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Abstract. The adjoint of a linear fractional composition operator acting on the classical Di-
richlet space is expressed as another linear fractional composition operator plus a two rank
operator. The key point is that, in the Dirichlet space modulo constant functions, many linear
fractional composition operators are similar to multiplication operators and, thus, normal. As a
particular application, we can easily deduce the spectrum of each linear fractional composition
operator acting on such spaces. Even the norm of each linear fractional composition operator is
computed on the Dirichlet space modulo constant functions. It is also shown that all this work
can be carried out in the Hardy space of the upper half plane.

Mathematics Subject Classification (2000): 47B38

1. Introduction

Let D denote the open unit disk of the complex plane and A(z) the normalized
Lebesgue area measure of the unit disk. The Dirichlet space D is the Hilbert space
of functions f analytic on D for which the norm

‖f ‖2
D = |f (0)|2 +

∫
D

|f ′(z)|2 dA(z)

is finite. Observe that the integral above is just the area of the image of D under f ,
counting multiplicity. The term |f (0)|2 avoids that constant functions have norm
zero.
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If ϕ is an analytic function on D with ϕ(D) ⊂ D, then the composition operator
induced by ϕ is defined by

Cϕf = f ◦ ϕ,
for f ∈ D. A necessary condition for Cϕ to act boundedly on D is that Cϕz = ϕ

belongs to D. However, it is not difficult to construct an unbounded composi-
tion operator Cϕ on D with ϕ ∈ D. In this work, we deal with linear fractional
composition operators on D, that is, composition operators Cϕ induced by linear
fractional maps of D

ϕ(z) = az+ b

cz+ d

such that ad − bc �= 0 and ϕ(D) ⊂ D. Since linear fractional maps are univalent
functions, they always induce bounded composition operators on the Dirichlet
space.

In 1988 Cowen [4] (see also [6, Chap. 9]) proved that the adjoints of linear
fractional composition operators on the Hardy space can be expressed as products
of Toeplitz and linear fractional composition operators. Cowen used his theorem
to compute the norm ofCsz+t whenever |s|+|t | ≤ 1 and |t | < 1. Cowen’s theorem
was extended by Hurst [10] to weighted Bergman spaces. For a weighted Hardy
space H2(β) the adjoint is the product of a composition operator by a Toeplitz
operator but acting on a different space (see [10], Thm. 5). Appel, Bourdon and
Thrall [2] have studied the norm of composition operators in the Hardy space. In
the paper by Vukotić [15], it is shown that the norm of univalently induced com-
position operators in the Bergman space can be computed using a geometrical
method.

The aim of this note is to find the adjoints of linear fractional composition op-
erators on D. They will be expressed as a linear fractional composition operator
plus a two rank operator acting on D itself. The proof has to be different to that of
the Hardy space. The key point is that many linear fractional composition opera-
tors induce normal composition operators on the Dirichlet space modulo constant
functions (recall that an operator T on a Hilbert space is said to be normal if T
commutes with its adjoint). This is a striking fact if we compare with the situ-
ation in the Hardy space, in which Cϕ is normal if and only if ϕ(z) = λz with
|λ| ≤ 1 (see [14] or [6, Chap. 8]). Normal operators are one of the best understood
classes of operators because they are unitarily similar to multiplication operators
on Hilbert spaces of measurable functions (see Conway’s book [3, Chap. IX],
for instance). We will also provide a direct proof of which are the multiplication
operators unitarily similar to the normal linear fractional composition operators.

As an application of our results, we will give an explicit formula for the norm
of each linear fractional composition operator on the Dirichlet space modulo
constant functions. Moreover, we can easily find the spectrum and the essential
spectrum of such operators acting on D. The spectrum was computed, in a differ-
ent way, by Higdon [9]. In the case that the symbol ϕ is a linear fractional map
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with exactly one fixed point of multiplicity one on ∂D, the spectrum of Cϕ was
previously found in [10]. A complete characterization of the spectrum of linear
fractional composition operators acting on the classical Hardy space of the unit
disk was previously obtained by Cowen [5]. The methods we will use here to find
the spectrum of Cϕ are rather different from Cowen’s.

In the last section we will show how all the work can also be done on the
Hardy space of the upper half plane H2(�). This time the adjoint of a linear frac-
tional composition operator will be a scalar multiple of another linear fractional
composition operator. In particular, we also characterize which linear fractional
composition operators on H2(�) are normal. As a particular application, we will
find the spectra of these operators on H2(�).

2. Preliminaries

In this section we introduce the space D0, where part of our work is set, and
some basic properties of linear fractional maps which will make the paper more
readable.

2.1. The Dirichlet space modulo constant functions

All the questions we treat here become easier if we ignore the constant functions.
Let D0 be the space that consists of functions in the Dirichlet space D modulo
constant functions. In this case,

‖f ‖2
D0

=
∫

D

|f ′(z)|2 dA(z)

becomes a norm in D0. We can also think of D0 as the subspace of Dirichlet
functions that vanish at the origin.

Since constant functions are invariant under any bounded composition opera-
tor Cϕ on D, the operator

C̃ϕf = Cϕf − (Cϕf )(0)

takes boundedly D0 into itself. The operator C̃ϕ can also be seen as the com-
pression of Cϕ to D0. Since there is no risk of confusion, we still denote C̃ϕ
by Cϕ .

2.2. Linear fractional maps

If a, b, c, and d are complex numbers with ad−bc �= 0, then the linear fractional
map

ϕ(z) = az+ b

cz+ d
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is a one-to-one map from the extended complex plane C
∞ = C∪{∞} onto itself.

Indeed, it is enough to define ϕ(∞) = a/c, and ϕ(−d/c) = ∞ if c �= 0, while
ϕ(∞) = ∞ if c = 0.

A linear fractional map which is not the identity has one or two fixed points
in the extended complex plane. Two linear fractional maps ϕ and ψ are said to
be conjugate if there is another linear fractional map T such that ϕ = T −1ψT . If
ϕ has only one fixed point α, then it is called parabolic and it is conjugate under
T z = 1/(z − α) to ψ(z) = z + τ with τ �= 0. Observe that the derivative at the
fixed point is 1.

If ϕ has two distinct fixed points α and β, then ϕ is conjugate under T z =
(z − α)/(z − β) to ψ(z) = µz. In this case, the linear fractional map is called
elliptic if |µ| = 1; hyperbolic if µ > 0 and loxodromic, otherwise (see [1] for
more details). It is not difficult to show that the derivative at the fixed points satisfy
ϕ′(α) = 1/ϕ′(β). For ϕ loxodromic or hyperbolic the attractive fixed point of ϕ
is the one for which the modulus of the derivative is strictly less than one.

A necessary condition for Cϕ to be defined is that ϕ must take D into itself.
This fact imposes some restrictions on the location of the fixed points of ϕ. One
can easily show that if ϕ(D) ⊂ D, then

(a) If ϕ is parabolic, then its fixed point is on ∂D.
(b) If ϕ is hyperbolic, the attractive fixed point is in D and the other fixed point

outside of D and both fixed points are on ∂D if and only if ϕ is an automor-
phism of D.

(c) If ϕ is loxodromic or elliptic, one fixed point is in D and the other fixed
point outside of D. If ϕ is elliptic, then it is an automorphism of D. If ϕ is
loxodromic, the attractive fixed point must be in D.

3. Adjoints of linear fractional composition operators

In this section we will find the adjoint of each linear fractional composition oper-
ator acting on D0 as well as on D.

First of all, we will prove the following easy theorem in which unitary com-
position operators on D0 are characterized. Recall that an invertible operator is
unitary if the adjoint T 	 equals to T −1.

Theorem 3.1. Let ϕ be a holomorphic self-map of D. Then Cϕ acting on D0 is a
unitary operator if and only if ϕ is an automorphism of D.

Proof. Since only composition operators induced by automorphisms are invert-
ible [6, Thm. 1.6], the condition is clearly necessary. Now, let ϕ be an automor-
phism of D. For f, g ∈ D0 the change of variables w = ϕ(z) in the third equality
below yields
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〈C	ϕf, g〉 = 〈f,Cϕg〉
=

∫
D

f ′(z)g′(ϕ(z))ϕ′(z) dA(z)

=
∫

D

f ′(ϕ−1(z))(ϕ−1(z))′g′(z) dA(z)

= 〈Cϕ−1f, g〉.
Thus C	ϕ = Cϕ−1 = C−1

ϕ and the result follows. �
Next theorem says that the adjoint of a linear fractional composition operator

on D0 is another linear fractional composition operator. Unlike the adjoint in the
Hardy space, Toeplitz operators do not appear (see [4]). The argument below is
different to the one of the Hardy space.

Theorem 3.2. Let ϕ(z) = (az + b)(cz + d)−1 be a linear fractional self
map of D and consider Cϕ acting on D0. Then C	ϕ = Cψ , where ψ(z) =
(āz − c̄)(−b̄z + d̄)−1.

Proof. Since ϕ takes D into itself, then d must be different from zero. So we can
set p = ϕ(0) = b/d that belongs to D. Now, we consider the automorphism of
the unit disk

αp(z) = p − z

1 − p̄z

that interchanges p with the origin and satisfies α−1
p = αp. In this way, φ = αp ◦ϕ

fixes the origin. Indeed,

φ(z) = αz

γ z+ δ
,

where

α = (bc − ad)d̄; γ = (cd̄ − b̄a)d and δ = (|d|2 − |b|2)d.
We will compute the adjoint of Cφ . Let f (z) = ∑∞

k=1 akz
k be any function in D0.

For each positive integer we set un(z) = zn/
√
n. We have

〈C	φf, un〉 = 〈f,Cφun〉
= 〈f, un ◦ φ〉
= 1√

n
〈f, φn〉

= 1√
n

∫
D

f ′(z)(φn(z))′ dA(z).

We write

g(z) = (φn(z))′ = nδαnzn−1

(γ z+ δ)n+1
=

∞∑
k=1

bkz
k−1.
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The orthogonality of the monomials with respect to dA(z) = rdrdθ/π allows us
to compute

1√
n

∫
D

f ′(z)(φn(z))′ dA(z) = 1√
n

∫
D

f ′(z)g(z) dA(z)

= 2√
n

∫ 1

0

∞∑
k=1

kakb̄kr
2k−1 dr

= 1√
n

∞∑
k=1

akb̄k. (3.1)

We can recover the integral with respect to θ and perform the change of vari-
ables z = eiθ . We obtain that (3.1) equals to

1

2π
√
n

∫ π

−π

f (eiθ )

eiθ
g(eiθ ) dθ = n

2πi
√
n

∫
|z|=1

f (z)

z2

δ̄ᾱnz̄n−1

(γ̄ z̄+ δ̄)n+1
dz

=
√
n

2πi

∫
|z|=1

f (z)δ̄ᾱn

(γ̄ + δ̄z)n+1
dz. (3.2)

Consider η = ψ ◦ αp, that is, η(z) = (ᾱ/δ̄)z − γ̄ /δ̄ that also applies D into
itself. Using the Cauchy integral formula for the n-th derivative we see that (3.2)
equals to √

n

n!

ᾱn

δ̄n
f n)

(
− γ̄
δ̄

)
=

√
n

n!
(f ◦ η)n)(0).

Observe that the last quantity is the n-th coefficient in the Taylor development
of f ◦ η around the origin and multiplied by

√
n. Thus, we have

〈C	φf, un〉 = √
n〈f ◦ η, zn/n〉 = 〈f ◦ η, zn/√n〉 = 〈Cηf, un〉.

Therefore C	φ = Cη. Since Cϕ = CφCαp , we may apply Theorem 3.1 in the
second equality below

C	ϕ = C	αpC
	
φ = Cα−1

p
Cη = CαpCη = Cη◦αp = Cψ.

The proof is finished. �
Remark 3.1. Some of the arguments in the proof above are also used in [7, Chap.
2], to obtain an expression for C	ϕ acting on the Bergman space for ϕ with an inte-
rior and a boundary fixed point. However, in [7] the operator C	ϕ is not expressed
as an operator acting on the Bergman space itself.

Theorem 3.2 will allow us to find the adjoints of linear fractional composition
operators on the Dirichlet space. First recall that, for each w ∈ D, the function
Kw(z) = 1 + log(1 − w̄z)−1 is the reproducing kernel atw in the Dirichlet space,
that is, for f ∈ D we have 〈f,Kw〉 = f (w). If ϕ is an analytic self map of D,
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then it is easy to see how C	ϕ acts on the reproducing kernels. Indeed, for f ∈ D,
we have

〈C	ϕKw, f 〉 = 〈Kw,Cϕf 〉 = 〈Kw, f ◦ ϕ〉 = f (ϕ(w)) = 〈Kϕ(w), f 〉.
Thus C	ϕKw = Kϕ(w). We have

Theorem 3.3. Let ϕ(z) = (az + b)(cz + d)−1 be a linear fractional self map of
D. Then, for f ∈ D we have

C	ϕf = f (0)Kϕ(0) + Cψf − f (ψ(0)),

where ψ(z) = (āz− c̄)(−b̄z+ d̄)−1.

Proof. For all f, g ∈ D we have

〈C	ϕf, g〉 = 〈f (0)C	ϕK0 + C	ϕ(f − f (0)), g〉
= 〈f (0)Kϕ(0), g〉 + 〈C	ϕ(f − f (0)), g〉.

Now, upon applying Theorem 3.2 in the third equality below

〈C	ϕ(f − f (0)), g〉 = 〈f − f (0), Cϕg〉
= 〈f − f (0), Cϕg〉D0

= 〈Cψ(f − f (0)), g〉D0

= 〈Cψ(f − f (0)), g〉 − 〈(Cψ(f − f (0)))(0), g〉
= 〈Cψf − f (ψ(0)), g〉.

Therefore, the result follows. �
The following corollary follows immediately from the above theorem.

Corollary 3.4. Let ϕ be an analytic self-map of D. Then Cϕ is unitary on D if and
only if ϕ(z) = µz and |µ| = 1.

4. Normal linear fractional composition operators

In this section we characterize which linear fractional composition operators are
normal on D0 and D. Unitary composition operators are normal, but they are not
the only ones on D0. We have

Theorem 4.1. A linear fractional composition operatorCϕ is normal on D0 if and
only if one of the following holds

(a) The symbol ϕ is an automorphism.
(b) The symbol ϕ is parabolic.
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(c) The symbol ϕ has an interior and an exterior fixed point and ϕ is conjugate
to z → µz with 0 < |µ| < 1.

Proof. Clearly, Theorem 3.1 implies that if (a) is true, thenCϕ is normal. Suppose
that ϕ is parabolic. The unique fixed point α of a parabolic self map of the disk
must be on ∂D. Upon conjugating with η(z) = αz, we have η−1 ◦ ϕ ◦ η fixes the
point 1. Since Cη◦ϕ◦η−1 = Cη−1CϕCη and normality is preserved under unitary
similarities, we may suppose that ϕ fixes the point 1 from the beginning.

Now, conjugating with σ(z) = i(1 + z)/(1 − z), we see that the upper half
plane version of ϕ is

τ(z) = z+ a,

where �a ≥ 0 (of course, if �a = 0, then ϕ is an automorphism and we already
know that Cϕ is normal). Coming back to the unit circle

ϕ(z) = (2 − a)z+ a

−az+ 2 + a
.

By Theorem 3.2, C	ϕ = Cψ , where

ψ(z) = (2 − ā)z+ ā

−āz+ 2 + ā
.

It is easy to check that ϕ ◦ ψ = ψ ◦ ϕ. Thus,

CϕC
	
ϕ = CϕCψ = Cψ◦ϕ = Cϕ◦ψ = CψCϕ = C	ϕCϕ,

which means that Cϕ is normal.
Suppose, now, that ϕ has an interior fixed point q (this configuration includes

the hyperbolic non automorphism with an interior and a boundary fixed point).
Consider the involutive automorphism αq that interchanges q with the origin.
By Theorem 3.1, Cαq is a unitary operator. Hence, Cϕ is normal if and only if
C−1
αq
CϕCαq = Cαq◦ϕ◦αq is normal. Thus we may suppose from the beginning that

ϕ fixes the origin. In addition, ϕ has another fixed point p.

Case 1. p = ∞. In this case ϕ must be of the form

ϕ(z) = µz with 0 < |µ| ≤ 1.

By Theorem 3.2, C	ϕ = Cψ , where ψ(z) = µ̄z. Obviously Cϕ commutes with
Cψ . Therefore, Cϕ is normal.

Case 2. p �= ∞. In this case ϕ must be of the form

ϕ(z) = µz

1 − ((1 − µ)/p)z
with 0 < |µ| < 1.

Thus, by Theorem 3.2, C	ϕ = Cψ , where

ψ(z) = µ̄z+ (1 − µ̄)/p̄ with 0 < |µ| < 1. (4.1)

It is easy to check that ϕ and ψ do not commute. Therefore, the same is true of
Cϕ and Cψ . Thus, Cϕ is not normal and, neither is Cψ .
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Finally, since composition operators induced by hyperbolic symbols with an
exterior and boundary fixed point are similar under a unitary operator to Cψ for
some ψ of the form in (4.1), it follows from the argument in the paragraph above
that they are not normal either. This completes the proof of the theorem. �

The following corollary follows easily from Theorems 3.3 and 4.1.

Corollary 4.2. Let ϕ be a linear fractional self-map of D. Then Cϕ is normal on
D if and only if ϕ(z) = µz with 0 < |µ| ≤ 1.

4.1. Multiplication operators

Let (X,µ) be a measure space and L2(X,µ) the space of square integrable com-
plex-valued functions onX. For each bounded complex-valued measurable func-
tion φ on X we may consider the multiplication operator Mφ : L2(X,µ) →
L2(X,µ) defined by pointwise multiplication

(
Mφf

)
(x) = φ(x)f (x) (x ∈ X).

As mentioned in the introduction, normal operators are unitarily similar to multi-
plication operators. But also every multiplication operator is clearly normal.

In this subsection we will exhibit those multiplication operators which are
similar to the normal linear fractional composition operators on D0. In order to
do this we need a Theorem of Paley-Wiener.

Let � denote the upper half plane of the complex plane. The Hardy space of
the upper half plane H2(�) is the space of functions analytic on� for which the
norm

‖f ‖2
H2(�)

= sup
0<y<∞

1

2π

∫ ∞

−∞
|f (x + iy)|2 dx

is finite.
Now, recall that Plancherel’s Theorem states that the Fourier transform

F(f )(t) = 1

2π

∫ ∞

−∞
f (x)e−ixt dx

defines an isometric isomorphism fromL2(R, dt/(2π)) ontoL2(R, dt). The cor-
responding result for H2(�) is a theorem of Paley and Wiener (see [12], p. 372],
for instance).

A Paley-Wiener Theorem. The space H2(�) is isometrically isomorphic, under
the Fourier transform, to the space L2(R+, dt).
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There is also a version of the Paley-Wiener Theorem for the Dirichlet space
of the upper half plane. We consider the following linear fractional map

σ(z) = i
1 + z

1 − z

that takes the unit disk onto �. Observe that if f ∈ D0 and F = f ◦ σ−1, then

1

π

∫
�

|F ′(x + iy)|2 dx dy =
∫

D

|f ′(z)|2 dA(z).

This allows to define the Dirichlet space of the upper half plane Dπ consisting
of those analytic functions F on � for which the integral in the left-hand side
of the above display is finite. If we identify functions that differ by a constant,
then Dπ becomes a Hilbert space which makes of Cσ : Dπ → D0 an isometric
isomorphism. A proof of the following theorem can be found in [9].

A Paley-Wiener Theorem for Dπ . The space Dπ is isometrically isomorphic,
under the Fourier transform, to L2(R+, tdt).

Now we can prove the following Theorem.

Theorem 4.3. Let Cϕ be a linear fractional composition operator acting on D0.
Then

(a) If ϕ is conjugate to η(z) = µz, with 0 < |µ| ≤ 1, then Cϕ is unitarily similar
to a diagonal operator.

(b) If ϕ is parabolic which is conjugate to τ(z) = z + a, then Cϕ is unitarily
similar to multiplication by φ(t) = eiat on L2(R+, tdt).

(c) If ϕ is a hyperbolic automorphism conjugated to η(z) = λz, then Cϕ is
unitarily similar to multiplication by φ(t) = λ−it on L2(R, 2πdt).

(d) If ϕ is hyperbolic with just one fixed point on ∂D, then Cϕ is unitarily similar
to the product of a unitary operator and a normal operator or viceversa.

Remark 4.1. Theorem 4.3 provides a different argument of the fact that normal
linear fractional composition operators are indeed normal. Furthermore, it can
also be used to give an alternative proof of Theorem 3.2.

Proof of Theorem 4.3. To prove (a) we observe that Cϕ is unitarily similar to Cη.
Set un(z) = zn/

√
n. We have Cηun = µnun. Thus Cη is a diagonal operator with

the sequence {µn}n≥1 on the main diagonal.
In case (b), note that Cϕ is unitarily similar, under Cσ : Dπ → D0, to Cτ :

Dπ → Dπ . Therefore, it is enough to prove the result forCτ . LetF ∈ H2(�)∩Dπ .
Then the properties of the Fourier transform show that (F (z + a))ˆ = eiat F̂ (t).

Since H2(�) ∩ Dπ is dense in Dπ , the above equality holds for all F ∈ Dπ .
Consequently, the operator Cτ acting on Dπ is unitarily similar under the Fourier
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Transform to the multiplication operator Mφ : L2(R+, t dt) −→ L2(R+, t dt),
where φ(t) = eiat .

To show (c) we may use similarities under unitary composition operators and
assume that ϕ fixes the points −1 and 1. Now, Cϕ is unitarily similar, under Cσ ,
to Cη : Dπ → Dπ . Therefore, it is enough to prove the result for Cη : Dπ → Dπ .
By the properties of the Fourier transform, for F ∈ H2(�) ∩ Dπ the formula
(F (λz))ˆ = (1/λ)F̂ (t/λ) holds. Again, the fact that H2(�) ∩ Dπ is dense in
Dπ shows that Cη : Dπ → Dπ is unitarily similar to Tλ : L2(R+, tdt) −→
L2(R+, tdt) defined by Tλf (t) = (1/λ)f (t/λ). Now, the identity∫ ∞

0
|f (t)|2 tdt =

∫ ∞

0
|tf (t)|2 dt

t

shows that the map f (t) → tf (t) induces an isometry from the spaceL2(R+, tdt)
ontoL2(R+, dt/t). Under the latter map Tλ is unitarily similar to the composition
operator Ct/λ : L2(R+, dt/t) −→ L2(R+, dt/t) defined by Ct/λf (t) = f (t/λ).
Now, observe that dt/t is the Haar measure corresponding to the multiplicative
locally compact Abelian group R

+, that is, the measure µ that is uniquely defined
except for a positive scalar multiple and that satisfies µ(rA) = µ(A) for any
positive r and any measurable set A. The group of characters corresponding to
this measure is formed by

γt (x) = xit = eit log x (t ∈ R)

and thus the dual group is the additive group of real numbers (see [13, Section
1.2]). This time the Fourier transform for f ∈ L2(R+, dt/t) is defined as

f̂ (t) = 1

2π

∫ ∞

0
f (x)x−it dx

x
(t ∈ R).

By Plancherel’s Theorem (see [13, Thm. 1.6.1], for instance) the Fourier trans-
form defines an isometry from L2(R+, dt/t) onto L2(R, 2πdt). In addition, for
g(x) ∈ L2(R+, dt/t), the following identity∫ ∞

0
g(x/λ)x−it dx

x
= λ−it

∫ ∞

0
g(x)x−it dx

x

shows that Ct/λ acting on L2(R+, dt/t) is unitarily similar under the last
Fourier transform to the multiplication operator Mφ acting on L2(R, 2πdt),
where φ(t) = λ−it .

It remains to prove (d). First assume that ϕ has an interior fixed point and a
boundary fixed point, that we may suppose that is 1. Then ϕ is conjugate under σ
to

ψ(z) = λz+ a with 0 < λ < 1 and �a > 0.

Therefore, Cϕ is unitarily similar to CηCτ , where τ(z) = z + a and η(z) = λz.
Thus Cϕ is unitarily similar to the product of a unitary operator and a normal



128 E.A. Gallardo-Gutiérrez, A. Montes-Rodrı́guez

operator. If ϕ has a boundary and an exterior fixed point, then C	ϕ = Cψ , where
ψ has an interior and a boundary fixed point. It follows that Cϕ is unitarily sim-
ilar to the product of a normal operator and a unitary operator. The proof is
complete. �
Remark 4.2. The arguments of the proof of (b) and (c) are similar to part of the
arguments in Theorems 3.13 and 3.14 in [7], which assert the non cyclicity of com-
position operators induced by automorphisms on the Dirichlet space. To compute
the spectrum of some linear fractional composition operators Higdon [9] also us-
es, in a different way, the Fourier transform (not the one with respect to the Haar
measure). However, he never states that some of the linear fractional composition
operators are normal or even similar to multiplication ones. The computation of
the spectrum in [9] is done by direct calculation in a rather complicated way and
mainly based on Cowen’s methods.

5. The spectra

Now, we can easily deduce the spectra of each linear fractional composition
operator on D0 as well as on D. The proof below is much simpler than that
in [9]. The case (iv) in theorem below appeared first in [10].

Theorem 5.1. Let Cϕ be a linear fractional composition operator acting on D0.
Then

(i) If ϕ is an elliptic automorphism and the derivative ϕ′(α) at its interior fixed
point is ann-th root of the unity, thenσ(Cϕ) = {ϕ′(α)k : k = 0, 1, . . . , n−1}.

(ii) If ϕ is an automorphism which is not conjugate to a rotation through a ra-
tional multiple of π , then σ(Cϕ) = {z ∈ C : |z| = 1}.

(iii) If ϕ is a parabolic non automorphism which is conjugate to τ(z) = z + a,
then σ(Cϕ) = {eiat : t ≥ 0} ∪ {0}.

(iv) If ϕ is hyperbolic with just one boundary fixed point, then σ(Cϕ) = D.
(v) If ϕ is not elliptic and has an exterior and an interior fixed point and ϕ′(α) is

the derivative at the latter point, then σ(Cϕ) = {ϕ′(α)n : n = 1, 2, . . .}∪{0}.
Proof. Parts (i) through (iii) follows immediately from Theorem 4.3 and the fol-
lowing three well known and easy to prove results (see [8] for instance): the
spectrum is invariant under similarities; the spectrum of a diagonal operator is the
closure of the elements in the diagonal and the spectrum of a multiplication
operator is the essential range of the multiplier.

To prove (iv) we observe that Cϕ or C	ϕ is equal to Cφ , where φ has an exte-

rior and a boundary fixed point. Since σ(C	ϕ) = σ(Cϕ), it is enough to compute
σ(Cφ). Since, in D0, any composition operator with univalent symbol has norm
less than or equal to 1, the spectral radius of Cϕ is less than or equal to 1. On the
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other hand, we may suppose that φ(z) = µz+ (1 − µ)/p̄ where 0 < µ < 1 and
|p| = 1. Since fλ(z) = (z − p)λ (with �λ ≥ 0 and λ �= 0) are eigenfunctions
corresponding to µλ, it must be σ(Cφ) = D.

It remains to prove (v). In this case, the result is well known for power compact
composition operators (see [6, Chapter 7]). Now, since the interior fixed point of
ϕ is attractive, it follows that ϕ(D) or ϕ ◦ ϕ(D) is a relatively compact subset of
D. Therefore, Cϕ is a power compact operator. The proof is concluded. �

Remark 5.1. As in the Hardy space (see [5]), in case (iii), σ(Cϕ) is a spiral or line
segment joining 0 and 1 because the imaginary part of a is positive.

Recall that the essential spectrum σe(T ) of an operator T is the set of complex
numbers λ for which T −λ is not invertible modulo compact operators, that is, the
spectrum of the projection of T onto the Calkin algebra. The essential spectrum
σe(T ) is always a compact subset contained in σ(T ). For instance, it is easy to
check that eigenvalues of infinite multiplicity are always in the essential spectrum.
As a corollary of Theorem 5.1 we have

Corollary 5.2. Let Cϕ be a linear fractional composition operator acting on D0.
Then σe(Cϕ) = σ(Cϕ), except if ϕ is not elliptic and has an exterior and an
interior fixed point, in which case σe(Cϕ) = {0}.

Proof. In case (i) of Theorem 5.1, each point in σ(T ) is an eigenvalue of infi-
nite multiplicity. Therefore, σe(Cϕ) = σ(Cϕ). In case (ii) or (iii) of Theorem 5.1
the operator Cϕ is normal and the essential spectrum of a normal operator con-
tains all the non-isolated points of the spectrum ([3, Chap. XI, Prop. 4.6]). Thus,
σe(Cϕ) = σ(Cϕ). In case (iv) of Theorem 5.1, the operator Cϕ or C	ϕ has each
point of the open unit disk as an eigenvalue of infinite multiplicity. Therefore,
σe(Cϕ) = σe(C	ϕ) = D. Finally, in case (v) of Theorem 5.1, we know that Cnϕ is
compact for n at most 2 and, therefore, σe(Cnϕ) = {0}. From the Spectral Theorem
it follows that σe(Cϕ) = {0}. �

Remark 5.2. Since the constant functions are invariant under any composition
operator, the matrix of Cϕ acting on D is of the form

(
1 X
0 Y

)

where Y is the matrix of Cϕ acting on D0. Therefore, as pointed out in [9] it is
enough to add the point 1 to case (v) in Theorem 5.1 to obtain the spectrum of Cϕ
acting on D. Of course, the essential spectrum of Cϕ acting on D coincides with
the essential spectrum of Cϕ acting on D0.
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6. The norm

Since the norm of a diagonal operator is the supremum of the elements in the
diagonal and the norm of a multiplication operator is the supremum of the
essential range of the multiplier, the following corollary follows immediately
from Theorem 4.3.

Corollary 6.1. Let ϕ be a linear fractional self-map of D. If ϕ is elliptic or it has
a boundary fixed point, then ‖Cϕ‖D0 = 1.

If ϕ has an exterior and an interior fixed point and is not conjugate to z → µz,
then the formula for the norm of Cϕ becomes more complicated.

Theorem 6.2. Let ϕ(z) = (az + b)(cz + d)−1 be a linear fractional self-map of
D. Then

‖Cϕ‖D0 = 1

2


 |a|2 + |d|2 − |b|2 − |c|2

|ad − bc|2 −
√[ |a|2 + |d|2 − |b|2 − |c|2

|ad − bc|2
]2

− 4


 .

Proof. Let ψ denote the linear fractional map furnished by Theorem 3.2. We set
φ = ϕ ◦ ψ . We have

φ(z) = (|a|2 − |b|2)z+ bd̄ − ac̄

(āc − b̄d)z+ |d|2 − |c|2 .

As in [4], we have the equalities

‖Cϕ‖2 = ‖C	ϕCϕ‖ = lim
n→∞ ‖(CψCϕ)n‖1/n = lim

n→∞ ‖Cnφ‖1/n.

Thus ‖Cϕ‖ is the square root of the spectral radius of Cφ .
If ϕ is an automorphism of D, then ψ = ϕ−1 and φ is the identity. In this case,

the formula for ‖Cϕ‖D0 trivially holds.
If ϕ is not an automorphism, then ϕ and ψ take D into disks strictly con-

tained in D. Therefore, φ cannot be an automorphism of D. By Theorem 4.1, as
Cφ is normal, the map φ is a parabolic non automorphism or it is conjugate to
η(z) = µz with 0 < |µ| < 1. If φ is parabolic, and p is the boundary fixed point,
then φ′(p) = 1 is the spectral radius of φ. If φ is conjugate to η, then by Theorem
5.1, the spectral radius of Cφ is |φ′(p)|, where p is the interior fixed point of φ.
Thus in any case, the spectral radius of Cφ is |φ′(p)|, where p is the fixed point
of φ in D.

Let T denote the trace of the matrix representation ofφ in which all coefficients
of φ are divided by |ad − bc|2. We have

T = |a|2 + |d|2 − |b|2 − |c|2
|ad − bc|2 .
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One easily checks (see [1] for instance) that

φ′(p) = 1

4
(T ±

√
T 2 − 4)2. (6.1)

If φ′(p) were positive, then by just extracting square roots we would obtain
the formula for ‖Cϕ‖D0 , except that there would be an ambiguity because the
plus-minus sign. Since |φ′(p)| ≤ 1, it is enough to prove that T ≥ 2 to show that
φ′(p) is indeed positive and to rule out the plus sign. It follows from (6.1) that

φ′(p)−1 + φ′(p) = T 2 − 2.

Since T is real, the map φ is not loxodromic. Therefore, φ must be hyperbolic or
parabolic. It follows that |T | ≥ 2. Thus it is suffices to show that T is positive.
To prove this, we observe that we have the expression

T = |ad − bc|2 − |ab̄ − cd̄|2 + (|d|2 − |b|2)2
(|d|2 − |b|2)|ad − bc|2 .

Now, consider the involutive automorphism αp, where p = ϕ(0) = b/d and
define η = αp ◦ ϕ that fixes the origin. We have

η(z) = (bc − ad)d̄z

(cd̄ − ab̄)dz+ (|d|2 − |b|2)d .

Since η(z) must take D into itself and η((|b|2 − |d|2)/(cd̄ − ab̄)) = ∞ and
|b| < |d|, it follows that |d|2 −|b|2 > |ab̄− cd̄| and, therefore, T > 0. The proof
is finished. �
Remark 6.1. If ϕ fixes the origin, then ‖Cϕ‖D = 1. But, in the general case, to
obtain an exact formula for ‖Cϕ‖D seems to be difficult.

7. The Hardy space of the upper half plane

In the previous sections, we have seen that the Dirichlet space modulo constants
is quite a natural setting for studying linear fractional composition operators. An-
other natural space of analytic functions without constant functions is the Hardy
space of the upper half plane that we already defined in section 4. The situation
here is much simpler than that in the Dirichlet space. One of the reasons for this
is that only linear fractional transformations

ϕ(z) = az+ b with a > 0 and �b ≥ 0

induce bounded composition operators on H2(�) (see [11]).
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7.1. Adjoints

This time the adjoint of a linear fractional composition operator on H2(�) is a
scalar multiple of a linear fractional one. We have

Theorem 7.1. Let ϕ(z) = az+b be such that a > 0 and �b ≥ 0 and considerCϕ
acting on H2(�). Then C	ϕ = a−1Cψ , where ψ(z) = a−1z− a−1b̄. Furthermore,
we have

(a) If ϕ is parabolic, then Cϕ is unitarily similar to multiplication by eibt on
L2(R+, dt). In particular, if ϕ is a parabolic automorphism, then Cϕ is
unitary.

(b) Ifϕ is a hyperbolic automorphism, thenCϕ is unitarily similar to multiplication
by a−it−1/2 on L2(R, 2πdt).

Proof. To prove the result we first prove (a) and (b). This time, as in the proof of
Theorem 4.3, we will use Fourier transforms. First, suppose that ϕ(z) = z + b

with �b ≥ 0. Then the properties of the Fourier transform show that (f (z+b))ˆ=
eibt f̂ (t) for any f ∈ H2(�). Consequently,Cϕ is unitarily similar under the Fou-
rier transform to the multiplication operator Mφ : L2(R+, dt) −→ L2(R+, dt),
where φ(t) = eibt . Therefore, (a) is proved. In addition, since the adjoint of Mφ

is Mφ̄ , where φ̄(t) = eibt = e−ib̄t , we find that C	ϕ = Cψ , where ψ = z− b̄.
Second, suppose that ϕ is a hyperbolic automorphism. This implies that a �= 1

and �b = 0. Thus τ(z) = z + b/(1 − a) is a parabolic automorphism. In addi-
tion, C−1

τ CϕCτ = Cη, where η(z) = az. Thus, by (a), Cϕ is unitarily similar to
Cη. Now, the properties of the Fourier transform imply that for f ∈ H2(�) the
formula (F (az))ˆ = (1/a)F̂ (t/a) holds. Thus Cϕ is unitarily similar under the
Fourier transform to Ta : L2(R+, dt) −→ L2(R+, dt) defined by Taf (t) =
(1/a)f (t/a). Now, the identity

∫ ∞

0
|f (t)|2dt =

∫ ∞

0
|√tf (t)|2 dt

t

shows that the map f (t) → √
tf (t) induces an isometry from L2(R+, dt)

ontoL2(R+, dt/t)). Under the latter isometry Ta is similar to the following scalar
multiple of a composition operator

a−1/2Ct/a : L2(R+, dt/t) −→ L2(R+, dt/t).

The Fourier transform with respect the multiplicative group of positive real num-
bers, defines a unitary isometry from L2(R+, dt/t) onto L2(R, 2πdt). In this
way, a−1/2Ct/a becomes unitarily similar to Mφ acting on L2(R, 2πdt), where
φ(t) = a−it−1/2. Therefore, (b) is also proved. Since M	

φ = Mφ̄ , where φ̄(t) =
a−it−1/2 = ait−1/2, as in the paragraph above, it follows that C	az = a−1Ca−1z.
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For the general case ϕ(z) = az + b we write ψ(z) = a−1z − a−1b̄. We have
ϕ = ϕ1 ◦ ϕ2, where ϕ1(z) = z + b and ϕ2(z) = az and ψ = ψ2 ◦ ψ1, where
ψ1(a) = z− b̄ and ψ2(z) = a−1z. Hence,

C	ϕ = (Cϕ2Cϕ1)
	 = C	ϕ1

C	ϕ2
= a−1Cψ1Cψ2 = a−1Cψ.

The result is proved. �
Now, the following corollary follows immediately.

Corollary 7.2. Let ϕ(z) = az+b be such that a > 0 and �b ≥ 0. ThenCϕ acting
on H2(�) is normal if and only if ϕ is an automorphism of � or ϕ is parabolic.
In particular, Cϕ is unitary if and only if ϕ is a parabolic automorphism.

Of course, if �b = 0 the following corollary follows by a simple change of
variables.

Corollary 7.3. Let ϕ(z) = az + b be such that a > 0 and �b ≥ 0. Then
‖Cϕ‖H2(�) = a−1/2.

7.2. The spectra

We can also obtain easily the spectrum and the essential spectrum of Cϕ .

Theorem 7.4. Let ϕ(z) = az + b be such that a > 0 and �b ≥ 0 and let Cϕ act
on H2(�). We have

(a) If ϕ is an automorphism, then σ(Cϕ) = {z ∈ C : |z| = a−1/2}.
(b) If ϕ is a parabolic non automorphism, then σ(Cϕ) = {eibt : t ≥ 0} ∪ {0}.
(c) If ϕ is a hyperbolic non automorphism, then σ(Cϕ) = {z ∈ C : |z| ≤ a−1/2}.
Furthermore, the spectrum and the essential spectrum of Cϕ coincide.

Proof. Since the spectrum of a multiplication operator is the essential range of the
multiplier (a) and (b) follow immediately from Theorem 7.1. Since Cϕ is normal
and there is no isolated points in the spectrum, it also follows thatσe(Cϕ) = σ(Cϕ).

To prove (c), observe that the spectral radius of Cϕ is a−1/2. In addition, since
�b > 0, the functionsfλ(z) = (z−b)λ ∈ H2(�) if and only if�λ < −1/2.There-
fore, since Cϕfλ(z) = aλfλ(z), each of the points in the open disk |z| < a−1/2

is an eigenvalue of infinite multiplicity. Thus, it follows that σe(Cϕ) = σ(Cϕ) =
{z ∈ C : |z| ≤ a−1/2}. The proof is finished. �
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