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We establish some existence and uniqueness results for a nonlinear elliptic equation.
The problem has a diffusion matrix A(x, u) such that A(x, s)ξξ ≥ β(s)|ξ|2, with β :
(s0, +∞) 7→ R a continuous, strictly positive function which goes to infinity when s is

near s0. On the other hand, A(x,s)
β(s)

∈ L∞(Ω× (s0,+∞))N×N . Also, the right-hand side

f belongs to L1(Ω). We make use of the concept of renormalized solutions adapted to
our problem.
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1. Introduction

Let Ω ⊂ R
N (N > 1) be a bounded domain. We are interested in the study of the

following nonlinear elliptic problem:

{

w∇u − div[A(x, u)∇u] + g(u) = f in Ω ,

u = 0 on ∂Ω ,
(1.1)

where w ∈ L2(Ω)N , A(x, ·) blows up for a finite value s0 ∈ R\{0}, g : Ω × R 7→ R

and f ∈ L1(Ω) are given data.

This kind of problems is encountered in some physical models, such as the equa-

tion for the rate of turbulent energy dissipation, ε, of the k–ε turbulence model.24

The so-called turbulence models derive from Navier–Stokes equations describing a

the motions of a fluid in a region Ω ⊂ R
N . In the case of a viscous, incompressible
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fluid, the dimensionless Navier–Stokes equations can be written as










∂w

∂t
+ (w · ∇)w − 1

Re
∆w + ∇p = f ,

div w = 0 ,

(1.2)

w and p being the velocity field and the pressure of the fluid, and Re the Reynolds

number, a positive constant linked to the flow. When this value is high enough, the

flow become unstable and turbulent structures involving both the velocity field and

pressure may appear.

In this case, solving the equations numerically becomes an arduous task due to

the large number of nodes of an appropriate mesh over the domain Ω. However,

from a practical point of view, obtaining mean values of the flow is often sufficient

for real problems. Then, it is usual to split the instantaneous velocity w into two

terms: a mean part, w̄ and a fluctuating part, w′ (the same with p),

w = w̄ + w′ ,

p = p̄ + p′ .

Therefore, (1.2) yields to the averaged equations











∂w̄

∂t
+ (w̄ · ∇)w̄ − 1

Re
∆w̄ + ∇p̄ = f − div(w′ × w′) ,

div w̄ = 0 ,

(1.3)

where R = w′ × w′ is the Reynolds stress tensor. This term needs to be modelled

to avoid an open formulation of (1.3) and that is referred to as the closure problem.

Many authors agree to describe R as a diffusion tensor of the type

R = νturb(x, t)(∇w̄ + ∇w̄T) + qI , (1.4)

so that ∇q appearing in (1.3) when introducing (1.4), is absorbed by the pressure

term ∇p̄.

But in this formulation the coefficient νturb(x, t) still remains undetermined. In

1972, Jones and Launder introduced the k–ε model.21 They proposed to model this

eddy viscosity as a function of two scalar variables

k =
1

2
|w′|2 , ε =

ν

2
|∇w′ + ∇w′T|2 ,

and

νturb = cµ
k2

ε
,

k being the turbulent kinetic energy, ε being the dissipation of k and cµ obtained

by experiment. In this situation, the equations for k and ε are convection-diffussion
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reaction type, with nonlinear coefficients, namely

∂k

∂t
+ w̄∇k − div

[(

ν0 + cµ
k2

ε

)

∇k

]

− cµ

2

k2

ε
|∇w̄ + ∇w̄T|2 + ε = 0 ,

∂ε

∂t
+ w̄∇ε − div

[(

ν0 + c1
k2

ε

)

∇ε

]

− c2k|∇w̄ + ∇w̄T|2 + c3
ε2

k
= 0 .

(1.5)

These two equations are coupled with the Reynolds equations (1.3) and (1.4). The

reader interested in a detailed description of the k–ε model is referred to Moham-

madi and Pironneau.24

Problem (1.1) stands for the steady state of the equation for ε in (1.5), i.e.










w̄∇ε − div

[(

ν0 + c1
k2

ε

)

∇ε

]

+ c3
ε2

k
= c2k|∇w̄ + ∇w̄T |2 in Ω ,

ε = ε̄ on ∂Ω ,

(1.6)

considering w̄ and k input data in this equation. Generally, the regularity w ∈
H1(Ω)N is deduced and thus, at least if k ∈ L∞(Ω), we have k|∇w+∇wT |2 ∈ L1(Ω).

Problem (1.6) is also meaningful when dealing with the numerical simulation

of the transient k–ε system. For instance, let M > 1, τ = T/M and tj = jτ ,

considering wj ∼ w̄(·, tj), kj ∼ k(·, tj), εj ∼ ε(·, tj) and pj ∼ p(·, tj), the resulting

equations would be of the type

wj+1 − wj

τ
+ (wj+1 · ∇)wj+1 + ∇pj+1 − div

[(

ν0 + cµ
(kj)2

εj

)

∇wj+1

]

= f j+1 ,

div wj+1 = 0

kj+1 − kj

τ
+ wj+1∇kj+1 − div

[(

ν0 + cµ
(kj)2

εj

)

∇kj+1

]

+ εj

=
cµ

2

(kj)2

εj
|∇wj+1 + ∇wj+1T|2 ,

εj+1 − εj

τ
+ wj+1∇εj+1 − div

[(

ν0 + c1
(kj+1)2

εj+1

)

∇εj+1

]

+ c3
(εj+1)2

kj+1

= c2k
j+1|∇wj+1 + ∇wj+1T|2 .

Indeed, any numerical scheme based on finite differences for the approximation

in time, such as forward or backward Euler, Crank–Nicolson or fractional step

schemes,22,28 may lead to a sequence of steady uncoupled problems like (1.6); in

this sequence of steady problems, w and k have been computed in a previous stage

so that they enter in (1.6) as data.

In this work, we study the difficulties involving the equation for ε considering

that both w and k are known; in this way, we try to analyze the properties which
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can be deduced for the solutions; this may be useful for the complete resolution of

the k–ε model which has not been done yet.

Blanchard and Redwane have studied some existence and uniqueness results for

a similar problem but with right-hand side in L2(Ω).5 Orsina has analyzed the case

when f is a bounded Radon measure on Ω,27 but his model leads to L∞-estimates

for the solutions.

Due to the singularity of the diffusion coefficient, problem (1.1) contains a term

which becomes an indetermination on the set {u = s0}, which in turn may not be

negligible. Besides, we do not assume any hypothesis on the asymptotic behavior of

β(s) for s → +∞. These two considerations imply that the idea of a weak solution is

not well-suited for this setting. For that reason, we introduce the concept of renor-

malized solution for problem (1.1), which is an adaptation of the one introduced

by Blanchard and Redwane.5

The notion of renormalized solutions was firstly introduced by DiPerna and

Lions in the study of the Fokker–Planck–Boltzmann equations.13,14 Later on, this

concept has been adapted to other situations; for instance, in the analysis of linear

and nonlinear elliptic equations by Boccardo, Diaz, Giachetti, Murat and Puel,6,7

Murat,25,26 Dal Maso, Murat, Orsina and Prignet,12 and Gómez and Ortegón19,20;

it has also been applied to the study of linear and nonlinear parabolic equations

by Blanchard,2 Blanchard and Murat,3 Blanchard and Redwane,4 P. L. Lions,23

Climent and Fernández,10,11 and Gómez.19 On the other hand, Andreu, Mazón,

Segura de León and Toledo1 have made use of this technique for a degenerate

parabolic equation.

The main results of this paper were first announced in a previous work16 but

in the case of a diffusion matrix B1(x) + B2(x)β(s), with B1, B2 ∈ L∞(Ω)N×N ,

and β : (s0, +∞) 7→ R, a continuous, strictly positive function which exploses

for a finite, negative value s0, lims→s+

0

β(s) = +∞. Here, we consider A(x, s) a

general diffusion matrix satisfying several hypotheses which extend in some way

the particular structure referred above. Moreover, we fully develop here the proofs

of the existence and uniqueness results for (1.1).

The paper is organized as follows. First, we describe the main difficulties of

the problem, then we enumerate the assumptions on data and this will lead us

to the introduction of a renormalized solution to problem (1.1). The existence re-

sult is based on approximate problems whose solutions satisfy Boccardo–Gallouët

estimates.8 We end with a uniqueness result under more restrictive assumptions.

For full details the reader should refer to Garćıa.15

2. Setting of the Problem

We will assume the following hypothesis

(H1) A : Ω × (s0, +∞) 7→ R
N×N is a Carathedory function (i.e. A(x, ·) is a con-

tinuous function a.e. x ∈ Ω, and A(·, s) is a measurable function, for all
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s ∈ (s0, +∞)) such that

A(x, s)ξξ ≥ β(s)|ξ|2 a.e. x ∈ Ω , for all s ∈ (s0, +∞) ,

and β : (s0, +∞) 7→ R is a continuous function, s0 ∈ R, s0 < 0, and there

exists a constant β̃ > 0 such that

β(s) ≥ β̃ , for all s > s0 and lim
s→s+

0

β(s) = +∞ .

(H2)
A(x, s)

β(s)
∈ L∞(Ω × (s0, +∞))N×N .

(H3) g : Ω × R 7→ R is a Caratheodory function such that

g(x, s)s ≥ 0, a.e. x ∈ Ω , for all s ∈ R ;

∀m > 0, ∃ γm ∈ L1(Ω), such that sup|s|≤m |g(x, s)| ≤ γm(x), a.e. x ∈ Ω, for

all s ∈ R.

(H4) w ∈ L2(Ω)N , div w = 0 in Ω and w · n = 0 on ∂Ω, ∂Ω being a Lipschitz

continuous boundary (n = n(x) is the unitary, normal and outward vector

on x ∈ ∂Ω).

(H5) f ∈ L1(Ω).

Remark. By A(u) (or g(u)) we mean the functions x 7→ A(x, u(x)), (similarly

x 7→ g(x, u(x))), x ∈ Ω.

Remark. The Lipschitz continuous regularity on ∂Ω is assumed in (H4) in order for

the constraint w · n = 0 to make sense in H−1/2(∂Ω). We may avoid any regularity

on ∂Ω and any constraint on the normal component of w if we assume, instead of

(H4), the following hypothesis:

(H4)′ w ∈ L2(Ω)N , div w = 0 in Ω and ∃ (wδ)δ ⊂ L∞(Ω)N with div wδ = 0 in Ω,

such that wδ → w, in L2(Ω)N -strongly.

Obviously, under (H4) we have w ∈ H0(div, Ω),

H0(div, Ω) = {v ∈ L2(Ω)N , div v = 0 in Ω, v · n = 0 on ∂Ω} ,

and it is well known that D(Ω)N is dense in such a space with the L2(Ω)N norm,18

and so there is a sequence wδ satisfying (H4)′.

Remark. The nonlinear terms together with the singularity on s0 and (H5)

constitute the main difficulties of this problem.

In fact, for a solution u ∈ W 1,q
0 (Ω), q < 2, the term A(u)∇u is not determined

on the set {u = s0}, which may not be negligible. On the other hand, since f ∈
L1(Ω), a solution u of problem (1.1) cannot be chosen as a test function in the

variational formulation. Indeed it is expected that a solution belongs to a Sobolev

space W 1,q
0 (Ω), for some q < 2.
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Fig. 1. Functions Tj(s) and Gj(s) given in (2.1) and (2.2) respectively.

These remarks show that the notion of weak solution to problem (1.1) is not well-

suited; consequently, it is necessary to introduce a new functional frame adapted

to this situation.

This kind of elliptic problems having a diffusion coefficient which blows up for a

finite value of the unknown have been firstly studied by Blanchard and Redwane5;

in these references it is assumed f ∈ L2(Ω), w = 0, g(x, u) = λu and A(x, s) = β(s)

with β(s) a diagonal matrix. However, in our setting we add another essential

difficulty since f ∈ L1(Ω).

Throughout this paper, for any non-negative real number j, we denote Tj(s)

the truncation function at height j (see Fig. 1), i.e.

Tj(s) = sgn s min(j, |s|) , sgn s =











s

|s| if s 6= 0 ,

0 if s = 0 .

(2.1)

We also introduce the function Gj(s) defined as follows:

Gj(s) = Tj+1(s) − Tj(s) =















0 , if |s| < j ,

sgn s , if |s| ≥ j + 1 ,

s − j sgn s , if j ≤ |s| ≤ j + 1 .

(2.2)

The following lemma, due to Boccardo and Gallouët, will be used in the sequel;

it is a very useful compactness result in nonlinear elliptic equations with the right-

hand side in L1(Ω) or a measure.

Lemma 1. Let (uδ)δ be a family of measurable functions such that

(i) Tj(uδ) ∈ H1
0 (Ω), for all j > 0, and

(ii) ∀ δ > 0, ∃C > 0 (independent of j and δ) such that
∫

Ω |∇Gj(uδ)|2 ≤ C, for all

j > 0.

Then (uδ)δ is bounded in W 1,q
0 (Ω) for all q such that 1 ≤ q < N/(N − 1).

Finally, we introduce the space W 1,∞
c (R) = {ϕ ∈ W 1,∞(R), suppϕ is compact}.

Now, we are ready to define the notion of renormalized solution adapted to our

setting.
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Definition 1. A measurable function u defined on Ω is a renormalized solution of

problem (1.1) provided that

(R1) u ∈ L1(Ω); u(x) ≥ s0, a.e. x ∈ Ω; A(u)∇uχ{u>s0} ∈ L1(Ω)N ; g(u) ∈ L1(Ω).

(R2) Tj(u) ∈ H1
0 (Ω), for all j > 0; AS/2(u)∇Tj(u)χ{u>s0} ∈ L2(Ω)N , for all j > 0.

(R3) ∀G ∈ W 1,∞(R), with suppG′ compact is

lim
η→0

1

η

∫

{s0+η<u<s0+2η}

A(u)∇u∇u G(u) =

∫

{u=s0}

(g(u) − f) G(u) ;

(R4) lim
n→∞

1

n

∫

{s0<u≤n}

A(u)∇u∇u = 0.

(R5) ∀h ∈ W 1,∞
c (R) with h(s0) = 0 we have

∫

Ω

w∇u h(u)v +

∫

Ω

A(u)∇u∇v h(u)χ{u>s0}

+

∫

Ω

A(u)∇u∇u h′(u) vχ{u>s0} +

∫

Ω

g(u) h(u)v

=

∫

Ω

f h(u)v , for all v ∈ D(Ω) . (2.3)

Remark. AS = (A+AT)/2 is the symmetric part of A; from (H1) AS turns out to

be positive definite. Also, we denote AS/2 the unique positive-definite square root

of AS .

Remark. Formulation (2.3) has been formally obtained through pointwise multi-

plication of (1.1) by a function h(u), and then considering the resulting equality

in the sense of distributions. Now every term in this last expression makes sense,

thanks to the conditions assumed on both solution and data.

Remark. Condition (R3) describes the behavior of u near s0. This information

was lost when substituting (1.1) by (2.3); one should notice that G = 1 is a possible

choice. On the other hand, condition (R4) yields an asymptotic behavior of the

energy for great values of u. We may have A(u)∇u∇u 6∈ L1(Ω) not only because of

f 6∈ L2(Ω), but also due to the lack of a hypothesis more restrictive on the growth

of A(s) for large values of s.

Remark. It is important to point out the fact that if the function h in the varia-

tional formulation (2.3) has compact support in (s0, +∞), then we can choose any

v ∈ H1
0 (Ω) ∩ L∞(Ω) as test functions in (2.3).

Remark. When dealing with a problem like (1.1) having this kind of singularitiy

in the diffusion coefficient (even with regular data), special care should be taken,

since it may yield a situation where a solution (in a usual sense) does not exist. For
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instance, consider the following problem in N = 1 (it is easy to construct similar

examples for N > 1)











− d

dx

[(

2 +
1√

u + 2

)

du

dx

]

= 2α in (−1, 1) ,

u(−1) = u(1) = 0 ,

(2.4)

α being a constant value. By applying Kirchoff’s transformation

C(s) =

∫ s

0

(2 + (t + 2)−1/2) dt = 2s + 2(s + 2)1/2 − 2
√

2 ,

problem (2.4) becomes











− d2

dx2
[C(u)] = 2α in (−1, 1) ,

C(u(−1)) = C(u(1)) = 0 .

Hence, the problem has only a solution which can be written as

C(u) = α(1 − x2) . (2.5)

But on the other hand, since C(−2) = −4− 2
√

2, u cannot be retrieved from (2.5)

as soon as α < −4 − 2
√

2.

Nevertheless, Theorem 1 claims that problem (1.1) has a solution in the sense

of Definition 1.

3. The Existence Result

The existence of a renormalized solution to problem (1.1) is given in the following:

Theorem 1. Under the assumptions (H1)–(H5) (or (H4)′ instead of (H4)), there

exists a renormalized solution u of problem (1.1) such that

u ∈ W 1,q
0 (Ω) , A(u)∇uχ{u>s0} ∈ Lq(Ω)N , for all q <

N

N − 1
.

Moreover, every renormalized solution u satisfies

u ∈ W 1,q
0 (Ω) , for all 1 ≤ q <

N

N − 1
. (3.1)

The proof of this theorem will be developed below.

3.1. Approximate problems

Thanks to (H4) there is a sequence (wδ)δ ⊂ L∞(Ω)N , div wδ = 0 in Ω and

limδ→0 wδ = w strongly in L2(Ω)N .



August 15, 2003 10:57 WSPC/103-M3AS 00294

An Elliptic Equation with Blowing-up Diffusion and Data in L1 1359

���������

�
	
�

��

��

���

��
���� �

� 


��


�������

� � 


Fig. 2. Functions T δ and Z(s) given in (3.2) and (3.12) respectively.

In order to deal with the singularity at s0, a new truncation function (see Fig. 2)

will be introduced, namely

T δ(s) =































1

δ
, if s ≥ 1

δ

s , if s0 + δ < s <
1

δ

s0 + δ , if s ≤ s0 + δ

(3.2)

then we put Aδ(x, s) = A(x, T δ(s)); 0 < δ < |s0|. Note that Aδ(x, s)ξξ ≥ β(T δ(s))ξξ

and β(T δ(s)) ∈ L∞(R). We also put fδ = T1/δ(f) and gδ(s) = T1/δ(g(T1/δ(s))).

The approximate problem is

{

uδ ∈ H1
0 (Ω)

wδ∇uδ − div[Aδ(uδ)∇uδ] + gδ(uδ) = fδ , in Ω .
(3.3)

The existence of a solution to (3.3) can be readily stated by a straightforward

application of Schauder’s fixed point theorem. In fact, uδ ∈ H1
0 (Ω) verifies the

variational formulation of problem (3.3), namely

∫

Ω

wδ∇uδφ +

∫

Ω

Aδ(uδ)∇uδ ∇φ +

∫

Ω

gδ(uδ)φ =

∫

Ω

fδφ , for all φ ∈ H1
0 (Ω) .

(3.4)

Remark. Let V ∈ L∞(R) and Ṽ (s) =
∫ s

0 V (t) dt. It is well known that (see

Theorem 7.8 of Ref. 17) if v ∈ H1
0 (Ω) then Ṽ (v) ∈ H1

0 (Ω), and ∇Ṽ (v) = V (v)∇v.

In particular,

∫

Ω

wδ∇uδV (uδ) =

∫

Ω

wδ∇Ṽ (uδ) = −
∫

Ω

div wδṼ (uδ) = 0 . (3.5)

This property will be continually used throughout this paper for some different

choices of V .
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3.2. A priori estimates

If f ∈ L2(Ω), we can simply take uδ as a test function in (3.4) to conclude that

there exists a subsequence of (uδ)δ which converges in H1
0 (Ω) weakly. Since we

just assume f ∈ L1(Ω), we cannot expect weak convergence of solutions in H1
0 (Ω).

Taking φ = Tj(uδ), j > 0, as a test function in (3.4) we have
∫

Ω

Aδ(uδ)∇uδ ∇Tj(uδ) +

∫

Ω

gδ(uδ)Tj(uδ) =

∫

Ω

fδ Tj(uδ) . (3.6)

Using (H1) and (H3), (3.6) becomes

β̃

∫

Ω

∇Tj(uδ)∇Tj(uδ) ≤
∫

Ω

fδTj(uδ) ,

hence,

‖∇Tj(uδ)‖2
L2(Ω) ≤

j

β̃
‖f‖L1(Ω) . (3.7)

Let Bδ
j = {x ∈ Ω : j ≤ |uδ| < j + 1} and take φ = Gj(uδ), defined on (2.2) (see

Fig. 1), in (3.4). We have
∫

Ω

Aδ(uδ)∇uδ ∇Gj(uδ) +

∫

Ω

gδ(uδ)Gj(uδ) =

∫

Ω

fδGj(uδ) .

Thus

β̃

∫

Bδ
j

|∇uδ|2 +

∫

Ω

gδ(uδ)Gj(uδ) ≤
∫

Ω

fGj(uδ) ,

hence

β̃

∫

Bδ
j

|∇uδ|2 ≤
∫

{|uδ |≥j}

|f | , (3.8)

and
∫

{|uδ|≥j+1}

|gδ(uδ)| ≤
∫

{|uδ |≥j}

|f | ≤ ‖f‖L1(Ω) . (3.9)

The inequalities (3.7) and (3.8) tell us that the sequence (uδ)δ satisfies Boccardo–

Gallouët’s estimates (Lemma 1), which lead us to the existence of some constants

Cq > 0 such that

‖uδ‖W 1,q
0

(Ω) ≤ Cq , for all q: 1 ≤ q <
N

N − 1
.

Therefore there is a subsequence, which will be denoted in the same way, and a

function u ∈ W 1,q
0 (Ω), such that

uδ ⇀ u , in W 1,q
0 (Ω)-weakly , for all q: 1 ≤ q <

N

N − 1

uδ → u , in Lr(Ω)-strongly , for all r: 1 ≤ r <
N

N − 2

uδ → u , a.e. in Ω .

(3.10)
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Also, by the estimate (3.7) and the convergences (3.10), we have

Tj(uδ) ⇀ Tj(u) , in H1
0 (Ω)-weakly , for all j > 0 .

T1/δ(uδ) → u , gδ(uδ) → g(u) , a.e. x ∈ Ω . (3.11)

3.3. Passing to the limit

The analysis of passing to the limit on every term of (3.4), and the proof that the

limit function u appearing in (3.10) is a renormalized solution, will be divided in

eight steps. We have already verified the first conditions of (R1) and (R2).

3.3.1. Step 1 : g(u) ∈ L1(Ω)

Since u is measurable and g a Caratheodory function, we have that g(u) is also

measurable. It remains to show that
∫

Ω |g(u)| < +∞. To do so, we write g(u) =

g(u)χ{|u|<1} + g(u)χ{|u|≥1}. Using (H3), we have |g(u)|χ{|u|<1} ≤ γ1; by virtue of

(3.9), (3.11) and Fatou’s lemma, we have
∫

Ω

|g(u)|χ{|u|≥1} ≤ lim
δ→0

∫

Ω

|gδ(uδ)|χ{|uδ |≥1} ≤ ‖f‖L1(Ω) ,

and so g(u) ∈ L1(Ω).

3.3.2. Step 2 : gδ(uδ) → g(u), in L1(Ω)-strongly

Obviously we can write
∫

Ω

|gδ(uδ) − g(u)| =

∫

{|uδ|<j+1}

|gδ(uδ) − g(u)| +
∫

{|uδ |≥j+1}

|gδ(uδ) − g(u)| .

By Lebesgue’s theorem we obtain

lim
δ→0

∫

{|uδ |<j+1}

|gδ(uδ) − g(u)| = 0 .

For the second integral, we have
∫

{|uδ |≥j+1}

|gδ(uδ) − g(u)| ≤
∫

{|uδ|≥j+1}

|gδ(uδ)| +
∫

{|uδ |≥j+1}

|g(u)|

≤
∫

{|uδ|≥j}

|f | +
∫

{|uδ |≥j+1}

|g(u)| .

Therefore

lim
δ→0

∫

{|uδ |≥j+1}

|gδ(uδ) − g(u)| ≤
∫

{|u|≥j}

|f | +
∫

{|u|≥|j+1}

|g(u)| , for all j > 0

and then gδ(uδ) → g(u) in L1(Ω)-strongly.
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3.3.3. Step 3 : meas({u < s0}) = 0

Define Z(s) as (see Fig. 2)

Z(s) =















s0 , if s < 2s0 ,

s − s0 , if 2s0 < s < s0 ,

0 , if s > s0 .

(3.12)

and take φ = Z(uδ) as a test function in (3.4). Then we have
∫

Ω

Aδ(uδ)∇uδ ∇Z(uδ) +

∫

Ω

gδ(uδ)Z(uδ) =

∫

Ω

fδZ(uδ) .

Consequently
∫

{2s0<uδ<s0}

β(T δ(uδ))∇Z(uδ)∇Z(uδ) ≤ |s0| ‖f‖L1(Ω) ,

and thus

β(s0 + δ)

∫

Ω

|∇Z(uδ)|2 ≤ |s0| ‖f‖L1(Ω) ,

and from Poincaré’s inequality
∫

Ω

|Z(uδ)|2 ≤ C

β(s0 + δ)
,

with C = C(‖f‖L1(Ω), |s0|, α). Now, letting δ → 0, we deduce Z(u) = 0, a.e. in Ω,

which means that u ≥ s0, a.e. in Ω.

3.3.4. Step 4 : A
S/2
δ (uδ)∇Tj(uδ) ⇀ AS/2(u)∇Tj(u) χ{u>s0}, in

L2(Ω)-weakly, for all j > 0

In this step we are going to make use of hypothesis (H1). In fact, the argument is

based on a certain Kirchoff’s transformation.

Let Bδ(s) =
∫ s

0 β(T δ(t)) dt. Now we prove that the sequence (zδ)δ = (Bδ(uδ))δ

verifies Boccardo–Gallouët’s estimates (Lemma 1). Indeed, taking φ = Tj(Bδ(uδ)),

j > 0, in (3.4) we obtain
∫

Ω

Aδ(uδ)∇uδ∇Tj(Bδ(uδ)) +

∫

Ω

gδ(uδ)Tj(Bδ(uδ)) =

∫

Ω

fδTj(Bδ(uδ))

hence,
∫

Ω

|∇Tj(Bδ(uδ))|2 ≤ j

α
‖f‖L1(Ω) . (3.13)

Now putting φ = Gj(Bδ(uδ)) in (3.4) we deduce
∫

Ω

Aδ(uδ)∇uδ∇Gj(Bδ(uδ)) +

∫

Ω

gδ(uδ)Gj(Bδ(uδ)) =

∫

Ω

fδ Gj(Bδ(uδ)) .
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Therefore,
∫

Ω

|∇Gj(Bδ(uδ))|2 ≤ ‖f‖L1(Ω)

α
. (3.14)

In conclusion, there is a subsequence (still denoted in the same way), and a limit

function z ∈ W 1,q
0 (Ω), such that

zδ ⇀ z , in W 1,q
0 (Ω)-weakly , for all q: 1 < q <

N

N − 1
.

zδ → z , in Lr(Ω)-strongly , for all r: 1 < r <
N

N − 2
.

zδ → z , a.e. x ∈ Ω ,

Tj(zδ) ⇀ Tj(z) , in H1
0 (Ω)-weakly , for all j > 0 .

Notice that, thanks to the everywhere convergence of both uδ and zδ, we have

z = B(u), where B(s) =
∫ s

0
β(t) dt; in particular, this shows that in the case

∫ s0

0
β(t) dt = −∞, then meas({u = s0}) = 0.

Let us now study the relationship between ∇z and β(u)∇u. Since

∇uδ =
1

β(T δ(uδ))
∇zδ (3.15)

and by virtue of being 1
β(T δ(uδ))

∈ L∞(Ω), we readily obtain the convergence

β(T δ(uδ))
−1 → β(u)−1 , in L∞(Ω) weakly-* ,

and this implies, together with (3.10) and (3.15) that ∇u = β(u)−1∇z (here, we

are considering β(u)−1 = 0 in the set {u = s0}). Finally,

∇z = β(u)∇u , on {u > s0} . (3.16)

Now we are going to check AS
δ (uδ)∇uδ ∈ Lq(Ω)N . In fact, this is an immediate

consequence from (H2) and the definition of a symmetric matrix because (‖ · ‖
denotes the spectral matrix norm)

|AS
δ (uδ)∇uδ|q ≤ ‖AS

δ (uδ)‖q |∇uδ|q ≤ C‖Aδ(uδ)‖q
∞ |∇uδ |q ≤ C̃β(T δ(uδ))

q |∇uδ|q ,

and ∇zδ = β(T δ(uδ))∇uδ is a bounded sequence in Lq(Ω)N . Consequently, there

is at least a subsequence such that

AS
δ (uδ)∇uδ ⇀ ξ , in Lq(Ω)N -weakly, 1 ≤ q <

N

N − 1
. (3.17)

Repeating the argument above ∇uδ = A−S
δ (uδ) AS

δ (uδ)∇uδ , (here we are identifying

A−S(u) as the null matrix when u reaches the value s0) and then ξ = AS(u)∇u

on {u > s0}. We also notice that this also shows that the sequence (A(uδ)∇uδ)δ is

bounded in Lq(Ω)N and that A(u)∇uχ{u>s0} ∈ Lq(Ω)N for 1 ≤ q < N/(N − 1).

At this point, we introduce a new sequence (eδ
j)δ , namely

eδ
j = A

S/2
δ (uδ)∇Tj(uδ) .



August 15, 2003 10:57 WSPC/103-M3AS 00294
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From (3.6), we deduce that (eδ
j)δ is bounded in L2(Ω)N . Then there is a subsequence

(still denoted in the same way) such that

eδ
j ⇀ ej , in L2(Ω)N -weakly, for all j > 0 . (3.18)

Now, we try to identify this limit function ej . To do so, we rewrite

eδ
j = A

−S/2
δ (uδ) AS

δ (uδ)∇uδ χ{|uδ|<j} .

On one hand, it is obvious that

A
−S/2
δ (uδ) χ{|uδ |<j} → A−S/2(u) χ{|u|<j} , in L∞(Ω) weakly-* ,

and on the other hand, we have (3.18) and (3.17). Thus, passing to the limit when

δ → 0 on both sides of the equality, we get ej = A(u)−S/2 ξ χ{|u|<j}). Moreover, the

presence of the term A−S/2(u) allows us to deduce ej ≡ 0 on the level set {u = s0}
and then

ej = A(u)−S/2 AS(u)∇uχ{u>s0} χ{|u|<j}

= A(u)S/2∇Tj(u) χ{u>s0} .

In particular,

A(u)∇Tj(u)∇Tj(u)χ{u>s0} ∈ L1(Ω) , for all j > 0 . (3.19)

3.3.5. Step 5 : For every j > 0, Aδ(uδ)
S/2 ∇Tj(uδ) → A(u)S/2 ∇Tj(u) χ{u>s0},

in L2(Ω)N -strongly

This step is the key of the approximating procedure. Indeed, this strong convergence

in L2(Ω)N will allow us to pass to the limit in certain terms which, in turn, will

lead to (R3) and (R5). Let φ = Tj(u)Pl(uδ)Hl(zδ) be a new test function in the

variational formulation (3.4), with Pl(s) and Hl(s) (see Fig. 3) given as follows:

Pl(s) =



































0 , if s ≤ s0 +
1

l

l

(

s − s0 −
1

l

)

, if s0 +
1

l
< s < s0 +

2

l

1 , if s > s0 +
2

l

(3.20)

Hl(s) =















2 − |s|/l , if l ≤ |s| ≤ 2l

1 , if |s| ≤ l

0 , if |s| ≥ 2l .

(3.21)

Note that there is a constant M > 0, independent of δ, such that φ(x) = 0 almost

everywhere in the set Cδ
M = {x ∈ Ω : |uδ(x)| ≥ M}. This is true since |zδ | ≥ β̃|uδ|
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Fig. 3. Functions Pl(s) and Hl(s) defined in (3.20) and (3.21) respectively.

and Hl(s) is zero outside the interval [−2l, 2l]. The support of the function φ is

then included in the set
{

x ∈ Ω: max

(−2l

β̃
, s0 +

1

l

)

≤ uδ(x) ≤ 2l

β̃

}

. (3.22)

The expression (3.4) for this φ becomes
∫

Ω

wδ ∇uδ Tj(u) Pl(uδ) Hl(zδ) +

∫

Ω

Aδ(uδ)∇uδ ∇Tj(u) Pl(uδ) Hl(zδ)

+

∫

Ω

Aδ(uδ)∇uδ ∇uδ P ′
l (uδ) Tj(u) Hl(zδ)

+

∫

Ω

Aδ(uδ)∇uδ ∇zδ H ′
l(zδ) Pl(uδ) Tj(u)

=

∫

Ω

(fδ − gδ(uδ)) Tj(u) Pl(uδ) Hl(zδ) . (3.23)

The next step in our analysis is to deduce the passing to the limit in (3.23); we

do it by studying each integral separately:

(A) Behavior of
∫

Ω(fδ − gδ(uδ))Tj(u) Pl(uδ) Hl(zδ)

It is straightforward by Lebesgue’s theorem that

lim
δ→0

∫

Ω

(fδ − gδ(uδ))Tj(u) Pl(uδ) Hl(zδ) =

∫

Ω

(f − g(u)) Tj(u) Pl(u) Hl(z)

and

lim
l→∞

{

lim
δ→0

∫

Ω

(fδ − gδ(uδ))Tj(u) Pl(uδ) Hl(zδ)

}

=

∫

Ω

(f − g(u))Tj(u)χ{u>s0} .

(B) Behavior of
∫

Ω wδ ∇uδ Tj(u) Pl(uδ) Hl(zδ)

Putting M = M(l) = 2l/β̃ we have
∫

Ω

wδ ∇uδ Tj(u) Pl(uδ) Hl(zδ) =

∫

Ω

wδ ∇TM (uδ) Tj(u) Pl(uδ) Hl(zδ) .

Since ∇TM (uδ) ⇀ ∇TM (u) weakly in L2(Ω), we deduce that

∇TM (uδ) Tj(u) Pl(uδ) Hl(zδ) ⇀ ∇TM (u) Tj(u) Pl(u) Hl(B(u)) weakly in L2(Ω) .



August 15, 2003 10:57 WSPC/103-M3AS 00294
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On the other hand, wδ → w strongly in L2(Ω). Thus,

lim
δ→0

∫

Ω

wδ ∇uδ Tj(u) Pl(uδ) Hl(zδ) =

∫

Ω

w∇TM (u) Tj(u) Pl(u) Hl(B(u)) .

This last integral is equal to zero since (see (3.5) and the associated remark)

TM (u) ∈ H1
0 (Ω) and choosing V ∈ L∞(R) as

V (s) = Tj(TM (s)) Pl(TM (s)) Hl(B(TM (s))) , Ṽ (s) =

∫ s

0

V (t) dt ,

we have
∫

Ω

w∇TM (u) Tj(u)Pl(u)Hl(A(u)) =

∫

Ω

w∇Ṽ (TM (u)) = −〈∇ · w, Ṽ (TM (u))〉 = 0 ,

where 〈· , ·〉 stands for the duality pair between H−1(Ω) and H1
0 (Ω).

(C) Behavior of
∫

Ω Aδ(uδ)∇uδ ∇Tj(u) Pl(uδ) Hl(zδ)

Obviously, when δ → 0 in such an expression

Aδ(uδ)∇Tj(u) Pl(uδ) Hl(zδ) → A(u)∇Tj(u) Pl(u) Hl(z) , in L2(Ω)-strongly ,

since uδ → u almost everywhere x ∈ Ω, the support of uδ is included in a compact

as (3.22), and A is a Caratheodory function. On the other hand, recall that M =

M(l) = 2l/α̃,

∇TM (uδ) ⇀ ∇TM (u) , in L2(Ω)-weakly .

Hence

lim
δ→0

∫

Ω

Aδ(uδ)∇uδ ∇Tj(u) Pl(uδ) Hl(zδ) =

∫

Ω

A(u)∇TM (u)∇Tj(u) Pl(u) Hl(B(u)) .

If l is large enough, say l ≥ β̃j
2 ,

∇TM (u)∇Tj(u) = ∇TM (Tj(u))∇Tj(u) , for all M ≥ j .

Consequently, (3.19) and Lebesgue’s theorem yield

lim
l→∞

{

lim
δ→0

∫

Ω

Aδ(uδ)∇uδ ∇Tj(u) Pl(uδ) Hl(zδ)

}

=

∫

Ω

A(u)∇Tj(u)∇Tj(u) χ{u>s0} .

(D) Behavior of
∫

Ω Aδ(uδ)∇uδ ∇uδ P ′
l (uδ) Hl(zδ)Tj(u)

In order to study this integral we begin to notice that from (3.20) P ′
l (uδ) =

l χ{s0+ 1
l
<uδ<s0+ 2

l
}. Then, we take a new test function in (3.4), namely φ =

Tj(u)Kl(uδ)Hl(zδ), where (see Fig. 4)

Kl(s) = Pl(s) − 1 , for all s ∈ R . (3.24)

In this situation, formulation (3.4) leads to the analysis of some new integrals.

Firstly, it is immediate to remark that

lim
l→∞

{

lim
δ→0

∫

Ω

(fδ − gδ(uδ)) Tj(u) Kl(uδ) Hl(zδ)

}

= −
∫

{u=s0}

(f − g(u))Tj(u) .
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Fig. 4. Functions Kl(s) and Ql(s) defined in (3.24) and (3.28) respectively.

Secondly, (3.15) yields the equality
∫

Ω

Aδ(uδ)∇uδ ∇Tj(u) Kl(uδ) Hl(zδ)

=

∫

Ω

Aδ(uδ)

β(T δ(uδ))
∇T2l(zδ)∇Tj(u) Kl(uδ) Hl(zδ) χ{u>s0} ,

since ∇Tj(u) = ∇Tj(u) χ{u>s0}. Thanks to (H2), we have

Aδ(uδ)

β(T δ(uδ))
χ{u>s0} → A(u)

β(u)
χ{u>s0} , a.e. x ∈ Ω, and *-weakly in L∞(Ω) .

Therefore, using the weak convergence in L2(Ω)N for the sequence ∇T2l(zδ)

lim
δ→0

∫

Ω

Aδ(uδ)∇uδ ∇Tj(u) Kl(uδ) Hl(zδ)

=

∫

{u>s0}

A(u)

β(u)
∇B(u)∇Tj(u) Kl(u) Hl(z) ,

and remarking (3.19) we consider now the limit of that expression when l goes to

infinity,

lim
l→∞

∫

{u>s0}

A(u)∇u∇Tj(u) Kl(u) Hl(z) χ{u>s0}

= −
∫

Ω

A(u)

β(u)
∇B(u)∇Tj(u) χ{u=s0} χ{u>s0} .

But χ{u=s0} χ{u>s0} = 0, almost everywhere in Ω, then

lim
l→∞

{

lim
δ→0

∫

Ω

Aδ(uδ)∇uδ ∇Tj(u) Kl(uδ) Hl(zδ)

}

= 0 .

The treatment of the transport term follows as in (B). In order to finish (D), it

only remains to study the term

Iδl =

∫

Ω

Aδ(uδ)∇uδ∇zδTj(u)Kl(uδ)H
′
l(zδ) . (3.25)

In fact, we will show that

lim
l→∞

{

lim
δ→0

|Iδl|
}

= 0 . (3.26)
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1368 C. Garćıa Vázquez & F. Ortegón Gallego

Indeed, we have

|Iδl| ≤
j

l

∫

{l<|zδ|<2l}

Aδ(uδ)∇uδ ∇zδ (3.27)

because Aδ(uδ)∇uδ∇zδ ≥ 0. This last integral can be obtained taking in (3.4)

φ = Ql(zδ) ∈ H1
0 (Ω) (see Fig. 4), with

Ql(s) =























sgn s , if |s| > 2l

s

l
− sgn s if l < |s| < 2l

0 if |s| < l

(3.28)

then we obtain,

lim
δ→0

1

l

∫

{l<|zδ |<2l}

Aδ(uδ)∇uδ ∇zδ =

∫

Ω

(f − g(u)) Ql(z) ,

which yields,

lim
l→∞

{

lim
δ→0

1

l

∫

{l<|zδ|<2l}

Aδ(uδ)∇uδ∇zδ

}

= 0 (3.29)

and this implies (3.26). So, summing up, we have shown that

lim
l→∞

{

lim
δ→0

∫

Ω

Aδ(uδ)∇uδ P ′
l (uδ)Hδ(zδ)Tj(u)

}

=

∫

{u=s0}

(g(u) − f)Tj(u) .

(E) Behavior of IIδl =
∫

Ω Aδ(uδ)∇uδ ∇zδ H ′
l(zδ) Pl(uδ)Tj(u)

This is identical to Iδl and it is straightforward that liml→∞{limδ→0 |IIδl|} = 0.

(F) Conclusion

By virtue of (A)–(E), we deduce that
∫

Ω

A(u)∇Tj(u)∇Tj(u) χ{u>s0} =

∫

Ω

(f − g(u)) Tj(u) , for all j > 0 . (3.30)

On the other hand, taking φ = Tj(uδ) in (3.4), we readily find that

lim
δ→0

∫

Ω

Aδ(uδ)∇uδ ∇Tj(uδ) =

∫

Ω

(f − g(u)) Tj(u) , (3.31)

and comparing (3.30) and (3.31), we get for every j > 0,

lim
δ→0

∫

Ω

Aδ(uδ)∇Tj(uδ)∇Tj(uδ) =

∫

Ω

A(u)∇Tj(u)∇Tj(u)χ{u>s0} . (3.32)

By virtue of the weak convergence in L2(Ω) of the sequence (eδ
j)δ to ej , step 4

together with (3.32), we must conclude that (eδ
j )δ converges in L2(Ω)-strongly to ej .
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3.3.6. Step 6 : Behavior of u near s0

Now we take φ = G(uδ)Kl(uδ) in (3.4), with Kl(s) defined in (3.24) and any

G ∈ W 1,∞(R), supp G′ compact. It must be noticed that G(s) = 1 could be a right

choice. Then,

l

∫

{s0+ 1
l
<uδ<s0+ 2

l
}

Aδ(uδ)∇uδ ∇uδ G(uδ) +

∫

Ω

Aδ(uδ)∇uδ ∇G(uδ) Kl(uδ)

=

∫

Ω

(fδ − gδ(uδ)) Kl(uδ) G(uδ) . (3.33)

Let R > 0 such that supp G′ ⊂ [−R, R], then G′(uδ)∇uδ = G′(uδ)∇TR(uδ). More-

over, as far as the first integral of (3.33) is concerned, we get for l large enough,

∇uδ χ{s0+
1
l
<uδ<s0+ 2

l
} = ∇Tr(uδ) χ{s0+

1
l
<uδ<s0+ 2

l
} with r =

∣

∣

∣

∣

s0 +
1

l

∣

∣

∣

∣

.

Passing to the limit when δ → 0 in (3.33), according to the strong convergence

deduced in the previous step, we have
∫

Ω

A(u)∇u∇G(u) Kl(u)χ{u>s0} + l

∫

{s0+ 1
l
<u<s0+ 2

l
}

A(u)∇u∇u G(u)

=

∫

Ω

(f − g(u)) G(u) Kl(u) .

Finally

lim
l→∞

l

∫

{s0+
1
l
<u<s0+

2
l
}

A(u)∇u∇u G(u) =

∫

{u=s0}

(g(u) − f)G(u) ,

and then condition (R3) in Definition 1.

3.3.7. Step 7 : Asymptotic behavior of u

Setting φ = 1
nTn(uδ) in (3.4), we have

1

n

∫

{|uδ |≤n}

Aδ(uδ)∇uδ ∇uδ =
1

n

∫

Ω

(fδ − gδ(uδ)) Tn(uδ) .

As before, passing to the limit when δ → 0 we have

1

n

∫

{|u|≤n}

A(u)∇u∇uχ{u>s0} =
1

n

∫

Ω

(f − g(u))Tn(u) .

Hence,

lim
n→∞

1

n

∫

{|u|≤n}

A(u)∇u∇u χ{u>s0} = 0 ,

and so

lim
n→∞

1

n

∫

{s0<u≤n}

A(u)∇u∇u = 0 .
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3.3.8. Step 8 : u satisfies (2.3)

Let h ∈ W 1,∞
c (R), such that h(s0) = 0, and v ∈ D(Ω). Choosing φ = h(uδ) v as a

test function in (3.4) we obtain
∫

Ω

wδ ∇uδ h(uδ) v +

∫

Ω

Aδ(uδ)∇uδ ∇v h(uδ)

+

∫

Ω

Aδ(uδ)∇uδ ∇uδ v h′(uδ) +

∫

Ω

gδ(uδ) v h(uδ) =

∫

Ω

fδ v h(uδ) . (3.34)

Let M > 0 such that supp h ⊂ [−M, M ]. In order to pass to the limit in (3.34), we

will analyze again each integral separately. It is straightforward that

lim
δ→0

∫

Ω

(fδ − gδ(uδ))h(uδ) v =

∫

Ω

(f − g(u)) h(u) v ,

lim
δ→0

∫

Ω

wδ ∇uδ h(uδ) v = lim
δ→0

∫

Ω

wδ ∇TM (uδ) h(uδ)v

=

∫

Ω

w∇TM (u) h(u) v =

∫

Ω

w∇u h(u) v .

On the other hand, thanks to strong convergence deduced in step 5,

lim
δ→0

∫

Ω

Aδ(uδ)∇TM (uδ)∇TM (uδ) h′(uδ) v

=

∫

Ω

A(u)∇TM (u)∇TM (u) h′(u) v χ{u>s0} .

It only remains to examine the term
∫

Ω

Aδ(uδ)∇uδ ∇v h(uδ) ,

which according to (3.15) can be written as
∫

Ω

Aδ(uδ)

β(T δ(uδ))
∇zδ ∇vh(uδ) .

Using that h(s0) = 0, hypothesis (H2), and the almost everywhere convergence in

Ω of uδ to u yield

Aδ(uδ)

β(T δ(uδ))
h(uδ) →

A(u)

β(u)
h(u) , a.e. x ∈ Ω, and *-weakly in L∞(Ω) .

Then, since ∇zδ ⇀ ∇z in Lq(Ω)N -weakly, we can pass to the limit in that integral

when δ → 0. In fact, it would be enough that ∇v ∈ Lq′

(Ω), for some q′ > N .

lim
δ→0

∫

Ω

Aδ(uδ)∇uδ ∇v h(uδ) =

∫

Ω

A(u)

β(u)
∇z ∇v h(u) .

By virtue of (3.16), we have
∫

Ω

A(u)

β(u)
∇z∇v h(u) =

∫

Ω

A(u)∇u∇v h(u) χ{u>s0} .
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Fig. 5. Function hη(s) defined in (3.35).

Therefore, u satisfies the variational formulation (2.3). We have shown that u

is a renormalized solution of problem (1.1) in the sense of Definition 1.

3.4. Every renormalized solution u verifies (3.1)

Let u be a renormalized solution of (1.1). We want to show that u ∈ W 1,q
0 (Ω),

with 1 ≤ q < N
N−1 . By Lemma 1, it is enough to show that Gj(u) ∈ H1

0 (Ω) and is

bounded (not dependent on j) in this space, with Gj(s) being given in (2.2). To do

so, we choose h = hη (see Fig. 5) and φ = Gj(u) in (2.3), where hη(s) is defined by

hη(s) =



































































0 , if s < s0 + η ,

1

η
(s − s0 − η) , if s0 + η < s < s0 + 2η ,

1 , if s0 + 2η < s <
1

η
,

−ηs + 2 , if
1

η
< s <

2

η

0 , if s >
2

η
.

(3.35)

We can choose these functions since hη ∈ W 1,∞
c (R) and supp h ⊂ (s0, +∞). Also,

Gj(u) = Tj+1(u) − Tj(u) ∈ H1
0 (Ω) ∩ L∞(Ω) (see last remark in Sec. 2). Then, we

obtain
∫

Ω

A(u)∇u∇Gj(u) hη(u) +
1

η

∫

{s0+η<u<s0+2η}

A(u)∇u∇u Gj(u)

−η

∫

{ 1
η

<u< 2
η
}

A(u)∇u∇u Gj(u) =

∫

Ω

(f − g(u)) hη(u) Gj(u) .

Making η → 0, and since u is a renormalized solution, it yields
∫

Ω

A(u)∇u∇Gj(u) =

∫

Ω

(f − g(u)) Gj(u) .

Consequently,
∫

Ω
|∇Gj(u)|2 ≤ ‖f − g(u)‖L1(Ω)/C1, for all j > 0.
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4. A Uniqueness Analysis of Renormalized Solutions

A uniqueness result of renormalized solutions may be deduced under more restric-

tive assumptions on data. We consider three new assumptions, namely

(H6)

∫ s0

0

β(s) ds = −∞.

(H7) A(x,s)
β(s) is a locally Lipschitz function in the variable s, i.e.

∀n ≥ 1, ∃Cn > 0 , such that

∣

∣

∣

∣

A(x, s1)

β(s1)
− A(x, s2)

β(s2)

∣

∣

∣

∣

≤ Cn|s1 − s2| ,

∀ s1, s2 with s0 +
1

n
< si < 2n, i = 1, 2, a.e. x ∈ Ω .

(H8) Either g(x, 0) = 0, or g(·, 0) ∈ L1(Ω) and g verifies the condition

(g(x, t1) − g(x, t2))(t1 − t2) > 0 , for all t1, t2 > s0 .

(H9) ∃σ > N such that w ∈ Lσ(Ω)N and div w = 0, in Ω.

We recall the primitive of β(s) which is null at 0,

B(s) =

∫ s

0

β(t) dt . (4.1)

We will need the following result in the sequel.

Lemma 1. Let u be a renormalized solution of problem (1.1). We will assume

hypothesis (H1)–(H6). Then

(i) u > s0, a.e. x ∈ Ω,

(ii) B(u) ∈ W 1,1
0 (Ω) and ∇B(u) = β(u)∇u,

(iii) Tj(B(u)) ∈ H1
0 (Ω), for all j > 0,

(iv) lim
n→∞

1

n

∫

{|B(u)|≤n}

A(u)∇u∇B(u) = 0.

Proof of Lemma 1. Let Bj(s) =
∫ s

0
Tj(β(t)) dt for j > 0; then Bj is a globally

Lipschitz function in R. Since u is a renormalized solution of problem (1.1), u

satisfies (3.1) and also Bj(u) ∈ W 1,q
0 (Ω) ⊂ W 1,1

0 (Ω), for all q < N/(N − 1) with

∇Bj(u) = Tj(β(u))∇u. The definition of a renormalized solution also yields u ≥ s0

almost everywhere in Ω, and therefore

Bj(u)
j→∞−→ B(u), a.e. x ∈ Ω . ∇Bj(u)

j→∞−→ β(u)∇uχ{u>s0} , a.e. x ∈ Ω . (4.2)

In fact, we have (∇Bj(u))j > 0 bounded above by β(u)∇uχ{u>s0} ∈ L1(Ω) since u

is a renormalized solution. Consequently, by Lebesgue’s theorem,

∇Bj(u) → β(u)∇uχ{u>s0} , strongly in L1(Ω) . (4.3)

By virtue of (4.2), (4.3) we deduce that B(u) ∈ W 1,1
0 (Ω) and we also have that

∇B(u) = β(u)∇uχ{u>s0}.
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Using (H6) and the fact that B(u) ∈ L1(Ω), yield {u > s0} almost everywhere

in Ω, and consequently ∇B(u) = β(u)∇u. This proves (i) and (ii). Now we will

show (iii). First of all, it is obvious that Tj(B(u)) ∈ L∞(Ω) ⊂ L2(Ω). On the other

hand,

∇Tj(B(u))∇B(u) χ{|B(u)|≤j} = β(u)∇u χ{|B(u)|≤j}

= β(u)∇u χ{B−1(−j)≤u≤B−1(j)} .

Assuming (H6), the interval [B−1(−j), B−1(j)] is a compact set of (s0, +∞) and so

β(u)χ{B−1(−j)≤u≤B−1(j)} ∈ L∞(Ω) .

Furthermore, if we denote ρ(j) = max{B−1(j),−B−1(−j)} we get

|∇uχ{B−1(−j)≤u≤B−1(j)}| ≤ ∇u|χ{−ρ(j)≤u≤ρ(j)} = |∇Tρ(j)(u)| ∈ L2(Ω)

thanks to condition (R2). Hence, Tj(B(u)) ∈ H1
0 (Ω).

In order to show (iv), we choose h = hη and v = Tn(B(u))/n in the variational

formulation (2.3), with hη(s) the function defined in (3.35). Then (2.3) becomes

1

n

∫

{|B(u)|≤n}

A(u)∇u∇B(u)hη(u) +
1

η

∫

{s0+η<u<s0+2η}

A(u)∇u∇u
1

n
Tn(B(u))

− η

∫

{ 1
η

<u< 2
η
}

A(u)∇u∇u
1

n
Tn(B(u)) =

∫

Ω

(f − g(u))hη(u)
1

n
Tn(B(u)) .

(4.4)

It is easy to check that

lim
η→0

1

n

∫

{|B(u)|≤n}

A(u)∇u∇B(u)hη(u) =
1

n

∫

{|B(u)|≤n}

A(u)∇u∇B(u) .

On the other hand, by virtue of (R3)

lim
η→0

1

η

∫

{s0+η<u<s0+2η}

A(u)∇u∇u
1

n
Tn(B(u)) = 0 .

Also, by (R4)
∣

∣

∣

∣

∣

η

∫

{ 1
η

<u< 2
η
}

A(u)∇u∇u
1

n
Tn(B(u))

∣

∣

∣

∣

∣

≤
∣

∣

∣

∣

∣

η

∫

{ 1
η

<u< 2
η
}

A(u)∇u∇u

∣

∣

∣

∣

∣

η→0−→ 0 .

Finally,

lim
η→0

∫

Ω

(f − g(u))hη(u)
1

n
Tn(B(u)) =

∫

Ω

(f − g(u))
1

n
Tn(B(u)) .

In brief, we have

1

n

∫

{|B(u)|≤n}

A(u)∇u∇B(u) =

∫

Ω

(f − g(u))
1

n
Tn(B(u)) ,
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and making n goes to infinity, we deduce

lim
n→∞

1

n

∫

{|B(u)|≤n}

A(u)∇u∇B(u) = 0 .

This result ends the proof of Lemma 1.

We have established some properties about the regularity of B(u). They will be

used along the proof of the following uniqueness result.

Theorem 1. Under assumptions (H1)–(H3), (H5)–(H9), problem (1.1) admits at

most one renormalized solution.

It will be enough to state the following comparison principle.

Lemma 2. Under the hypotheses of Theorem 1, let f1, f2 ∈ L1(Ω) and u1, u2 be

renormalized solutions of (1.1), related to data f1, f2, respectively. Then,

∫

Ω

|g(u1) − g(u2)| ≤
∫

Ω

|f1 − f2| . (4.5)

In particular, if f1 = f2 then g(u1) = g(u2) and the equality u1 = u2 is readily

deduced from (H8).

Proof of Lemma 2. We denote zi = B(ui), i = 1, 2, B defined in (4.1). Since

Lemma 1 holds, it is ui > s0 almost everywhere in Ω, i = 1, 2 and also

zi ∈ W 1,1
0 (Ω) , ∇zi = β(ui)∇ui , Tj(zi) ∈ H1

0 (Ω) , for all j > 0 ,

lim
n→∞

1

n

∫

{|zi|≤n}

A(ui)∇ui∇zi = 0 .

On the other hand, for z = z1, z2, (2.3) becomes

∫

Ω

w∇z
1

β(B−1(z))
h(B−1(z))v +

∫

Ω

A(B−1(z))

β(B−1(z))
∇z∇v h(B−1(z))

+

∫

Ω

A(B−1(z))

β(B−1(z))
∇z∇z

1

β(B−1(z))
h′(B−1(z))v

=

∫

Ω

[f − g(B−1(z))] h(B−1(z))v ,

for all v ∈ D(Ω) , for all h ∈ W 1,∞
c (s0, +∞) . (4.6)
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Now, we introduce the following notation

h̃ = h ◦ B−1 , C(x, s) =
A(x, B−1(s))

β(B−1(s))
, g̃(x, s) = g(x, B−1(s)) (4.7)

and (4.6) becomes

∫

Ω

w∇z
h̃(z)

β(B−1(z))
v +

∫

Ω

C(z)∇z∇v h̃(z) +

∫

Ω

C(z)∇z∇z h̃′(z)v

=

∫

Ω

(f − g̃(z))h̃(z)v , for all v ∈ D(Ω) , for all h̃ ∈ W 1,∞
c (R) . (4.8)

Problem (4.8) is a particular case (with diffussion matrix in L∞(Ω × R)N×N) to

one studied by Gómez and Ortegón;20 a similar comparison principle was stated in

that reference. As a matter of fact, if we could make use of this result, we would

obtain
∫

Ω

|g(B−1(z1)) − g(B−1(z2))| ≤
∫

Ω

|f1 − f2|

and Lemma 2 would already be proved, since ui = B−1(zi). However, it is not a

straightforward application since our problem is not exactly the same because the

convection term has a different form, namely

∫

Ω

w∇z
h̃(z)

β(B−1(z))
v ,

which contains the factor 1
β(B−1(z)) . We remark that this term may also be written as

−
[
∫

Ω

w u∇z h̃′(z) v +

∫

Ω

w u∇v h̃(z)

]

.

Now, we try to remake the same arguments of this work. To do so, let the functions

Sε(s) = 1
εTε(s) and Hl ∈ W 1,∞

c (R) as in (3.21) be given.

We fix h̃ = H̃l and v = H̃l(z2)Sε(z1 − z2) in the formulation (4.8) of the

problem for z1, and h̃ = H̃l and v = H̃l(z1)Sε(z1 − z2) in the same problem for z2.

By subtracting both expressions, the contribution of the convection terms give
∫

Ω

(u1 − u2)w∇Sε(z1 − z2)H̃l(z1)H̃l(z2)

+

∫

Ω

(u1 − u2)w∇z1H̃
′
l(z1)Sε(z1 − z2)H̃l(z2)

+

∫

Ω

(u1 − u2)w∇z2H̃
′
l(z2)Sε(z1 − z2)H̃l(z1) .

Since B−1(s) is globally Lipschitz, we have |u1−u2| ≤ C|z1 − z2|, a.e. in Ω, and

then the three integrals above can be bounded (up to a multiplicative constant)
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with u1 − u2 changed to z1 − z2, i.e.

C

[

∫

Ω

|z1 − z2| |w∇Sε(z1 − z2)H̃l(z1)H̃l(z2)|

+

∫

Ω

|z1 − z2| |w∇z1 H̃ ′
l(z1)Sε(z1 − z2)H̃l(z2)|

+

∫

Ω

|z1 − z2| |w∇z2 H̃ ′
l(z2)Sε(z1 − z2)H̃l(z1)|

]

,

which means that we have suppressed the factor 1
β(B−1(zi))

. From this point on, we

are able to conclude the desired result.

Remark. The results presented here are still valid in the case N = 1; moreover,

since W 1,q(Ω) ⊂ L∞(Ω), then u ∈ H1
0 (Ω) and also β(u)∇uχ{u>s0} ∈ L2(Ω).
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The authors are most grateful to the referees for the useful comments and

suggestions that have helped us to improve the presentation of this work.

References

1. F. Andreu, J. M. Mazón, S. Segura de León and J. Toledo, Existence and uniqueness

for a denererate parabolic equation with L
1 data, Trans. Amer. Math. Soc. 351 (1999)

285–306.
2. D. Blanchard, Truncations and monotonicity methods for parabolic equations, Non-

linear Anal. 21 (1993) 725–743.
3. D. Blanchard and F. Murat, Renormalized solutions for nonlinear parabolic problems

with L
1 data: existence and uniqueness, Proc. R. Soc. Edinburgh A127 (1997) 1137–

1152.
4. D. Blanchard and H. Redwane, Renormalized solutions for a class of nonlinear evo-

lution problems, J. Math. Pures Appl. 77 (1998) 117–151.
5. D. Blanchard and H. Redwane, Sur la résolution d’un problème quasi-linéaire à co-
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