the
set of optimal solutions of Problem (P, (%)) is not empty. Thus, it is possible to replace the
inf symbol by min.

To this end, we embed the optimization problem (Py,(4)) in a larger space in order
to study existence properties of its optimal solution. (See, e.g., Durier 1994, Puerto and
and for any

y

=P(y,(y), ..., Yu(yy)). We define the function
F:Y — R
Y F(0) = 0(d, (3, A)s oo dyy (g Au)).

Note that y = (y,, ..., y,) implies F(y) = F(y,) for any y, € X.

Lemma 3.1, Assume that X is reflexive; then the optimal solution set of Problem
(P (A)) is not empty.

ProOF.  Since the sets A; are compact for all i € /, it follows that m, = F(0) < +o0.
Let us define the set M, = {y € Y: F(y) < m,}. The set M, is convex and closed since F
is a continuous, convex function. Moreover, M, is a bounded set. Indeed, assume that there
exists {y"},ay C M, such that [[jy"]|| = co. Since |||y"[]] = ®(y, (¥}), .. .. Y (¥},)) and D
is a monotone norm in RY, there exists at least one i and a subsequence {n,} such that
% (") — oo.

On the other hand, for any a € A, we have that y,(y* —a) > y,(y'*) = vi(a) >
v.(yi*y — max,e, ¥, (@)=, .00 Hence, since & is a monotone norm in RY, F(y™) =
Oy, () —ay), . ... Yy —ay)) — oo which contradicts the definition of M,. Thus, M,
is bounded and there exists K > 0 such that |||y}|| € K for any y € M,. Therefore, the
problem to be solved is

inf{F(y): y e MyND},

with D={yeY:y =y, =---=yy}. Since D is closed, M,N D is a nonempty, bounded,
closed, convex set. Now, by Proposition 38.12 in Zeidler (1985), the problem has an optimal
solution and, hence, the infimum is reached. [

REmMARK 3.1,  Similar sufficient conditions which ensure that there exist optimal solu-
tions are, for instance, that X has finite dimension or that X is a dual space. It is worth
noting that no additional assumptions on @ nor the shape of the demand sets are needed to
ensure existence of optimal solutions. In the remainder of the paper, we will assume that
an optimal solution exists, which is, for example, the case if the assumptions of Lemma 3.1
are fulfilled.
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3.2. Geometrical characterization of the subdifferential. Recall that for an uncon-
strained minimization probiem with a convex objective function f, x is an optimal solution
if and only if 0 € df(x).

Our main objective in this section will be to characterize the set of optimal solutions of
(P4 (s1)). In order to do that we will study the subdifferential of the objective function F.
Our next result characterizes the subdifferential of the objective function of (Py,(4)).

Lemma 3.2, Let x € X. x* € F (x) iff there exist a; € proj, (x), p; € Ny (a;) "B} Vi€ M
and A= (A, ..., Ay) = 0 such that

(1) xe N (a;+ Ny (pi)-

(2) ®°(A) =1 and Y}1, Ad(x, A;) = F(x).

(3) x* =3I Ap

Proor.  First, we consider 7, s € RY such that 1 —s € RY and A € d®(r). By the mono-
tonicity of @ and the subgradient inequality, we have that

0<®(r)—Dd(s) < (A, 1—3s).

Since this inequality holds for all s € RY such that  —s ¢ RY, this implies that A > 0 (see
Puerto and Ferndndez 1995, 2000).

Hence, defining the function ®*(¢) := ®(¢*), where t* = (¢],..., 1)) with 1 =
max{0, 1,} for i=1,..., M, and knowing that & is a norm, we have that whenever 1 # 0,

M
0Dt (1) = {()\,, oA eR DN =1 Y A = (I)(ﬁ)}.
i=I
On the other hand, since d{x) > 0 for any x € X and d(x) = d*(x), it follows by
Theorem V1.4.3.1 in Hiriart-Urruty and Lemarechal (1993) and Theorem 2 of §8 in loffe and

Levin (1972) that the subdifferential of the composition of nondecreasing convex functions
with convex ones, is given by

AF (x) = 0DY(d(x)) = {}A:/I:/\[p,-: (Afsov s Ay) €001 (d(x)), p; € dd(x, A,-)},

i=1
where d(x) = (d,(x, A)),...,dy(x, Ay)). Therefore, we have that A and p verify
(D A= Ay, A 20, °(A) =1, Zﬁl Adi(x, A;) = F(x).
(2) pie Ny (a)N{g € B} {q, x —a;) = v;(x —a;)} where a; € proj, (x), Vi€ .
Finally, using the well-known equivalence between

gelgeB’ (g, x—a)=v(x—a)} iff x€a+Ny(g),
where B° is the polar set of B and B is the unit ball of vy, the result follows. [

3.3. Generalized elementary convex sets. In order to obtain a characterization of the
set of optimal solutions of the Problem (Py(s4)), we need to introduce some additional
concepts.

DerNITION 3.1, Given p=(p,. .., py) € (X*)" with p, € By and I C UL, let

Ci(p) :=(0d; (p),
iel
where d7 is the conjugate function of d;(x, A;), and for any A = (A, ..., Ay) =0, let

D;(A) = {x: > oAdi(x, Ay) = F(x)}.

iel
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It is useful to observe that C,(p) is nonvoid only for some choices of I and p. The
sets C;(p) were previously used in Durier and Michelot (1985} for characterizing optimal
solution sets of optimization problems with objective functions given by the sum of convex
functions. These sets are called elementary convex sets when the convex functions are
norms. For this reason, and since we consider distances to sets rather than norms to points,
we will call the sets C,(p) generalized elementary convex sets (g.e.c.s.).

Different generalizations of elementary convex sets can be found in the literature, see for
instance Puerto and Ferndndez (1995, 2000), and Muriel and Carrizosa (1995).

First of all, it is straightforward to see that the g.e.c.s. are convex because they are defined
by a finite intersection of convex sets (recall that subdifferential sets are convex).

First of all, we would like to address an interesting remark that extends a well-known
property of location problems. Let us assume that each convex body is the convex hull of
its extreme points. Note that this holds in particular when X is locally convex because of
the Krein-Milman Theorem.

A first consequence of Lemma 2.1 and the compactness of the solution set (see Plastria
1984) is that there always exists an optimal solution of the infimal distance Weber problem
in the set of extreme points of the g.e.c.s. Note that in this result we assume that these
convex sets are given by the convex hull of their extreme points. This property extends
the intersection point result obtained in R? by Wendell and Hurter (1973) for the /,-norm,
by Thisse et al. (1984) for the polyhedral norm case, and by Durier and Michelot (1985)
for the Fermat-Weber problem with linear cost. (Notice that the hypothesis on the convex
bodies only applies to this remark and is not used in the rest of the paper.)

Furthermore, we may give an alternative geometrical description of g.e.c.s. in finite-
dimensional spaces based on Theorem 2.1. This description will be used in §5 to develop
an algorithm for solving (P, (s7)) in R2. Following the notation introduced in §2.1, let %,
be the set of all the faces of any dimension of the set A; with i € /.

DeriNiTION 3.2, Given a family of sets % = {Y,,Y,,...,Y,} where each ¥, € %,
p={(pis--.,py) with p; € B NN, (v;) for any y, € ¥, and I C /L, let
(1) Ci(Y, p)=1C, po),
iel

with C(Y;, p;) as defined in (10).

It should be noted that if the unit balls are polytopes, then the g.e.c.s. can be obtained as
the intersection of cones generated by fundamental directions of these balls pointed on the
faces or vertices of each demand set (see §5 for details on the construction of these sets).

3.4. Optimality conditions. Let M (s4) be the set of optimal solutions of (Py,(1)). We
call (I, A, p) a suitable triplet if
() 142, 1S M.

(2) A=A, ... Ay) with A, >0 (i e ), and A, =0 (i g I) satisfying ®°(A) = I.
B3 p=(p,..., Pyu) where p, € By NN, (y) for any y, € do, (p,) (i € I}, with
2ier Aipi = 0.

LeEMMA 3.3, x € My () iff there exists a suitable triplet (I, A, p) satisfying
x € C(p)ND(A).

PrOOF. Observe that x € M, (s4) iff 0 € dF (x). Therefore, applying Lemma 3.2 and the
definitions of C,(p) and D, (), the result follows immediately. [J
It should be noted that Lemma 3.3 implies

Ci(p)ND(A) € My (4)
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for any suitable triplet. Therefore, in order to give a complete characterization of My, (),
we have to prove that a particular triplet exists such that the inclusion becomes an identity.

THEOREM 3.1.

(1) If My(oA) # @, then there exists a suitable triplet (I, A, p) such that My () =
C,(p)ND(A).

(2) For any suitable triplet (I, A, p) such that C,(p) N D, (A) # &, one has that My, () =
C,(p) D, (A).

Proor. Let (I, A, p) be a suitable triplet with
@ # C(p)ND(A) & My (54),

existence of which is guaranteed by Lemma 3.3 as soon as M, () # @.

Hence, in order to complete the proof, we have to prove that any X € M, (1) verifies that
x € C(p)ND(A).

Let x* be such that x* € C;(p) N D,(A); then there exists a;(x*) € proj, (x*) such that

Fri=F") = Z)\[<P[v X" —a(x")) = — Z/\i<l7i» a;(x")).

On the other hand, since F* is minimal, we get (p;, a;,(x*)) = sup, ., (P;, 4;); that is,
a;(x*) € do, (p;) for any i € 1.
For any x € X, we have

M
=2 Alpia(x)) - Va(x) € proj, (x),

i=1

A

Fr=— Z/\i<pi7 a;(x"))
= 3 A x=a,(0)) Va,(x) € proj,, (x).

Since d(x, A;) = sup, cpe{q;, x — a;(x)) = v,(x — a,(x)), vsing that ®(-) is a norm and
®°(A) = 1, we obtain

(12) Fr <

s

I

NP x = () = X Ad(x, A) < F).

!

Hence, if we consider x = x € M, (s4), all these inequalities are equalities; that is,

M M
Z Adpi, X —a (X)) = Z Adi(x, A;) Yal(x)e proj/\, (¥)
i= i=1

and

Z/\i<pi’ a;(x")) = Z)\i<1)," a;(x)).

This together with the inequalities existing between corresponding terms leads us to deduce
that for all i € I it holds: (i) {p;, ¥ —a,(X)) = d;(%, A;), and (ii) {p;, a;(%)) = (p;, a;(x*)).
From Condition (i), we obtain

di(x, A) = v(x—a,(¥)) = (p, ¥ —a,(x))  foranyiel.

Therefore, p; € dy,(¥ — a,;(¥)) which is equivalent to X — a,(X) € dy’(p,) for any i € I.
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From Condition (ii), and since a,(x*) € do, (p;) for any i € I, we deduce that ¢,(X) €
do, (p;) for any i € I. Hence,

¥ea(x)+dy(p) C a"A, () + 3/ (p) = Ci(py) for any i €/

(see (9) for the definition of C;(p,)); then we get that k € C,(p).

Moreover, since x € My(sf) using the last inequality in (12), we have F(X) =
e Midi(%,A;) and X € D, ()A). Hence, X € C;(p) N D,(A) and the result follows. [

The reader may note that these conditions extend previous optimality conditions given in
Durier (1995) for a similar location problem but only with point-facilities.

ExampLE 3.1.  Consider in R? the following problem: o = {A,, A,, A;}, where A,
i=1,2,3, are circles of radius 1 centered at (—a,0), (0,0), and (a,0), respectively.
D(xy, Xy, %3) = |x;| + |x,| + ]3] and y, = y, = y; = [,, the Euclidean norm in R?. (See
Figure 2.)

Applying the theorem above we can obtain the entire set of optimal solutions. Indeed,
take I ={1,3}, A=(1,1,1), p, = (1,0), and p; = (—1,0). With these choices one has:
Ci(p)={(x,0): x> —a-+1}, Cy(p;) = {(x,0): x <a—1}, and D,(1,1,1) = A,. Hence,

Me(st) = C(p)NCy(p) D (1, 1, 1) = {(x,0): =1 =x <1}

The last part of this section is devoted to some properties of the optimal solution set
My () of (Pp(s4)). The first property states the relationship between (Py,(s4)) and a par-
ticular Weber problem.

Let us denote by F;;(A) and My, (A) the optimal value and the set of optimal solutions
of the following Weber problem, respectively,

M
(Pw(A)) Fy(A) :r}gﬁlzwﬁi(x_“i)»
Ao

where A={a,,...,a,} and W ={w,, ..., w,}. Finally, let F* denote the optimal value
of (Py(s1)).

THEOREM 3.2.  For each monotone norm ®, such that My, () # 2, the following results
hold:

(1) There exists a set of nonnegative weights W = {w,, ..., wy} and a set of points
A={a,,...,ay} with a; € A;,i € M such that

My (A)NMy(A) £ @ and F* = Fj(A).

() If D,(W) :={xeX: ¥ wd(x,A) =F}#@ for a given W = {w,, ..., wy}
then there exists A= {a,,...,ay} such that (Py,(A)) and (Py(4)) have common optimal
solutions.

PrOOF. If x* € My (5{), then there exists a suitable triplet (7, A, p) such that x* €
C;(p)ND;(A). In particular, x* € C,{p) = ";; Ci(p;). Therefore, for each i € I there exists

- Ma(

A (4) ,
IEEERNE Voviyqo-ch--ooa.t.-aoc.o-o.o-o
i 4

FiGure 2. IMustration of Example 3.1.
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a; € proj, (x*) € do, (p;) and p; € BI NN, (y,) for any y; € do, (p;), Vi€ I, such that

xYea;+Ny(p)Viel and > Ap =0.

icl

In addition, since x* € D,(A) we have that
F*=®(d(x) =) Nd;(x", A) = 2 hyi(x" —ap). |
el iel |
Therefore, if we take W ={w,, ..., wy} with w,=A,Viel, w;,=0,i{¢ I and g, is given
as above for i € I and otherwise arbitrarily chosen within A;; it follows that

My (A)NMy(st) £ @ and F*=Fi(A). O

If v, are strict norms, a more precise relation can be shown.

CoroLLary 3.1. If v,(:) Yi € M are strict norms and there exists a suitable triplet
(I, A, p) with |I| = 3 and three demand sets A;, A,, A, J, k,l €1, which cannot be stabbed
by a line, then W ={w,,...,wy,} and A={a,,...,ay} exist such that My, (A) € M (A)
and F* = Fj (A).

Proof. It is well known that if v,(-) is a strict norm and the existing facilities are
not colinear then for any set of weights, the classic Weber problem has a unique optimal
solution (see Pelegrin et al. 1985). Since under the assumptions of this corollary any family
of points A = {a,},., with a; € A; cannot be colinear, Theorem 3.2 leads us to the desired
result:

My (A) € My (ct). O]

REMARK 3.2. It is important to observe that this corollary is only a sufficient condition
and that, in general, inclusion cannot be ensured. The following examples show that (1) the
same result can be obtained without the assumptions of Corollary 3.1, (2) there is not a
general inclusion relationship between the set of optimal solutions.

Consider once more the problem in Example 3.1 whose configuration is displayed in
Figure 2.

The optimal solution set M, (s4) is given by the segment indicated by the thick line in
Figure 2, that is, the diameter of A, on the line through the three centers. Now consider
the Weber problem (Py,(A)) with existing facility set A given by any point in the diameter
of the central circle and the points in each one of the external circles closest to the central
ong, and weights w, = wy = [, w, = 3. The optimal solution set M, (A) is the point of
the central circle. Obviously, My, (A) C My, (sf) and the objective value of both problems
coincide. However, the assumption of Corollary 3.1 does not hold. Moreover, if we had
taken weights w, = w, = 1 and w, = 0, the optimal objective value of both problems would
have been the same, but the solution set My, (A) would be the segment joining the points
in the external circles. Note that in this case My, () # My, (A). (M, () C My (A).)

4. Relationships with two classical problems: Some important examples. We con-
sider a collection of sets st ={A,,..., A, } where each set A; is compact and convex.
Moreover, let W = {w,, ..., w,,} denote a set of positive weights, and let y,(-) with i € M
be a set of norms in X with unit ball B,.
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4.1. The Weber problem with infimal distances. The Weber problem with infimal
distances with respect to ¢ and W is defined as

(Py() mip G(x) = % wd, (5, A).

Recall that d;(x, A;) = inf ., v:(x —a).

Our main goal will be to characterize the set of optimal solutions M, (s4) of Py (). The
following results are particular cases of Lemma 3.2 and Theorem 3.1 taking & = [;-norm
in R, and vy = w,y, for all i € M. Therefore, the proofs are omitted here.

LEMMA 4.1. For any x € X, we have that x* € 3G (x) for some x € X Iff there exist
a;€proj (x), i=1,2,....k p; € N, (a;) N B;, such that

(1) xe ﬂ;‘i](ai+NBf(pi))'

(2) x* = Z,Ail w;p;.

THEOREM 4.1.

(1) If My (s4) # B, then there exists a suitable triplet (1, A, p) with A\; = w; Vi € I, such
that My (s0) = N, (d0a (p1) + Npo (Pi))-

(2) If there exists a suitable triplet (I, A, p) with A, = w; ¥i € I such that

ﬂ((?(TA, (p))+ NB;’ (p) # 2,

icl
then My, () = Nie, (004, (pi) + Npo (P)-

ExampLE 4.1. Consider three sets in R? with y, = [, for every i. The demand sets
are A, :=co{(0,1), (—1,2), (1,2)}, 4, := cof(2,—0.5),(2,0.5), (3,0.5), (3, =0.5)}, and
Ay i=col(=2,-2), (=2, —1), (=3, 1), (=3, =2)} with w, = w, = w; = | (see Figure 3).

We see that the g.e.c.s. are those sets delimited by the lines drawn in Figure 3 (in §5,
the characterization of these sets is described in detail). The optimal solution is given by
p=(0,=1), p, = (—1,0), and p; = (1, 1). Moreover,

C((py, pas p3)) = co{(0, —0.5), (0,0.5)}.

I
t
!
i
T
|
1
|
1
|
!
1
|
|
|
1

FIGURE 3. Illustration of Example 4.1.
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COROLLARY 4.1. The Weber problem with infimal distances always has an optimal solu-
fion in the set of extreme points of the corresponding g.e.c.s.

To prove the last result in this section, let us assume that y; =y for all i =1,..., M.
In addition, let us denote by d,(x, y) = y(x —y) the common distance generated by the
unique norm in the problem. We can derive a majority theorem similar to the one valid for
the classical case with points as existing facilities.

TueorREM 4.2, If v is a norm in X, My ({) # @ and there exists A; € i such that

W; > 3w, then there exists an optimal solution in A,.

Proor. Let x* € My, (s1) and assume that x* ¢ A,. If x € proj, (x*), then we have

G(x*) = Zwidl(X*’ A) =G(x) = ijdl(x’ Aj)'
i=1 J#i

Now by the triangular inequality, we obtain

Z w/dl (x, A/) = Z w.f(y(x —x")+d,(x", A/)) <wy(x—x")+ Z wjdl (x", Aj) = G(x").
j#i J# J#E

Hence, x is also an optimal solution. [0

4.2. Minimax problem with infimal distances. The minimax problem with infimal
distances is defined as

(13) min A (x) := max w;d,(x, A,),
xeX 1<i<M

where d;(x, A;) = inf 4 v,(x — a). Denote by M7 (s4) the set of optimal solutions of (13)
and let us define for / C / and « > 0 the following set:

AS(a) ={xeX:wd(x,A)=qa, Viel, wd(x, A) <a, Vigl}

Then the following theorem gives a characterization of Mé;" (sf).

THEOREM 4.3,
(n Iif Mé; (A) # @, then there exists a suitable triplet (I, A, p) and a > 0 such that

M7 (1) = C,(p) N AS, ().

(2) For any suitable triplet (I, X, p) and a > 0 such that C,(p) N AS,(a) # &, one
has that

My (s1) = Ci(p) N AS, ().

Proor. The proof consists of applying the general Theorem 3.1 for ® = [_-norm in
RY and y/ = w;y, for all / € /L. Since ® = [ _-norm, this implies that the dual norm ®° =
[,-norm. Therefore, y°(A) =1 if and only if there exists / C /4 such that }",, A, = I. Hence,
= H(x) = max, ., wd(x,A) =Y, hwd.(x, A) with Y., A, = | is equivalent to
w;d;(x, A;) = & for any i € I and w;d;(x, A;) <  for any i ¢ I. In other words, x € D,(A)
if and only if x € AS,(«) for @ = H(x), and the desired result follows. O

REMARK 4.1, The value of a which defines the optimal solution set AS,(a) is the
optimal objective value of Problem (13).
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Ficure 4. Illustration of Example 4.2.

EXAMPLE 4.2. Consider a problem with ®(x,, x,, x4) = max{}x,|, [x,], |x;]} and the
following demand sets 56 = {A, ;= co{(5, 1), (5, —1). (3, =1), (3, D}, A, := co{(l, -3),
(0, =5), (—1,=3)}, Ay := co{(=3,3), (—3,5), (=5, 4)}} with weights W = {1, 1,1} and
v, = [ -norm in R? for i = 1,2, 3 (see Figure 4).

The problem to be solved is

min A (x) := max_d,(x, 4,).
el i=1,2,3

Taking I = {2, 3}, p, = (0, 1), p; = (0, —1)} it follows that
Ci(p)y=ixe R% x, > =3, %, +x, <0, +x, > =4, x; —x, > =6, x, —x, <4}.

Now for a =3, we have that AS,(3) = {(0, 0)}, which equals D,((0,0.5,0.5)). Note that
for A =(0,0.5,0.5), we have ®°(A) = 1. In fact, this set is defined by

D,;((0,0.5,0.5)) = { x: ,‘E]l,az)‘%di(x’ A)= %((0, 1),x—a2>+%<(0, —1), x—a3>} ={(0,0)},

where a, = (0—3) and a; = (-3, 3). Hence,

My (s0) = C,(p) N AS, (@) = {(0,0)}.

5. The polyhedral planar case: Interpretations. In order to obtain the solution set of
(P, (s0)), it is important to realize that within the sets C,(%, p) (defined in (11)) the infimal
distance function is linear.

In this section, we restrict ourselves to R? and total polyhedrality. This reduction allows
us to describe in an easy way the geometrical characterization given in the previous sections.
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In this section, we take advantage of the properties of our characterizations in the planar
case to develop a polynomial algorithm to find the g.e.c.s. in R? whenever polyhedral norms
are used to measure the distances and the demand sets are convex polygons.

We will do that by applying the following scheme. Having already proven that the g.e.c.s.
are the sets of points projecting onto faces of the existing facilities, we will characterize
the maximal projection domains using the norm associated with each facility. To do that,
we first characterize the projection onto lines, then onto segments, and finally onto cones.
After that, we can characterize the projection onto convex polygons, since they can be seen
as segments plus corners (cones).

Let y be a polyhedral norm with unit ball B having G extreme points. In the following,
we say that a point x projects onto the line r with direction & if there exists x € proj,(x)
such that x = x4+ A8 with A > 0.

|
LEMMA 5.1.  Let r be a line with normal vector p € B°. It holds that
x eproj,(x) iff x—xedy(p).

Proor. By definition, x € proj,(x) iff ¥ € arg min ., y(x — y). Since this is a con-
strained convex problem, its optimality condition is: X is an optimal solution iff
0 € dy(x —x) + N,(X). Finally, this relationship holds iff x —x € dy*(p). O

CorOLLARY 5.1, Let m be an open halfspace determined by a line r. The projection
of a point belonging to 1, onto r can be:

(1) Unique. In this case, all points of | project with the same fundamental direction.

(2) Not unique. In this case, all points of 1, project with the cone of directions generated
by two consecutive fundamental directions.

Prook.  Since, Ny.(p) is either a halfline or a full dimension cone, the result is a straight-
forward consequence of Lemma 5.1. O

In the following corollary, we determine the direction projections according to the two
cases analyzed in Corollary 5.1.

COROLLARY 5.2.  Let 7, be an open halfspace determined by a line r and let AE be a
segment included in r.
(1) If x € m, projects with the fundamental direction 8, onto r and % = proj,(x), then
dp € B°, dx,r)={p,x=X), Vxecm,
and if x € m, and proj,(x) € AE, then
x € AE +ué,, = 0.
(2) If x € m, projects with the directions 8, and &, onto r, then
dg € B°, d(x,r)=(q,x—%), Vxe€m and any X € proj, (x).
Moreover, if x € , and proj, (x) N AE # &, then
x € AE +cone(§,,8,). O

(See Figure 5.)

Once we have described the set of points in 77, whose projections belong to a segment,
we proceed studying the case of a cone.
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FIGURE 5. Set of points belonging to #,, whose projection onto r with the /_-norm has a nonempty intersection
with the line segment AE.

THEOREM 5.1.  Let h, and h, be two halflines with the same origin O, contained in the
lines r, and r, respectively. Let m\, 1, be the two open halfspaces determined by r, and r,
such that h, N, = & and h, N, = &. The following two statements hold:

(1) If x e my and X, € proj, (x) N (h\{O}), then there exists p, € B° verifying

d(x,co(hy, hy)) = (py, x — X))

(The analogous result holds for ,.)
(2) If x € m U, and proj, (x) N (A \[O}) = @ with i = 1,2, then projy, ;,(x) = O
and there exists p, € B° verifying

d(x,co(hy, hy)) = (p,, x—0),

where co(hy, h,) is the convex hull of h, and h,.

PRrROOF.

(1) This is a straightforward consequence of Corollary 5.2.

(2) Let x € m U, and X € proj., 5,y (x). Since x ¢ co(hy, hy), using the convexity
of y, we have that ¥ € h; Uh,. Now, we have to prove that ¥ = O. Let us assume that
i€ (h Uhy)\{O}.

Since proj, (x) N (A \{0}) =@ for i = 1,2, using the convexity of y, we have that
y(x—0) < y(x—y) Vy € (h;\{0}), i =1, 2. This contradicts that x € (h, Uh,)\{O}. Thus,
we obtain that x = O.

Therefore, there exists a cone cone(D,) (maybe degenerated to a line), which is generated
by halflines defined by O and the points whose unique projection onto co(h,, h,) is O.
That is, if x € O +cone(D,,), then proj.,, ,,)(x) = 0. Thus, for all x € O +cone(D,) there
exists p, € dy(x — O), verifying that

d(x,colh, b)) =y(x=0)={p,x—0). O

COROLLARY 5.3. The funciion d(x,co(hy, hy)) is linear in the following scts
(see Figure 06):

(1) h,+cone(D;), where D, is the set of fundamental directions of projection of ; onto v,
with i=1,2.

(2) O+cone(8,,8,,,) being 6, and 8, two consecutive fundamental directions of D,
and where D, is the set of consecutive fundamental directions verifying that |D, N Dy| =
|DyNDy| =1 and that O +cone(D,) C cl(r, U m,) (where we denote by cl the topological
closure).

ReMARK 5.1. Tt should be noted that D, may only have one element. In this case,
O +cone(d,, 0,,,) is a cone degenerated to a line.
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hy 4+ cone(Dq)

FiGure 6, Different sets where the distance to co(h,, h,), using the /,_-norm, is a lincar function.

PROOF.
(1) This is a straightforward consequence of Theorem 5.1.
(2) The set of points included in 7 U7, whose unique projection onto co(k,, h,) is O,
is the set
P, = {x: X € cl(:(7'rI U, )\ (h, +cone(D) U h, —{—cone(Dz)))}.

Therefore, P, is a pointed cone at O generated by the set of fundamental directions, D,,,
enclosed by D, and D, such that O +cone(D,,) € cl(m Ur,). Thus, if 8, and 5., (two
consecutive fundamental directions) belong to D,, we have that there exists p, € dy(5,) N
dy(0,,,) such that

d(x,0)={p,x—0) VxeO-+cone(5,8,,). O

In the previous result we have characterized the sets where the infimal distance to a cone
is lincar. Now, in the following corollary, we extend these results to the infimal distance to
a polygon.

CorROLLARY 5.4, Let A be a convex polygon, where F,,..., F, are its facets and
Oy, ..., 0, are its vertices (see Figure 7). Let r; be the line containing the facet F,, and

4 + cone(Dy)

Figure 7. Different sets where the distance to this triangle, using the /__-norm, is a linear function.
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m; the open halfspace defined by r; and not containing A, with j=1,...,L. There exist
p(D;), p(O;,s) € Bf forall j=1,...,L, such that

(p(D;), x—x;) Vx € F;4cone(D;) and X; € proj,(x),

d{x, A) =
(x, A) (p(0;,8),x~0;) VxeO;+cone(d,8.) with 8,8, € Dy,

where D; and Dy, with j=1,..., L are defined as in the previous corollary.
I

REMARK 5.2.  Since dd(x,A;) # &, we can choose p(D;) € N, (x) for any x €
proj, (x) Nri(F;) such that (p(D;), x — ¥) = d(x, A;). Therefore, we obtain that

C(F;, p(D;)) = F;+cone(D;). In the same way, there exists p(0O;, s) € Ny (0;) such that
C(Oj, p(OI, 5)) =0, —|~cone(8§, 8,11). (Recall that the sets C(Y;, p;) were defined in (10).)

After these results, we construct the maximal sets C, (%, p) (deﬁned in (11)). In fact, in
the Appendix, we develop an algorithm which gives us a methodology to build the maximal
domain of linearity of the infimal distance to each set of the family .

The algorithm in the Appendix performs a loop over the extreme points Oy, ..., O, and
the facets F,, ..., F, of an existing facility, A € s{. During this loop we can compute the
sets D; and Dy, and their corresponding vectors p(D;) and p(0;,s), with j =1, L,

deﬁned in Corollaries 5.3 and 5.4. Finally, we calculate C(F;, p(D;)) and C(O,, p(O/, 5))
as described in Remark 5.2.

Assuming that the facets are given in a sorted circular list, we can obtain the domains
of linearity in O(L + G) time. (Recall that L is the number of facets of the polygon A
and G is the number of extreme points of the unit ball of y.) A detailed description of this
algorithm is given in the Appendix.

Once we have described the algorithm to compute the maximal domain of linearity of
the infimal distance to any polygon, we can obtain the domain of linearity of any problem
where the demand sets are polygons as the intersection of the maximal domain of linearity
of the infimal distance to each demand set. These maximal domains of linearity are called
cells and they are the natural extension of the elementary convex sets when we consider a
problem with demand points.

In order to solve a general problem Py, () with polygons as demand sets, we describe an
algorithm to compute the optimal solution of this problem. As a straightforward extension
of the results in Plastria (1984), one can prove compactness of the optimal solution set.
Then by the discussion prior to Definition 3.2 and Corollary 4.1 we only need to look at
the extreme points of the g.e.c.s.

ALGORITHM 5.1. (SOLVING THE PROBLEM (P, (54)) IN RR?).

Step 1. COMPUTE the planar graph generated by the cells and let V be its set of vertices
using the maximal domains of linearity.

Step 2. Perform a local search in the vertices of V with the neighbor structure induced
by the adjacent vertices.

The planar graph generated by the cells of the problem can be obtained by employing a
sweep line technique applying the algorithm by Bentley and Ottmann (1979) and described
in more detail in Weiller (1999) and Nickel et al. (1999). In order to use the sweep line
technique, we need to consider a bounded region on the plane which follows from the
compactness property mentioned above. Since the objective function F is convex and in
the polyhedral case, the number of intersection points is polynomial, the algorithm ends
in polynomial time with the optimal solutions given by the convex hull of the intersection
points attaining the lowest F value.

The complexity of Algorithm 5.1 is determined by the complexity of computing the
planar graph generated by the cells and the time needed to evaluate the objective function
for each ve V (MG,,.)-
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By applying the results of WeiBler (1999) and Nickel et al. (1999), the complexity
of Algorithm 5.1 is O(M*G,, log(MG ) + O([VIMG,..) = O(M*G,, log(MG )+
|VIMG,,). The number of vertices |V | can be bounded by M>G, ., where G ___is the max-
imum number of fundamental directions of the norms associated to each demand set, A € 5.

The reader may note that there exist very powerful alternative approaches to solve this
problem. For instance using Cohen and Megiddo (1993), one can get subquadratic com-
plexity (in MG ,,) using an optimal convex algorithm for piecewise convex functions in
fixed dimension.

ExamPLE 5.1. Let A, A,, and A; be the demand sets defined as follows: A, =
co{(4.5,10), (10.5, 10), (10.5, 13.5), (4.5, 13.5)}, A, = co{(19.5, 15), (23.5, 17), (24, 15)},
and Ay = co{(18.5,4), (18.5,6), (20.5,6), (18.5,6)}. We consider that y, = /,-norm, and
Y2 = V3 = l,-norm. The problem to be solved is given by

max

min2d,(x, A)) + d,(x, A)) + d5(x, Ay).
xelh? :

In order to solve this problem, we compute the generalized elementary convex sets using
Algorithm A.1 (see Figure 8). Knowing all elementary convex sets, we use Algorithm 5.1
to obtain as optimal solution the shaded region M, (s0).

6. Concluding remarks. There exists another natural extension that can be addressed:
the location of a regional facility with respect to existing facilities that are sets.

Let us consider a fixed set B closed, compact, and convex. The problem consists of
determining the translation vector x such that x solves the following problem:

mi)l(q O(d (x+ B, A),...,dy{(x+B,A,)),
Ry

where d;(x+ B, A) =inf,yinf, ., v,(x +b—a,).
Now, it is straightforward to see that
mf ul yiGrbb—a) =il v(x—c).
Therefore, we reduce this problem to the first one by considering a new family W’ =
{B—A,, ...,B—A,}. (Set-to-set expected distance location problems have been already
considered in Carrizosa et al. 1995.)

FiGure 8. Illustration of the gencralized elementary convex sets in Example 5.1.
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Finally, we would like to mention that similar results to the ones developed in this paper
can also be obtained when the norms v, associated with cach set A, are replaced by gauges.

Appendix. In this section, we give a detailed description of the algorithm for finding
the maximal domains of linearity. Recall that we consider, as in §5, a polyhedral norm vy
in R? with unit ball B having G extreme points and fundamental directions {5,,..., 5}

Before starting with the description of the algorithm, we need the following lemma that
allows us to identify the projection directions onto a line.

Lemma A.l.  Let 7, be an open halfspace determined by a line r. If ((x —8,)+ B)N
cl{7)) C r with X € r, then the points of 1, project onto r at least with 0.

PrROOF.  We can assume without loss of generality that every fundamental direction &
verifies that y(8) = 1.

There exists a fundamental direction 8,, such that ((x —&,)+ B)Necl(m,) € r with x € r.
Then, two cases can occur:

() (k=8 +B)Ncl(m) = (x-8,) +8,.

(2) (x=8)+B)Ncl(m) =0((x—8,)+8)+(1—-0)((x—5,)+8,) with 6 €0,1]
and §, a consecutive fundamental direction of 6.

Now, consider a fundamental direction 8, such that & # &, in Case 1. Moreover, & #
06,4+ (1 —0)5,, V0 €[0, 1] in Case 2. Then again one of two cases can occur:

(1) YA > 0 we have that (X —08,)+ A0 & r.

(2) 3A > 0 such that (X —6,)+Ader.

The first case implies that any point of 71| does not project onto » with the direction 8.

In the second case (see Figure 9), let x = ¥+ 6,, and y = (X —&,) + Ad € r. Since
((x—=8,)+ B)yncl(m) # (¥ —8,)+ 8, it follows that A > I.

We have that x = X+ &, or equivalently, x = X+ 3§, — A + A8. Moreover, since x € r and
(X—38,)+Ad €r, then ¥ —(—5,+ Ad) also belongs to r. Thus, x is equal to an element of r,
namely x —(—8&, + A8), plus AS. This means that the distance from r to x with direction &
is A. We know that A > 1 and the distance from r to x with §, is 1. Therefore, x does not
project with 8. This implies that x has to project with 6,. [J

Using this lemma and the results in §5, we derive an algorithm that performs a loop over
the extreme points O, ..., O, and facets F,, ..., F, of a convex polygon, A, in order to
obtain the maximal domain of linearity of the infimal distance function to A.

ALGORITHM. A. 1.

Preprocessing:

e For existing facility A € 9, we denote by —n,, ..., —n, the negative normal vectors
of the fucets of A. They are sorted in counterclockwise order.

FiGure 9. Hustration of the proof of Lemma A.1.
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o For each fundamental direction §; of the unit ball B, we build B— 3, and denote by C9,
the cone generated by the two facets 8; and 8¢ which start in the origin (of B—38,). Also
the §; (and therefore also the C8,;) are assumed to be sorted in counterclockwise order.
Moreover, we assume that we have the elements in a circular list, i.e., G+ 1= 1.

A test routine: bool IsActive(Co;, —n;)

(1) IF (=n;, 87) > 0 and (=n;, ) = 0

then return TRUE,

(2) else return FALSE.

The main algorithm:

() i:=1;

(2) WHILE NOT IsActive(CS,, —n,) i := i+ 1. (* Find the active projections for —n,*);

(3) ActiveCones := {C8,};

(4) IF (i =1) AND IsActive(CS, —n,);

then ActiveCones := ActiveCones U {C3,;}.
(5) IF IsActive(C6,,,, —n,)
then ActiveCones := ActiveCones U {C6,,,}, i :=i+I;
(6) ActiveDirs(—n,) := ActiveCones;
(7) FOR j:=2TO L DO
(a) FOR all cones C8 € ActiveCones DO
(i) IF NOT IsActive (CS, —n))
then ActiveCones 1= ActiveCones\{C8}.
{(* Note, that we have maximally 2 active cones *);
(b) IF |ActiveCones| =1 then
IF IsActive(C8,y, —n;)
then ActiveCones := ActiveCones U {C6,_, };
(¢c) IF ActiveCones = & then
(i) WHILE NOT IsActive(CS;, —n;) i:=i+1;
(it) ActiveCones :={C8,};
(iii) IF IsActive(Co,,,, —n,)
then ActiveCones := ActiveCones U{Cd,, |}, i:=i+1;
(d) ActiveDirs(—n;) := ActiveCones.
(8) FOR j:=1TO L—1
(a) ActiveDirs(p,) := Cone(last(ActiveDirs(—n;)), first(ActiveDirs(—n,,,))).
(9) ActiveDirs(p, ) := Cone(last(ActiveDirs(—n,)), first(ActiveDirs(—n,))).
(10) END

The running time of the algorithm is O(L 4+ G) and the ActiveDirs(—n;) and
ActiveDirs(p;) contain the directions spanning the maximal linearity domains.
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