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In this article we study the comparison of experiments in system reliability theory when the component lifetimes are independent and
identically distributed random variables that have a common two-parameter exponential distribution with a location parameter 6. For this
purpose, we define a new stochastic order, which we call the convelution order, and study some basic properties of it. We then focus
our attention on the family of distribution functions that are mixtures of distributions of partial sums of independent exponential random
variables, and derive results that identify several conditions under which members of this family are ordered in the convolution stochastic
order, We apply the results to order lifetimes of coherent systems, and as a consequence we obtain information inequalities among various
lifetimes of coherent systems. We find situations wherein high reliability decreases statistical information.

KEY WORDS: Coherent systems; Convolution order; Coxian distributions; Dispersive order; Information comparisons; Order statistics;
Poles and zeros of rational functions; Signatures; Stochastic orders.

1. INTRODUCTION

The notion of comparison of experiments, as introduced by
Blackwell (1951, 1953) and others, concerns a partial ordering
of the information contained in the experiments (or in the dis-
tributions of the underlying random variables). A review of the
basic ideas and related results has been given by Goel and De-
Groot (1979) and Lehmann (1988), and a comprehensive treat-
ment of this topic was given by Torgersen (1991).

Stepniak (1997c¢) nicely summarized the idea of the informa-
tion contained in a statistical experiment as follows: “Any sta-
tistical experiment can be perceived as an information channel
transforming a deterministic quantity (parameter) into a ran-
dom quantity (observation).” In this article the “channels” are
reliability systems, and we derive various results useful for the
purpose of comparing such channels with respect to their infor-
mation content.

For the purpose of completeness, we state a definition and a
key result.

Definition 1. Let X and Y be two m-dimensional random
vectors (m > 1) with distribution functions Fy and Gg, where
@ € O is the parameter of interest. The experiment S associated
with Y is said to be at least as informative for 6 as the experi-
ment S| associated with X (denoted by X <; Y or Fy <j Gy or
81 <i S7), if for every decision problem involving 6, and every
prior distribution on ®, the expected Bayes risk from Fp is not
less than that from Gg.

Proposition 1. The information inequality X <; Y holds if
there exists a function ¢ : R™*™" — R™ and an r-dimensional
random vector W (r = 1) that is independent of Y and has
a distribution function that does not depend on @, such that
X=qo(Y,W).
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Proposition 2 is well known in the literature and was given
by Lehmann (1959); it is the basic technical tool used by re-
searchers to obtain interesting results on the comparison of var-
ious types of experiments. For example, Hansen and Torgersen
(1974) and Stepniak (1997b) considered the comparison of
normal experiments, and Torgersen (1984), Stepniak (1997a),
and others studied the comparison of linear experiments. Eaton
(1992) discussed a group action on covariances with applica-
tions to the comparison of linear normal experiments (see also
Hauke and Markiewicz 1994). Hollander, Proschan, and Scon-
ing (1987) and Goel (1988) gave results comparing experiments
with censored data, and Lehmann (1988) discussed the com-
parison of location parameter experiments. Shaked and Tong
(1990), Stepniak (1994), and others considered comparison of
experiments through dependence of normal variables with a
common marginal distribution, and Greenshtein and Torgersen
(1997) and others discussed comparisons of sequential experi-
ments.

In this article we study the comparison of experiments in
system reliability theory when the component lifetimes are
independent and identically distributed random variables that
have a common two-parameter exponential distribution with
a location parameter 6. Specifically, for fixed n,m = 2, let

Z1,Z2, ..., Zmax{n, m) be independent random variables with a
common density function given by
re M) forz>0
Jo(z) = 0 otherwise, M

where A is assumed known. Let S; and S> be two reliability
systems (corresponding to two experiments) with lifetimes

X:‘E](Z],ZZ,‘.‘,Zﬂ)

and

Y = 72(211 sz ey Zm)s

where 71 and 1, are the two corresponding coherent life func-
tions. Suppose that the values of X and ¥ may be observable,
but not the individual Z;’s. Then the problem of interest is to
find out what types of systems are more informative according
to Definition 1.
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For this purpose, in Section 2 we define a new stochastic or-
der, which we call the convolution order. There we also study
some basic properties of that order. In Section 3 we focus our
attention on the family of distribution functions which are mix-
tures of distributions of partial sums of independent exponential
random variables. In that section we identify several conditions
under which members of this family are ordered in the convo-
lution stochastic order. In Section 4 we apply the results in Sec-
tion 3 to order lifetimes of coherent systems. As an application
of the convolution order, if the lifetime of a coherent system, X,
is less than the lifetime of another system, Y, in the convolution
order sense, then X is more informative than ¥ with respect
to the location parameter. This is really interesting, because we
find situations where high reliability decreases statistical infor-
mation. (In this article, by “increasing” we mean “‘nondecreas-
ing,” and by “decreasing” we mean “nonincreasing.”)

2. THE CONVOLUTION ORDER

Let X and Y be two random variables. If there exists a non-
negative random variable U, independent of X, such that

Y=qX+4+U, (2)

then we say that X is smaller than Y in the convolution order
(denoted by X <iony ¥'). Obviously, the convolution order is a
partial order.

The reason that we are interested in the convolution order in
this article is that the convolution order is a useful tool for the
purpose of comparison of experiments when the underlying pa-
rameter is a location parameter. This is seen in Proposition 2.
Let X and Y be two random variables with a location parame-
ter &; that is,

X=W+6 and Y=Z+0

for some random variables W and Z. Then, from Proposition 1,
we obtain the following.

Proposition 2. Let X, Y, W, and Z be as before. If X <copy ¥
or, equivalently, if W <.ony Z, then ¥ <; X.

In fact, from example 10.B.2 of Torgersen (1994), it follows
thatif X, Y, W, and Z are as before, then ¥ < X <= X < v
Y or, equivalently, ¥ <; X <= Z <cony W.

The convolution order is obviously closed under increasing
linear transformations. That is,

X =<conv Y=a+bX =<conv @ + bY. {3)

The convolution order is obviously also closed under con-
volutions. That is, let X, X2, ..., X,, be a set of independent
random variables, and let Y1, Y2, ..., ¥, be another set of inde-
pendent random variables. Then

(Xj <comw Yjs j=1,2,...,n) = X1+ X2+ + X,
Z<comwV1+Y2+---+V,. @4

For any nonnegative random variable X we denote its classi-

cal Laplace transform by L x; that is,
Lx(s)=E[e**], 5s>0.

Recall that a nonnegative function ¢ is a Laplace transform of
a nonnegative measure on (0, oo) if and only if ¢ is completely
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monotone; that is, all of the derivatives ¢ of ¢ exist, and they
satisfy (—1)"¢"™(x) >0 forall x >0and n = 1,2,.... It fol-
lows that for nonnegative random variables, we have
Ly (s)
Lx(s)
is a completely monotone functionin s > 0. (5)

X Zcov ¥ =

The convolution order is a very strong order; we point out some
of its implications. It is obvious from (2) that

X <com¥Y =X =Y, (6)

where (see, e.g., Shaked and Shanthikumar 1994) X <g Y
means that E4(X) < Ey(Y) for all increasing functions v for
which these expectations exist.

If for two nonnegative random variables X and Y it holds that
Ly(s)/Ly(s)isdecreasingin s > 0, then X is said to be smaller
than Y in the Laplace transform ratio (denoted by Yogpian
Shaked and Wong (1997) studied this order and derived useful
inequalities that follow from it. From (5), it is seen that

XEconvy:>XELt-rY:>XELIY=

where X <j, Y means that Ly(s) = Ly(s), s = 0 (again see,
e.g., Shaked and Shanthikumar 1994 for applications of the or-
der <p).

Another useful order is the dispersive order <disp» Which has
been studied by for example, Shaked and Shanthikumar (1994).
According to their theorem 2.B.3, a random variable X satisfies
X <gisp X + Y for any random variable Y that is independent
of X if and only if X has a log-concave density. Thus we have

(X =<conv Y, and X has a logconcave density)
= X <gip Y. (7)

In this article our interest in the order <.qny stems from the
fact (mentioned earlier) that it is equivalent (with the inequality
reversed) to the information order. However, it is worthwhile to
mention that the convolution order sometimes also can be used
as a realistic assumption in some statistical inferential applica-
tions. For example, consider the problem of the nonparametric
estimation of two life distributions, F and G, in a two-sample
problem. Suppose that any (observed) lifetime of interest here
is a sum of two (unobserved) independent nonnegative random
variables, such that the distribution of one variable (generically
denoted by U) is determined by the environment in which the
lifetime is observed, and the distribution of the second random
variable (generically denoted by X) is independent of that envi-
ronment. In such a case, if F is the distribution of the lifetimes
observed in a certain environment in which U is essentially 0,
and G is the distribution of the lifetimes observed in another en-
vironment in which U is positive, then it is realistic to assume
that F' <¢ony G. (Here and later, the notation F <.ony G means
that the two underlying random variables are ordered with re-
spect to <cony-)

For example, let G be the distribution of the time from an
exposure to some bacteria until the bacteria cause a mouse in
a certain geographical region to expire. Suppose that this time
comprises an incubation period, U, of the bacteria, and the pe-
riod, X, that it takes after incubation to cause the mouse’s death.
Similarly, let F' be the distribution of the time from the exposure
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to that bacteria until the bacteria cause a similar mouse to ex-
pire in another geographical region, in which incubation period
U is negligible. Then it is reasonable to assume that F' <¢ony G,
and to proceed with statistical inference (say, estimating F and
G, ortesting Hy : F = G) under the constraint F <opy G. Note
that here a weaker order (e.g., F' <4 G) fails to exploit the full
extent of the intuition available about this application.

In this article we do not develop statistical inference proce-
dures under the constraint F <cony G.

3. MIXTURES OF PARTIAL SUMS
OF EXPONENTIAL RANDOM VARIABLES

In this section, all of the exponential random variables con-
sidered have a location parameter (. The lifetime of every
k-out-of-n system, with components that have independent and
identically distributed exponential lifetimes, is a sum of inde-
pendent (but not identically distributed) exponential random
variables (see Sec. 4 for details). Furthermore, the lifetime dis-
tribution of every coherent system with such components is a
mixture of distributions of partial sums of independent expo-
nential random variables (again, see Sec. 4 for details). Thus,
to compare lifetimes of coherent systems, it is useful to obtain
some comparison results for the class PH¢ defined in the next
paragraph.

The family of distributions that are mixtures of distributions
of partial sums of independent exponential random variables
(which is a subset of the family of phase-type distributions) is
called the class of the Coxian distributions and was denoted
by Asmussen (1987, p. 74) as PHc. Formally, the distribution
function of a nonnegative random variable T belongs to PH¢
if and only if its Laplace transform is of the form

LT(s)prkl'[a o el ®)

i=1

where &1, 82, ..., 8, are some positive parameters, p; = 0 for
k=1.2;...;m; and ZE=1 pr=1.

Let us now fix n and &y, d2,...,8,. Let T, denote the ran-
dom variable with Laplace transform given in (8), where p =
(pi, p2, ..., pn) is a probability vector; that is,

Tp = Sk =exp(81) +exp(82) + - - - +exp(dr)
with probability py, =2 s (9)

where exp(8) denotes an exponential random variable with rate
§ and the random variables exp(8;), exp(82), ..., exp(éx) are
independent. Note we describe some results that yield compar-
isons of members in PH¢ according to the order <¢qny.

Theorem 1. Forsome 1 <i <n, let
i
p:(o,“..o, 1,0,...,0)
where the i above the 1 denotes the location of the 1, and
:(0,---:O‘QE'QE—H,---,Qn)a

where q is a probability vector. Then T, <cony Tg.
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Proof. Write the ratio of the Laplace transform as

L1y,(s)  qiLs,(s)+qGi+1Ls;,, () +---+¢qnLs, (s)
Lt,(s) Lg, (s)
i Bl i)
=dgi T qi+l Ls,(5) LS s)

=di =+ qdi+1 chplﬁ;+1 ){S) T q?‘!sz}zH_l exp(.j_j)(s)s

and note that it is a convex combination of Laplace transforms
of sums of independent exponential random variables. There-
fore, Ty <conv Iq by (5).

Note that in Theorem 1, some of the ¢;, i < j <n, could
be 0. In light of Theorem 1, one may conjecture that T, <cony Tg

whenp= (D1 ... pi.0i... 0vandiq=10,:::,0,1,0,...:0)
But this is not true in general. For example, take n = 3, §; = |
fori =1,2,3,p=(1/10,0.9/10), and g = (0.0, 1). Then the
ratio of the Laplace transforms is

L, (s) 10
Lz,(s)  s2+25+10°

It can be easily checked that qu (s),fLTp(s) is not convex,
and therefore Tp Zcony Ty. It is worth noting that the fact that
Lt /L7, is not a Laplace transform of a probability distribu-
tion essentially follows from the fact that the polynomial in the
foregoing denominator does not have real roots. Explicitly, if
Lt,/Lt, were the Laplace transform of a probability distribu-
tion, then

Ly, (=it) _ 10 e 10
Lz, (—it)  (—=it)24+2(—if)+10  (in)2 —2(ir) + 10

would have been the characteristic function of a probability dis-
tribution. From theorem 3.1 of Takano (1951), it follows that
in such a case the polynomial z2 — 2z + 10 [or, equivalently,
the denominator of Ly, (s)/ L7, (s)] would have had at least one
real root. Because this is not the case, we see that Ty Zcony Tg-
Nonetheless, we provide a sufficient condition for the foregoing
conjecture in Theorem 2. This condition will be useful for the
purpose of bounding from above, in the order <cqpy, the life-
time of a coherent system by the lifetime of a k-out-of-n sys-
tem. To state and prove Theorem 2 and the results that follow
it, we need to introduce some terminology.

s=0.

Note from (8) that L;.-p can be expressed as a ratio,

(_Qis_)’ s >0, (10)
R(s)

where Q and R are polynomials. The roots of the denomina-
tor R are all included in the set {—§1, —82,..., —&,}. The real
roots of the numerator Q, if any exist, must be negative, because
Q(s) = 0 for any s = 0. The roots of Q are called the “zeros”
of L, and the roots of R are called the “poles” of L.

Lr,(s) =

Theorem 2. Forsome 1 <i <n, let

=(p1,p2,...,pi,0,...,0) and

q=(0,...,

where p is a probability vector. If Lz, has only real Os, then
Tp =conv Tq-

0,’1,0,...,0),
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To prove Theorem 2, we need the following results, which
involve completely monotone functions. The first lemma is in-
spired by lemma 1 of Zemanian (1959).

Lemma 1. Let H be a function such that H(s) > 0 for all
s = 0, and let —G be the logarithmic derivative of H, that is,
H'(5)
H(s)"

If G(s) is completely monotone in s > 0, then H(s) is also
completely monotone in the same interval.

G(s)=— i log H(s) = —
ds

Proof. Because H(s) > 0, and G is decreasing in s > 0, it
follows that — H’(s) > 0 when s > 0. Differentiating — H'(s) n
times, we get

(—1)”+'H("+”(S)

=) (:){(—1)”—*H‘""”(s)][(—1)*6“%)].
k=0

The lemma is now easily proven by induction.

The next lemma is also inspired by the work of Zemanian
(1959).

Lemma 2. Let H be a function defined as

h -
ni;zl (s Th) : s i
[—[J':l (s —pj)

for some integers h and m and some constants 7;, i =
L2,....h,and pj, j=1,2,....m. If m>hand 0 > p; >
fori=1,2,...,h, then H is completely monotone in s = 0.

H(s)=

Proof. The negative of the logarithmic derivative, G, of H
can be expressed as

m h

1 1
G(S)=Zs_pj —Es_m

j=1

for s = 0. Differentiating G n times, we get
m 1 h 1

(=D"G"™(s) =n! -y ———0
Z ; (5~ )*+!

— pn+l
=l (s —pj)"
s=0.

The stated assumptions now imply that G(s) is completely
monotone in s = 0, and the stated result follows from Lemma 1.

It is worthwhile to mention that a further study of functions
of the form of H in Lemma 2 was given by Sumita and Masuda
(1987).

Proof of Theorem 2. Using expression (10), write

5 ([Tt 8,)/Ras)

Hif:l ﬁ
Q1(s)/R1(s)

L;q(‘}‘) o .
i k 3
2 k=1 Pl lj=1 3ji.r

Lz,(s)

s =>0;
here Q is a polynomial, and R(s) = Ra(s) = ]_[if:, (8j + ).
Simplifying, we obtain

; o Bt
LTq(b):H; | _! G510
L, (s) Qi) '
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By assumption, Q| has only real roots, and these have to be
negative; see the discussion after (10). Therefore, by Lemma 2,
L1y(s)/Lx,(s) is completely monotone in s > 0, and hence
Tp =conv Tq by (5).

Another situation in which members of PH¢ can be com-
pared in the convolution order is described in the following the-
orem.

Theorem 3. Forsome 1 <i <n— 1, let

p=1(0,...,0, pi, pi+1,0,...,0) and

q=0(,..., 0,¢i.qi+1,0, ..., 0),

—cony

where p and q are probability vectors. If p; = g; then T}, <
Tq.

Proof. Write
qi I—[iiz
pillicr s

Bit
4 + Gi+1 5———*!:%

+QI+I nJ 15 _4.__‘
+Pr+l l_[;+|1 5 _':_T

Lr(s) _
L1,(s)

- 8i41 +gis

; s =0.
pr+Pr+]al+] Si+1+ pis

The roots of the denominator and the numerator are —38;41/¢;
and —é;41/pi. The assumption yields 0 > —8;41/p;i =
—&8i+1/qi. Therefore, by Lemma 2, Ly, (s)/Lt,(s) is com-
pletely monotone in s = 0, and hence T}, <cony Tq by (3).

In Theorems 1, 2, and 3, the probability vectors p =
(p1,p2s---»pn) and q = (q1,92,...,4n) satisfy p <y q;
that is, Y7 pj < g, i = 1,2,...,n. Using theo-
rem 1.A.6 of Shaked and Shanthikumar (1994), it is easy to
prove that

Pfstq:>Tp =st Tq- (] 1)
It is of interest to note that from (12) and (13) in Section 4, it
follows that Theorem 3 of Kochar, Mukerjee, and Samaniego
(1999) is a special case of (11). Thus, in light of (6), one may
wonder whether in general it is true that p <¢ q = T) <conv
T4. The example after Theorem 1 shows that this is not the case.

The following example and proposition will be needed in the
sequel.

Example 1. If B1 > B> then exp(B1) <conv exp(f2). To see
this, note that the ratio of the Laplace transforms of exp(f2)

and exp(B) at s is equal to (B2/81)((s + B1)/(s + B2)), and by
Lemma 2, this ratio is completely monotone.

Proposition 3. Forsome 1 <i <n, let

:(09"'103!)!::p!‘+|s"'!pﬂ) and

q=(0,..., 0,49i.gi+1, ..., qn).

where p and q are probability vectors. If p; < g; and T and Ty
do not have the same distribution, then 7}, #Zconv Ty.



Shaked and Suarez-Llorens: The Convolution Order

Proof. Write
LTq (s)
Lt,(s)
+1 85 8
(fr'l_[f 15+§.+q1'+11_[; ai,’.‘f""“!"nnj:}ﬁ
o 5 5;

Pi } {3+‘+Pr+-1r[ i_x+"'+Pnn;=IST_{:§

i+l d; n d;
gi + qi+1 ﬂ;-_;+| i | pye
- 6 n 5; 2
Pi + Pi+ il_l —r+| i+s +\ +"‘+Pnl—[j=i+1 5its

s=>0.

Note that the numerator and the denominator in the last frac-
tion are Laplace transforms, say of f'"dp and of i":q If the
ratio is completely monotone, then there exists a random vari-
able U, mdepcndent of Tp, such that Tq =t T + U. It follows
that ¢; = P{l' +U =0} - {Tp = 0} P{U = 0}. Therefore,
P{U =0}=gq;/p; = 1, a contradiction.

So far we have compared members of PH¢ that have the
same set of parameters 61,9d2,..., 6n. In the next result, the
compared variables have slightly different sets of parameters,
and we indicate this by making the set of parameters an argu-
ment of T,

Theorem 4. Let &y, 81, ...,8, be some positive constants,
and let (o), a2, ..., a,) be a probability vector, If

= (a1, 02,..., Cp—1,0y) and
q=0,a1,a2,...,00-1,),
then Tp{(s] - 62! LRk 6“) ECOH\-" Tq(60$ 61 L] 62! may an)-

Proof. A straightforward computation yields T4(o, 1,
82,...,06n) =¢ Tp(d1,62,...,8,) + exp(dp), where exp(dp) is
independent of Tp(81, 82, . .., 8,). The stated result thus follows
from (2).

4. INFORMATION COMPARISONS
OF COHERENT SYSTEMS

Let Zypfoyvasy Zmax{n,m) be independent and identically
distributed random lifetimes with a location parameter 6.
Consider a reliability system of n components with lifetimes
Z1,2Z2,...,Z,. Let 11 be the coherent life function of the
system. (See Esary and Marshall 1970 for the definition and
properties of coherent life functions.) Then the lifetime of the
system is X = 11(Zy, Z3, ..., Z,). From the minimal path or
cut set representations of t; [see (4.2) or (4.3) in Esary and
Marshall 1970], it follows that @ is a location parameter of X.
Thus, if # is unknown and X is observed, then some informa-
tion about # is obtained. Similarly, if 7 is another coherent life
function of m components, then @ is also a location parame-
ter of its lifetime, ¥ = ©(Z1, Z2, ..., Z,;). In this section we
obtain some results that compare the information content of X
with that of ¥. Using Proposition 2, we do this by identifying
conditions under which X <conv Y.

Note that because the order <cqny is preserved under shifts
[see (3)], for the purpose of obtaining X <cony ¥, we assume
that # = 0 (this causes no loss of generality). However, the
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inequality X <cony ¥, whenever it is obtained, indicates, by
Proposition 2, that ¥ <; X with respect to the parameter 6.

Samaniego (1985) introduced, and Kochar, Mukerjee, and
Samaniego (1999) further studied, a useful concept that can be
used to express the lifetime of a coherent system with indepen-
dent and identically distributed component lifetimes. They ob-
served that the lifetime distribution of any coherent system, say
X=1(Z1,2Z,,...,Z,), can be expressed as a mixture of the
distributions of the order statistics Z(1) < Z() < -+ < Z) as-
sociated with Z;, Za, ..., Zy. Explicitly, they defined the “sig-
nature” of 7y as the probability vector p with elements

pr = (number of orderings of Z1, Zs, . .., Z, for which the

kth failure causes system failure)/n!, k=1,2,...,n
and noted that
X = Zk) with probability py, k=1 2vcan (12)

If the Z;’s have the two-parameter exponential distribution
givenin (1), then it is well known that the foregoing order statis-
tics (when 6 = 0, which we assume without loss of generality)
can be expressed as

k
Zg=) exp((n—i+ DL, k=1,2,...,n,

i=1

(13)

where the exponential random variables in (13) are inde-
pendent. Thus we see from (12), (13), and (9) that X =
1y Lo Z,) has a distribution in PH¢c. Now, using the
results in Section 3 we can obtain a host of comparisons of
pairs of lifetimes of coherent systems in the convolution order.
By Proposition 2, these comparisons are equivalent to com-
parisons in the information order, with respect to the location
parameter £, as defined in Definition 1.

Let 13-, denote the life function of a k-out-of-n system. Re-
call that ., (Z1, Z2,...,Zy) = Z(u—k+1). From Theorem 1,
we get the following.

Theorem 5. Consider a reliability system, with coherent
life function 7, having n components with independent two-
parameter exponential lifetimes Z;, Z», ..., Z, whose com-
mon density is given in (1). If for some 1 <i < n, the signature
of r is of the formp = (0,...,0, pi, pi+1...., pn), then

T(ZI, 221 Fevy zﬂ) Sl rﬂ—i+]lﬁ(Z|sZZS oy Zﬂ}-

Roughly speaking, the inequality in Theorem 5 says that
in many instances, the better (from a reliability theory stand-
point) a coherent system is, the less informative it is. In light of
(7), this observation is not really surprising. The density func-
tion of any k-out-of-n system with independent and identically
distributed two-parameter exponential component lifetimes is
log-concave. This follows from, for example, (13) and the
preservation of the log-concavity property under convolutions.
Therefore, from (7) and Theorem 1, for t of Theorem 5, we get
that

tn—1'+l:n(21122s~-s (14)

Intuitively, it is clear that the more dispersed a random variable
is, the less informative it should be about a location parameter.
The conclusion of Theorem 5 agrees with this intuition.

Zn) =disp (21, Z2, ..., Zy).
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It is worthwhile to note that for exponential random vari-
ables, (14) extends the conclusion of theorem 2.1 of Khaledi
and Kochar (2000). These authors studied only k-out-of-n sys-
tems (i.e., order statistics), but under the weaker assumption
that the component lifetimes have a decreasing failure rate
(DFR) common distribution.

From Theorem 2, we get the following.

Theorem 6. Consider a reliability system, with coherent life
function 7, having »n components with independent
two-parameter exponential lifetimes Z;, Z2,...,Z, whose
common density is given in (1). If for some 1 <i < n, the
signature of t is of the form p= (p1, p2,..., pi,0,...,0), and
if Ly(z,,z,,..., z,) has only real Os, then

Tn—i+1:n(Z1, 22, ..., Zy) Sit(Zy, 22, ..., Zy)
Sitan(Z1.Z2, ..., Zy).

In the next result we see the influence, in the sense of infor-
mation content, of adding a component to a k-out-of-n system.

Theorem?7. Let Zy, Z3, ..., Z,4+1 be independent identically
distributed random variables whose common density is given
in (1). Then
s Zn+1) Si ten(Z1, 22, .-, Zn)

.y Zﬂ+] )s

(15)

Ten+1(Z1, Z, . ..
<i Tk 1n+1(Z1, 22, ..
1<k =<n.
Proof. The signature of i, is

p= (0,..‘,0,"_;1‘“,0,‘..,5),

whereas the signature of tj.,41 is

q= (o‘...,o‘"_;{“,o‘ 61)

Therefore, by Theorem 4, .y (Z1,Z2,....2Z;) <conv
Ten+1(Z1, Zo, ..., Z,+1) and the first inequality of Theorem 7
is obtained from Proposition 2.

Next, the signature of Tp41:p+1 1S

i (0,..A,o,"_'fH,o,..‘,"Bl).

From (12) and (13), we see that 4., (Z1, Z2, ..., Z,) has its
distribution in PH¢ with the parameters §; = (n — i + 1)A,
i=1,2,...,n, and the foregoing probability vector p. Simi-
larly, Tet1m+1(Z1, Z2, ..., Zy4+1) has its distribution in PH¢
with the parameters §; = (n —i +2)A,i=1,2,...,n+ 1, and
foregoing the probability vector r. That is,

Ten (21, L0552 )

=exp(nA) +exp((n — DA) + - - - +exp(kr),
and
Tkrtm+1(Z1, Z2, ..., Zpy1)

=exp((n+ 1)A) +exp(nr) + - +exp((k+ 1)1).

From Example 1, we see that exp((n 4+ 1)A) <conv exXp(ki).
From the closure property (4) of the order <cony, it follows
that Tgy1m+1(Z1, Z2, ..., Zn+1) Zconv Tkm(Z1, Za, ..., Zn),
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and the second inequality of Theorem 7 follows from Propo-
sition 2.

The inequality

w21, Z2, ..., Zn) SiTr1n(Z1, 22, ..., Zy),

2<k<n

(16)

(which follows from Theorem 5), together with the inequalities
(15) can be summarized as follows.

Theorem 8. Let Z), Z,, ..., be independent identically dis-
tributed random variables whose common density is given
in (1). Then

Tim(Z1, Z2y .., Zy) SiTjn(Zy, 22, ..., Zy), whenever

(I7)

i<jandm—i=n-—j.

Proof. Note that the two inequalities in (15), and the inequal-
ity (16), easily follow from (17) by a proper choice of i, j, m,
and n. To show the converse, assume that (15) and (16) hold. If
m > n, then

ti:m(zl' Loivass Zm) =i tflﬁ(zh Layicvay Ln)

El lef’i'(z]7 22v . 'sz?i)$

where the first inequality follows from the left side inequality
in (15) and m > n, and the second inequality follows from (16)
andi < j. And if m < n, then

Tm(Z1, 22, ..oy Zy) Si Tign—man(Z1, 22, ..., Zy)

SI rj:ﬂ(zl} 221 LA ] ZH)?

where here the first inequality follows from the right side in-
equality in (15) and m < n, and the second inequality follows
from (16)and j =i +n —m.

Results of the type (17), but for other stochastic orders, have
been given by Lillo, Nanda, and Shaked (2001), Nanda and
Shaked (2001), Boland, Hu, Shaked, and Shanthikumar (2002),
and others.

In the following two examples we illustrate the use of almost
all of the results derived in this section and the previous section.
In these examples, the component lifetimes are two-parameter
exponential with location parameter 6 and rate A = 1.

Example 2. The five coherent systems of order 3 with com-
ponent lifetimes Z1, Z7, and Z3, together with their signatures,
are described in Table 1. The coherent life functions of these
systems are indexed by the corresponding signatures. From
Theorem 3 and Proposition 2, we obtain that the lifetimes of
these five systems are totally ordered with respect to their infor-
mation content as follows:

7(1,0,00(Z1, 22, Z3) =i 7,

=i 70, 1,0(Z1, Z2, Z3)
.].)(Z|1 ZE\ Z?’)
3

%_%_{}J(Zl,lz.zﬂj)

Zi ¥,

=i 70,0, H(Z1, Z2, Z3).

[ (%]
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In fact, we may refine the foregoing sequence of inequali-
ties by adding to it the lifetimes of the two coherent systems of
size 2 as follows:

7(1,0,0(Z1, Z2, Z3) Zi 7(1,00(Z1, 22) 2i T4 2 (21, Z2, Z3)
=i 7(0,1,00(Z1, Z2, Z3)
i Yo, 2, 1H(Z1, 22, Z3)
Zi 70, 1)(Z1, Z2) Zi 10,0, 1)(Z1, Z2, Z3).

The first and last inequalities above follow from Theorem 7; the
second and the second to last inequalities follow by direct com-
putation. However, the system that comprises only one compo-
nent, T(Z;) = Z;, cannot be added to the foregoing sequence;
it can be shown that it is not comparable with, for instance,
1:(%‘ 2,0 (Z1, Z2, Z3) in the order <; or, equivalently, the or-
der Zcony-

The following lemma is used in the next example. It is a re-
statement of a result of Zemanian (1959).

Lemma 3. Let H be a function of a complex variable, z =
s+ iw, defined as

MM =) T, @ —w)
M- o)l - &)’

for some integers i, g, m, and g and some real constants 7;,
i=1,2,...,h,and p;, i = 1,2,...,m, and some complex con-
stants v;, i =1,2,...,g,and §,i =1,2,...,q. Suppose that
the real poles are numbered according to their decreasing val-
ues, that is, p; = p2 > --- > p,,. Denote the real parts of the
complex poles, and of all the 0s, by «;, and number them ac-
cording to their decreasing values, that is, ) = a2 = - -+ > ag,
where E=h+g+q.lfm=>£,if 0> p; = ay, and if

H(z)=

£
> i < p1 + (€ — 1)min{pe, ¢}, (18)
i=1

then H is completely monotone in s > 0.

Example 3. The 20 coherent systems of order 4, with com-
ponent lifetimes Z;, Z3, Z3, and Zg, together with their sig-
natures, are described in Table 2. Note that the 20 systems
correspond to only 17 different signatures. As in Example 2,
we index the coherent life functions of the systems by the cor-
responding signatures.

Table 1. Coherent Systems of Size 3

System (21,22, 2Z3) Signature
Series min{Zy, Zz, Z3} = Z1:3) (1,0,0)
| ) g s min{max{Zy, Zz}. Zo} (3.5.0
2-out-s:'>f-3 Z2.3) = 12:3(Zy, 22, Z3) 0,1,0)
— ) - max{min{Z;, Zs}. Z} ©02hH
Parallelv max{Zy, Zp, Z3) = Z3.3 (0,0,1)
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Thirteen of the 17 signatures have only at most 2 adjacent
nonzero coordinates. Applying Theorem 3, we thus obtain

7(1,0,0,0/(Z1, Z2, Z3, Za4)
Zi 71 1 00)(Z1: 22, Z3, Z4) 2i T} 3 0.0)(Z1, 22, 23, Za)

Zi 70,1,0.0)(21, 22, 23, Z4) 2i T 5 1 0)(Z1, 22, 23, Z4)

Zi T(Q‘i_%_g){zl» Zy, Z3, Z4) Zj t(n.%_%‘o)(zl; 23,23, 24)

3

2iT0,1,2,00(Z1: 22, 23, Z4) 2i T 1 5 0)(Z1, 22, Z3, Za)
2i 70,0,1,0)(Z1, 22, 23, Z4) Zi T 0,3, 1y(21, Z2, 23, Z4)
Zi Tg,0,1,1)(Z1, 22, Z3, Za) Zi 70,0.0.1)(Z1, 22, Z3, Z4).

Four of the 17 signatures have 3 nonzero coordinates. The
Laplace transforms of the corresponding systems are

er;},;},g,m(zl'zz'zz‘.24)(5)
(s +4 — 24/2i)(s + 4+ 2+/2i) iy
- L S il .
s+ +3)(s+2)
Ley 351 0(21.22,23,24)(5)
z-n.a.
6+2+/3 6—273
_G+6+26+6-2vD o
(s+4)(s+3)(s +2)
Lr{ﬂ.%.;&.5;(2!'22123‘24)(3)
6(s +2)
N . 520, (0
(s+H(s+3)+1) 520, (20)
and
Lr{@.%‘%_%,(21,22.23,24){3)
_ 2(s+5+13)(s +5—13) 5 S

TG+ +IG+D) T T

Note that the Laplace transforms in (19)—(21) have only real
zeros. Thus, from Theorems 5 and 6, we obtain

2:4(Z1, 22, 23, Za) <i () 1 1.0)(21, 22, 23, Z4)
<i 1421, Z2, Z3, Z4),
T1:4(21, 22, 23, Z4) <i 7 3 3 11(Z1, 22, 23, Z4)
<i 13:4(Z1, 22, Z3, Z4),
and
11:4(Z1, Z2, Z3, Z4) <i T(o‘%‘%‘é)(zl 22,23, 2Z4)
<i 13:4(Z1, 22, Z3, Z4).
Furthermore, from Theorem 5, we also get

T1.3.1.0(Z1 22, 23, Z4) <i t4a(Z1, 22, 23, Z4).

(

With the aid of Lemma 3, we can obtain some other interest-
ing comparisons. For example, consider the ratio of the Laplace
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Table 2. Coherent Systems of Size 4

System (24, 2o, Z3, Z4) Signature
Series min(Zy, Zo, Z3, Z4) = Z(1.4) = 14:4(21, Zo, Z3, Z3) (1,0,0,0)
Consecutive 3-out-of-4 max{min{Zy, £z, Z3}, min{Za, Z3, Z4}} (%, %,0, 0)
L
R R min{ra.3(21, 22, Z3), Za} }.4.0.0)
2.8
— —— min{max{Z, Z}, max{Z1, Za}, Zs} 3.5 3.0
of o min{max{Zy, 2, Zs}, Za} (;.1.3.0
3-out-of-4 Zio:ay = 13:4(21, 22, Z3, Z4) (0,1,0,0)
1' '2'
s max{min{Zy, Zz}, min{Zy, Za, Zs}, min{Zz, Z3, Z4}} ©.2, 2.0
2
— — max{min{Z;, Z}, min{Z3, Z4}) 0,2.1.0)
1, 2,
VL max{min{Z;, Zz}, min{Z. Zs}. min{Zs, Zs, Zs}} 0,3.1.0)
2 3 4
Consecutive 2-out-of-4 max{min{Zy, Zz}, min{Zz. Zz}, min{Zs, Z4)) 0.%.5.0)

I max{min(Z;, max(Zs, Zs, Zs}}, min(Zs, Zs, Za}) ©.3.3.0)
a 4

2
= max{min{Zy, max(Zy, Zs, Z4}), min{Zs, Zs}) ©,3.5.0

1

3

} min{max{Z;, Z}, max{Zs, Z4}} 0.4.5.0)
1

34 | l .o.| I min{max{Zy, Zo}, max{Zy, Zs, Zy}, max{Zs, Zs, Z4}) ©.4.3.0
2 4

2-out-of-4 Z(3:4; =104(Zy, 2o, Z3, Zy) (0,0,1, 0y

max{Zy, min{Z, Za, Zs}} ©034h

m_ max{(Zy, min{Zy, Zy}, min{Zs, Zy}} ©.4.% D
l‘.
2 2 3 max(te.3(Z1, Ze, Zs), Z4) ©,0,% 1)
I—.—.——.—| 4, |
]
2.

max{(Zi, Zz, min{Zs, Zs)} ©,0,3. 5

Parallel max{Zy, Zo, Za, Z4} = Zia.ay = 11.4(24, Zo. Z3. Z4) (0,0,0,1)
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transforms,

a2 2 25 20 (8)
1.3.3.(}}

L; {21‘22.23,24](-5')

d oo

(s +4—2v2i)(s +4+24/2i)
= 2(s +6)(s +2)

It is easy to see that (18) and the other conditions of Lemma 3
hold, and, therefore,

i F>10,

T 11021, 22,23, Z4) St

1
(3.3

.0.0)(21, Zy, L3, Z4).

i1
303
Similarly,

o1, 1 i,le-zz-l_x,i{“(n\')
A

LI‘ R fZ|.Zg.Z_1.Z_|}(S)
11380

= 6(s +2)?
TG+ DGE+6+2v3) (s +6—2v3)

Again, it can be seen that (18) and the other conditions of
Lemma 3 hold, and, therefore,

%,(21'22.23,24) Sit

ARG )|

s=>0

T

0.4.4, (Z1, 22, Z3, Z4).

With the aid of Lemma 2, we get

<,
r(a'-T?z-%-O)(Z"ZE‘ Z3,Z4) < T4, 4.0,

and
r(o.o‘%‘%)(Zh Za, 23, Z4) <i t(ov%wjﬁ-%)(zl’ Za, 23, Z4).

Finally, from Proposition 3, it is seen that 1 10 0,(21‘ Za,
330

Z3,Z4), 71 0 1.0)(Z1, 22, Z3, Za), and Ty 1 1 ) (21, 22, 23,
Z4) are not Co-mparabic in the order <;. )

5. DISCUSSION

In this article we have formalized a new type of stochas-
tic order—the convolution order—and derive some basic use-
ful properties of it. This order happens to be equivalent to the
(reverse of the) of the well-known information ordering of sta-
tistical experiments when the unknown parameter of interest is
a location one. The convolution order also has a statistical rele-
vance in some two-sample nonparametric inference settings.

The main application of the convolution order in this arti-
cle is the establishment of various information comparisons of
lifetimes of different reliability coherent systems with compo-
nents that have an unknown location parameter. To do this, we
first obtained a number of mathematical results on properties of
the convolution order for the class of the Coxian distributions,
which is a subclass of the phase-type distributions. These re-
sults were applied to yield a host of information comparisons
of reliability systems that have identical components with two-
parameter exponential lifetimes.

The information comparisons that we obtained may be prac-
tically useful, and they also throw a new light on the meaning
of reliability coherent structures in the context of statistical in-
formation theory. However, a serious practical shortcoming of
the results in Section 4 is that they apply only to independent
and identically distributed two-parameter exponential lifetimes.
It would be nice if the exponential assumption throughout
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Section 4 could be weakened (that is, generalized) to other dis-
tributions. However, our method of deriving the information in-
equalities depends heavily on the exponential lack-of-memory
property that yields (13), and consequently, using the notion
of signatures, it yields the Coxian distributions of the system
lifetimes. Thus we feel that there is little hope (at least us-
ing our methods) of obtaining similar nontrivial information
comparisons for coherent systems with lifetimes that are not
two-parameter exponential or are not identically distributed. Of
course, in the trivial case of one-component “systems,” the con-
volution ordering of the components yields at once (see Prop. 2)
the information ordering of such “systems.”

The statistical relevance of the convolution order in some
two-sample nonparametric settings was indicated in Section 2.
In fact, the convolution order arises naturally whenever any ob-
served lifetime is a sum of two (quantitative) factors: the influ-
ence of the environment and the individuality inherent in the
particular observation. Thus it may be useful, and of interest,
to develop some statistical inference procedures under the con-
straint of the convolution order. Such a development has not
been done in this article.

[Received March 2002, Revised January 2003.]
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