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Abstract

In this paper the complete Lie group classi cation of a non-linear wave equation is obtained. Optimal systems and reduced
equations are achieved in the case of a hyperelastic homogeneous bar with variable cross section.
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1. Introduction

Starting from the well-known paper of Ames et
al. [1], concerned with the group properties of the
non-linear wave equation

utt = [f(u)ux]x; (1.1)

in the last two decades, the search for symmetries of
one-dimensional non-linear wave equations has been
considered in many papers.
In this context, Torrisi and Valenti [2,3], general-

izing equation (1.1), have investigated on symmetries
of the following equations:

utt = [f(x; u)ux]x; (1.2)

utt = [f(u)ux + g(x; u)]x; (1.3)
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where g and h are arbitrary functions of their argu-
ment, t is the time coordinate and x is the one-space
coordinate.
Eqs. (1.1)–(1.3), after the introduction of the

non-local transformation u = vx, can be written as
follows:

vtt = f(vx)vxx; (1.4)

vtt = f(x; vx)vxx; (1.5)

vtt = f(vx)vxx + g(x; vx): (1.6)

In [4], an attempt was done in order to collect many
types of equations previously discussed by considering
a wide class of non-linear wave equations of the form

vtt = f(x; vx)vxx + g(x; vx): (1.7)

In that paper, by using the preliminary group classi-
.cation approach [5], a partial classi cation was per-
formed, extending by one-dimension thePrincipal Lie
Algebra for each classes of equivalent equations found
there.
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Successively, Eq. (1.7) was studied in [6,7]. It was
still considered in [8], for classi cation through con-
tact group transformations.
Recently one of these classes,

utt = g(ux)uxx + h(ux); (1.8)

was investigated in [9] and explicit forms of g and
h were obtained by extending the dimension of the
admitted Principal Lie Algebra by adding one vec-
tor. The approach followed in [9] was based on the
low-dimensional algebras method [10].
However, the problem to  nd the complete group

classi cation of Eq. (1.8) is still open.
An eDcient method, developed in the last decade,

which can solve the group classi cation problem when
arbitrary functions are present in the equations, is
based on the moving frames theory (for a wide list of
references on this  eld see [11]).
In this paper we get the complete classi cation of

Eq. (1.8) bymeans of the classical Lie direct approach.
Moreover, by focussing our attention on some forms
of g and h suggested by a speci c physical applica-
tion, the corresponding Lie algebras are specialized,
the optimal systems of subalgebras are constructed
and the corresponding reduced forms of Eq. (1.8) are
obtained.
The knowledge of the optimal system of subalge-

bras gives the possibility to construct the optimal sys-
tem of solutions [12,13] and permits the generation of
new solutions starting from invariant or non-invariant
solutions (see e.g. [14] for some applications to the
multidimensional hydrodynamics).
In fact, following [12], two solutions u1 and u2 are

said to be essentially di<erent with respect to a group
of transformations G if u2 does not belong to the or-
bit (u1; G) (that is the set of all those solutions gen-
erated by transforming u1 by G) and, of course, u1 �∈
(u2; G). Starting from the last de nition it is possible
to separate the whole collection of invariant solutions
in classes of equivalence. This implies that each class
is characterized by a group of transformations G and
all elements of the class are the family of solutions
generated only from G. The list of the disjoint classes
is called the optimal system of solutions. So, by re-
calling that a non-invariant solution of a PDE, with
respect to an admitted Lie group of transformations
G, is mapped by G, in a family of solutions, it is easy
to aDrm that we can generate not only new solutions

but essentially diGerent solutions starting from the
optimal system of subalgebras.
The plan of the paper is the following. In the next

section we give the complete classi cation of Eqs.
(1.8) (with gux �= 0). We construct, in Section 3,
the optimal system of one-dimensional subalgebras of
the Principal Lie Algebra and their associated reduced
equations. In Section 4, the case of a bar with variable
cross section varying by an exponential law is consid-
ered; for two well-known expressions of the tension
the additional generators of the optimal systems are
obtained and their associated reduced equations are
constructed. We present our conclusions in Section 5.

2. Lie group classi�cation

We consider the class of non-linear wave equations

utt = g(ux)uxx + h(ux); gux �= 0: (2.1)

In order to give the group classi cation of this class,
by means of the classical invariant Lie criterion, we
consider the in nitesimal operator X of the Lie algebra

X = �1
@
@t

+ �2
@
@x

+ �
@
@u

; (2.2)

where �1; �2 and � are functions of t; x and u.
The prolongation of the operator X , keeping only

the necessary terms, is

X̃ = X + �2
@

@ux
+ �11

@
@utt

+ �22
@

@uxx
; (2.3)

where following the well-known monograph on these
arguments (see e.g. [12,13,15,16]), we have set

�1 = Dt(�)− utDt(�1)− uxDt(�2);

�2 = Dx(�)− utDx(�1)− uxDx(�2);

�11 = Dt(�1)− uttDt(�1)− utxDt(�2);

�22 = Dx(�2)− utxDx(�1)− uxxDx(�2); (2.4)

and the operators Dt and Dx denote total derivatives
with respect to t and x.
The determining system of Eq. (2.1) arises from the

following invariance condition:

X̃ (utt − g(ux)uxx − h(ux))
∣∣
utt=guxx+h = 0: (2.5)
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After some calculations, the determining system aris-
ing from (2.5) leads to the following conditions:

�1 =
1
2
a2t2 + a1t + a0;

�2 =  (x);

�=
(
a2t + a1

2
+ c5

)
u+ c4tx +

1
6
c3t3 +

1
2
c2t2

+ c1t + �(x);(
c4 +

1
2
a2ux

)
gux =−2a2g;

[
�x +

(
1
2
a1 + c5 −  x

)
ux

]
gux = 2 ( x − a1) g;

(
c4 +

1
2
a2ux

)
hux =−3

2
a2h+ c3;

[
�x + (

1
2
a1 + c5 −  x)ux

]
hux = (c5 − 3

2
a1)h

+( xxux − �xx)g+ c2; (2.6)

where a0; a1; a2; c1; c2; c3; c4 and c5 are constants,
while  and � are functions of x.
Obviously, for arbitrary g and h, from (2.6) one

obtains the four-dimensional Principal Lie Alge-
bra LP of (2.1), which is spanned by the operators
[4,9]

X1 =
@
@t

; X2 =
@
@x

; X3 =
@
@u

; X4 = t
@
@u

: (2.7)

The complete Lie classi cation of the non-linear
wave equation (2.1), arising from conditions (2.6), is
showed in Tables 1 and 2.
By comparing these results with the six cases ob-

tained in [9], it is possible to ascertain that the cases l,
2, 4, 5, 6 in [9] correspond, respectively, to cases IV,
IX, VI, VII and III of Tables 1 and 2 in the present
paper. The case 3 in [9] is not obtained in this paper
because we assume a priori gux �= 0. Finally, the gen-
erator X5 of case 6 in [9] is incorrect. It does not make
Eq. (1.8) invariant when the corresponding constitu-
tive forms of g and h are utilized.

3. Optimal system of the principal Lie algebra and
reduced equations

When the dimension of the Lie algebra, associated
to a group of invariant transformations of a PDE, is
greater than one, there are often, an in nite number of
subgroups. To each s-parameter subgroup corresponds
a family of group-invariant solutions. So that, in gen-
eral, it is quite impossible to determine all possible
group-invariant solutions of a PDE. In order to mini-
mize this search, it is useful to construct the optimal
system of solutions.
It is well known that the problem of the construc-

tion of the optimal system of solutions is equivalent
to that of the construction of the optimal system of
subalgebras [12,13]. Here, we will deal with the con-
struction of the optimal system of subalgebras of LP.
Let G be a Lie group with L its Lie algebra. Each

transformation �∈G yields an inner automorphism
�a → ��a�−1 of the group G. Every automorphism
of the group G induces an automorphism of L. The
set of all these automorphism is a Lie group called
the adjoint group GA. The Lie algebra of GA is the
adjoint algebra of L, de ned as follows. Let two in-
 nitesimal generators X; Y ∈L. The linear mapping
Ad X (Y ) : Y → [X; Y ] is an automorphism of L,
called inner derivation of L. The set of all inner deriva-
tions ad X (Y ) (X; Y ∈L) together with the Lie bracket
[Ad X;Ad Y ] = Ad[X; Y ] is a Lie algebra LA called
the adjoint algebra of L. Clearly LA is the Lie algebra
of GA.
Two subalgebras in L are conjugate (or similar)

if there is a transformation of GA which takes one
subalgebra into the other. The collection of pairwise
non-conjugate s-dimensional subalgebras is the opti-
mal system of subalgebras of order s.
The construction of the one-dimensional optimal

system of subalgebras can be made by using a global
matrix of the adjoint transformations as suggested by
Ovsiannikov [12].
In this paper we follow, instead, the method sug-

gested by Olver [13] which uses a slightly diGerent
technique. It consists in constructing a table showing
the separate adjoint actions of each element of the Lie
algebra on all other elements. This table is usually
called the adjoint table.
Taking into account the commutator Table 3 and the

adjoint Table 4 here we show the non-trivial operators
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Table 1
Lie group classi cation. g0; h0; h1; A; m and n are constitutive constants

Case Forms of g and f Extensions w.r.t LP

I arbitrary g, h= h0, X5 = t
@
@t

+ x
@
@x

+
(
u+

1
2
h0t2

)
@
@u

II g= g0eux=m; h= h1ux + h0, m; h1 �= 0 X5 = t
@
@t

+ 2x
@
@x

+

+(2u+ h1mt2 + 2mx)
@
@u

III g= g0eux=m; h= h1eux=2m + h0, m; h1 �= 0 X5 = x
@
@x

+ (u− 1
2
h0t2 + 2mx)

@
@u

IV
g= g0eux=m; h= h1eux=n + h0;

m; h1; n �= 0; n �= 2m

X5 = t
@
@t

+
2(m− n)
2m− n

x
@
@x

+
[
2(m− n)
2m− n

u

+
mh0

2m− n
t2 − 2mn

2m− n
x
]

@
@u

V g= g0eux=m; h= h0, m �= 0 X5 = t
@
@t

+
(
h0t2 − 2mx

) @
@u

;

X6 = x
@
@x

+
(
u− 1

2
h0t2 + 2mx

)
@
@u

VI g= g0(A+ ux)−2, X5 = x
@
@x

−
(
1
2
nt2 + Ax

)
@
@u

h= log(A+ ux)n + h0,

n �= 0

VII
g= g0(A+ ux)m;

h= log (A+ ux)n + h0;

m �= 0;−2; n �= 0

X5 = t
@
@t

+
2(m+ 1)
m+ 2

x
@
@x

+
(
2u+

n
m+ 2

t2 +
2A

m+ 2
x
)

@
@u

of the optimal system of the Principal Lie Algebra:

Xo1 = aX1 + X2 + bX4 + cX3

= a
@
@t

+
@
@x

+ (bt + c)
@
@u

; (3.1)

Xo2 = X1 + aX2 + bX4 =
@
@t

+ a
@
@x

+ bt
@
@u

: (3.2)

By applying the invariant surface condition, through
(3.1), we obtain

u= !(�)− 1
2abx

2 + btx + cx; (3.3)

where the similarity variable � has the following
expression:

�= t − ax (3.4)

and the function ! must satisfy the following ODE to
which PDE (2.1) is reduced by (3.1)

(1− a2g)!′′ + abg− h= 0; (3.5)

with g and h arbitrary functions of z = c+ b�− a!′.
By applying the invariant surface condition, through

(3.2), we obtain

u= !(�)− 1
2bt

2; (3.6)
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Table 2
Lie group classi cation. g0; h0; h1; A; m and n are constitutive constants

Case Forms of g and f Extensions w.r.t LP

VIII g= g0(A+ ux)m;

h= h1(A+ uxx)(m+2)=2 + h0;

m �= 0;−2

X5=
m

m+ 2
x
@
@x

+
(
u− 1

2
h0t2 +

2A
m+ 2

x
)

@
@u

IX
g= g0(A+ ux)m;

h= h1(A+ ux)n + h0;

m; n �= 0; n �= m+ 2
2

X5= t
@
@t

+
2(m− n+ 1)
m+ 2− 2n

x
@
@x

+
[

2A
m+ 2− 2n

x

+
2(m+ 2− n)
m+ 2− 2n

u− nh0
m+ 2− 2n

t2
]

@
@u

X g= g0(A+ ux)−2;

h= h1g0(A+ ux)−1 + h0;

X5 = t
@
@t

+
(
u+

1
2
h0t2 + Ax

)
@
@u

;

X6 = eh1x
(

@
@x

− A
)

@
@u

XI g= g0(A+ ux)m; h= h0 m �= 0 X5 = t
@
@t

+
(
− 2

m
u+

m+ 1
m

h0t2 − 2
m

Ax
)

@
@u

;

X6 = x
@
@x

+
(
m+ 2
m

u− m+ 2
2m

h0t2 +
2
m

Ax
)

@
@u

XII g= g0(A+ ux)−4;

h= h1(A+ ux)−3 + h0;

X5 = t
@
@t

+
(
1
2
u+

3
4
h0t2 +

1
2
Ax

)
@
@u

;

X6 = t2
@
@t

+
(
tu+ Atx +

1
2
h0t3

)
@
@u

XIII g= g0(A+ ux)−4; h= h0 X5 = t
@
@t

+
1
2

(
u+

3
2
h0t2 + Ax

)
@
@u

;

X6 = t2
@
@t

+
(
tu+ Atx +

1
2
h0t3

)
@
@u

;

X7 = x
@
@x

+
1
2

(
u− 1

2
h0t2 − Ax

)
@
@u
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Table 3
Commutator table of the Principal Lie algebra

X1 X2 X3 X4

X1 0 0 0 −X3
X2 0 0 0 0
X3 0 0 0 0
X4 −X3 0 0 0

Table 4
Adjoint table of the Principal Lie algebra

Ad X1 X2 X3 X4

X1 X1 X2 X3 X4 − !X3
X2 X1 X2 X3 X4
X3 X1 X2 X3 X4
X4 X1 + !X3 X2 X3 X4

where the similarity variable � has the following
expression:

�= x − at (3.7)

and the function ! must satisfy the following ODE to
which PDE (2.1) is reduced by (3.2)

(a2 − g)!′′ − h+ b= 0; (3.8)

with g and h arbitrary functions of z = !′.

4. A physical case

In this section we restrict ourselves to the physi-
cal case of a bar with variable cross section [17], in
order to  nd the extensions of the optimal system of
the principal Lie algebra and the corresponding re-
duced equations for special forms of the constitutive
functions. However, it is possible to reach an equation
belonging to the class (2.1) in some engineering ap-
plications in which two parts of the same material or
two parts of diGerent materials are attached together
by a third material known as adhesive (see e.g. [18]).
The equation of motion of a hyperelastic homoge-

neous bar, whose cross-sectional area is variable along
the bar, reads [17,19]

" utt = Tx +
S ′(x)
S(x)

T; (4.1)

where p is the constant mass density, u = y − x is
the displacement, y is the coordinate of the point P
in the present reference frame, x represents the co-
ordinate of the corresponding point P0 of P in the
reference frame, T (ux) is the tension and S(x) is the
cross-sectional area.
Moreover, Eq. (4.1), assuming that the cross-

sectional area is varying with an exponential law

S = S0 e(x; (4.2)

with S0 and ( constants, takes the following form:

utt =
1
"
dT
dux

uxx +
(
"
T: (4.3)

Eq. (4.3) by setting

1
"
dT
dux

= g;
(
"
T = h (4.4)

is included in (2.1).
Taking (4.4) into account, it is a simple matter to

verify that only the following cases:

• Case IV, with m= n;
• Case VII, with m=−1;
• Case IX, with m= n+ 1;
• Case X;
• Case XII;

can give an equation of the type (4.3).
In the framework of the previous cases we take

into consideration the following forms for the tension
function T :

1.

T = T0 log (1 + ux); (4.5)

suggested by Capriz [20,21]. Then

h=
(T0
"

log (1 + ux); g=
(T0

"(1 + ux)
: (4.6)

So we fall in the Case VII with the following iden-
ti cations:

h0 = 0; A= 1; g0 =
T0
"
; m=−1;

n=
(T0
"

: (4.7)
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and Eq. (2.1) reads

utt =
(T0

"(1 + ux)
uxx +

(T0
"

log (1 + ux): (4.8)

The additional operator X5 assumes the following
form:

X5 = t
@
@t

+
(
2u+

(T0
"

t2 + 2x
)

@
@u

: (4.9)

2.

T =−T0

(
3T0
"V 2

0

)3( 3T0
"V 2

0
+ ux

)−3

+ T0; (4.10)

which models the the ideal soft materials whose
main feature is the lagrangian speed of sound de-
creases monotonically to zero as ux increases with-
out bound [22,23]. Then

h=−T0(
"

(
3T0
"V 2

0

)3 (
3T0
"V 2

0
+ ux

)−3

+
T0(
"

;

(4.11)

g=
1
V 2
0

(
3T0
"V0

)4 (
3T0
"V 2

0
+ ux

)−4

: (4.12)

So we fall in the Case XII with the following iden-
ti cations:

h0 =
T0(
"

; h1 =−T0(
"

(
3T0
"V 2

0

)3
; A=

3T0
"V 2

0
;

g0 =
1
V 2
0

(
3T0
"V0

)4
; (4.13)

and Eq. (2.1) reads

utt =
1
V 2
0

(
3T0
"V0

)4 (
3T0
"V 2

0
+ ux

)−4

uxx − T0(
"

×
(
3T0
"V 2

0

)3 (
3T0
"V 2

0
+ux

)−3

+
T0(
"

: (4.14)

The additional operators X5 and X6 assume the fol-
lowing forms:

X5 = t
@
@t

+
(
1
2
u+

3T0(
4"

t2 +
3T0
2"V 2

0
x
)

@
@u

;

(4.15)

X6 = t2
@
@t

+
(
tu+

3T0
"V 2

0
tx +

T0(
2"

t3
)

@
@u

:

(4.16)

4.1. Optimal systems and reduced equations

Since the optimal system of each case is an ex-
tension of the optimal system of the Principal Lie
Algebra, we take into consideration only the exten-
sions with respect to the results obtained in
Section 3.

1. By using law (4.5), taking identi cations (4.7) into
account, the Lie algebra can be represented by the
set of all the generators {Xi}5i=1 given by (2.7) and
(4.9) while the commutator and adjoint tables are
Tables 5 and 6, respectively.
In this case, the optimal system of the Principal Lie
Algebra has an extension by one, whose operator
is

Xo3 = aX2 + X5

= t
@
@t

+ a
@
@x

+
(
2u+

(T0
"

t2 + 2x
)

@
@u

:

(4.17)

By applying the invariant surface condition,
through (4.17), we obtain

u= t2
[
!(�) +

(T0
"

log t
]
− x; (4.18)

where the similarity variable � has the following
expression:

�= x − a log t (4.19)

and the function ! must satisfy the following ODE
to which the PDE (4.8), after (4.6) and (4.7), is



396 M.L. Gandarias et al. / International Journal of Non-Linear Mechanics 39 (2004) 389–398

Table 5
Commutator table of the Lie algebra with g= (T0="(1 + ux) and
h = ((T0=") log (1 + ux)

X1 X2 X3 X4 X5

X1 0 0 0 X3 X1 +
2(T0
" X4

X2 0 0 0 0 2X3
X3 0 0 0 0 2X3
X4 −X3 0 0 0 X4
X5 −X1 − 2(T0

" X4 −2X3 −2X3 −X4 0

Table 6
Adjoint table of the Lie algebra with g = (T0="(1 + ux) and
h = ((T0=") log (1 + ux)

Ad X1 X2 X3 X4 X5

X1 X1 X2 X3 X4 − !X3 X5 − !(X1 +
2(T0
" X4)

X2 X1 X2 X3 X4 X5 − !2X3
X3 X1 X2 X3 X4 X5 − 2!X3
X4 X1 + !X3 X2 X3 X4 X5 − !X4
X5 S1 S2 e2!X3 e!X4 X5

Where S1 = X1e! − 2(T0
" X4

∑∞
p=0

!2p+1

(2p+1)! and S2 = X2 −
2X3

∑∞
p=1

(−!)p

p! (−2)p−1:

reduced by (4.17)(
a2 − T0

"!′

)
!′′ − 3a!′ − (T0

"
log!′ + 2!

+3
(T0
"

= 0: (4.20)

2. By using law (4.10), taking identi cations (4.13)
into account, the Lie algebra can be represented by
the set of all the generators {Xi}6i=1 given by (2.7),
(4.15) and (4.16) while commutator and adjoint
tables are Tables 7 and 8, respectively.
In this case besides the operators Xo1 and Xo2, the
generators of the optimal system are

Xo3 = aX1 + bX2 + X6

= (t2 + a)
@
@t

+ b
@
@x

+
(
tu+

3T0
"V 2

0
tx +

T0(
2"

t3
)

@
@u

; (4.21)

Xo4 = bX2 + X6

= t2
@
@t

+ b
@
@x

+
(
tu+

3T0
"V 2

0
tx +

T0(
2"

t3
)

@
@u

; (4.22)

Xo5 = bX2 + X5 = t
@
@t

+ b
@
@x

+
(
1
2
u+

3T0(
4"

t2+
3T0
2"V 2

0
x
)

@
@u

; (4.23)

where a is a non-zero constant.
By applying the invariant surface condition,
through (4.21), we obtain

u=!(�)
√

t2 + a− 3T0
"V 2

0
x +

T0(
2"

t2

+
3bT0
"aV 2

0
t +

aT0(
"

; (4.24)

where the similarity variable � has the following
expressions:

�= x − b
a
arctan

( t
a

)
; a¿ 0; (4.25)

�= x − b
2a

log
(
t − a
t + a

)
; a¡ 0 (4.26)

and the function ! must satisfy the following ODE
to which the PDE (4.14), after (4.11)–(4.13), is
reduced by (4.21)[

1
V 2
0

(
3T0
"V0

)4
− b2(!′)4

]
!′′ − a!(!′)4

+
T0(
"

(
3T0
"V 2

0

)3
!′ = 0 (4.27)

By applying the invariant surface condition,
through (4.22), we obtain

u= !(�)t − 3T0
"V 2

0
x − 3T0b

2"V 2
0 t

+
T0(
2"

t2; (4.28)

where the similarity variable � has the following
expression:

�= x − b
t
; (4.29)
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Table 7
Commutator table of the Lie algebra with g=(1=V 2

0 )(3T0="V0)
4(3T0="V 2

0 +ux)−4 and h=−(T0(=")(3T0="V 2
0 )

3(3T0="V 2
0 +ux)−3 +T0(="

X1 X2 X3 X4 X5 X6

X1 0 0 0 X3 X1 +
3T0(
2" X4 2X5

X2 0 0 0 0 3T0
2"V 2

0
X3

3T0
"V 2

0
X4

X3 0 0 0 0 1
2 X3 X4

X4 −X3 0 0 0 − 1
2X4 0

X5 −X1 − 3T0(
2" X4 − 3T0

2"V 2
0
X3 − 1

2 X3
1
2 X4 0 X6

X6 −2X5 − 3T0
"V 2

0
X4 −X4 0 −X6 0

Table 8
Adjoint table of the Lie algebra with g = (1=V 2

0 )(3T0="V0)
4(3T0="V 2

0 + ux)−4 and h =−(T0(=")(3T0="V 2
0 )

3(3T0="V 2
0 + ux)−3 + T0(="

Ad X1 X2 X3 X4 X5 X6

X1 X1 X2 X3 X4 − !X3 X5 − !(X1 +
3T0(
2" X4) X6 − 2!X5

X2 X1 X2 X3 X4 X5 − ! 3T0
2"V 2

0
X3 X6 − ! 3T0

"V 2
0
X4

X3 X1 X2 X3 X4 X5 − !X3 X6

X4 X1 + !X3 X2 X3 X4 X5 + 1
2 !X4 X6

X5 S1 X2 +
3T0
2"V 2

0
!X3 e!=2X3 e!=2X4 X5 e−!X6

X6 X1 + 2!X5 X2 +
3T0
"V 2

0
!X4 X3 + !X4 X4 X5 + !X6 X6

Where S1 = e!X1 +
3T0(
2" X4

[
1 +

∑∞
p=1

!p

(p+1)! (1− 1
2p )

]
:

and the function ! must satisfy the following ODE
to which the PDE (2.1), after (4.11)–(4.13), is re-
duced by (4.22)[

1
V 2
0

(
3T0
"V0

)4
− b2(!′)4

]
!′′ +

3T0b
"V 2

0
(!′)4

− T0(
"

(
3T0
"V 2

0

)3
!′ = 0: (4.30)

By applying the invariant surface condition,
through (4.23), we obtain

u= !(�)
√
t − 3T0

"V 2
0
x +

T0(
2"

t2 − 6T0b
"V 2

0
; (4.31)

where the similarity variable � has the following
expression:

�= x − b log t; (4.32)

and the function ! must satisfy the following ODE
to which the PDE (2.1), after (4.11)–(4.13), is re-
duced by (4.23)[

1
V 2
0

(
3T0
"V0

)4
− b2(!′)4

]
!′′ +

!(!′)4

4

− T0(
"

(
3T0
"V 2

0

)3
!′ = 0: (4.33)

5. Conclusions

In this paper, following the classical Lie method,
the complete Lie group classi cation for the class of
non-linear wave equations (2.1) is obtained.
We show that the equation, which models the

behavior of a hyperelastic homogeneous bar whose
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cross-sectional area is variable along the bar, falls
in this class when the expression of the varying sec-
tion is given by an exponential law. In this physical
case, by considering two special forms of the stress
function, the optimal systems are constructed and the
corresponding reduced equations are obtained.
Of course it is also possible to construct the optimal

systems and to obtain the corresponding reduced equa-
tions for all the cases in the classi cation reported in
Tables 1 and 2. We omitted them for sake of brevity.
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