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ABSTRACT

We show that the representation of the monoid of intervals of a sim-
ple refinement monoid in terms of affine semicontinuous functions,
given by Perera in 2001, fails to be faithful in the case of strictly per-
forated monoids. We give some potential applications of this result in
the context of monoids of intervals and K-Theory of multiplier rings.
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INTRODUCTION

Monoids of intervals of partially ordered abelian groups (or of abe-
lian monoids) has been a topic of interest in the last years, usually as a
tool to analyze some other algebraic structures. For example, Wehrung
(1994b) used intervals in order to give a complete description of the uni-
versal theory of Tarski’s equidecomposability types semigroups. Also,
he used intervals in Wehrung (1997) as an instrument to obtain some
extensions of Edwards’ Separation Theorem (see, e.g., Goodearl, 1986,
Theorem 11.13).

A place where intervals played an important role was in the context
of C�-algebras. Goodearl and Handelman (1982) and Goodearl (1990)
used intervals to give a complete classification of extensions of AF C�-
algebras. Also, Goodearl (1996) used intervals in order to describe the
ideal structure of the multiplier algebra M(A) of a s-unital, non-unital
C�-algebra of real rank zero and stable rank one A. In fact, he proved
that the group K0(M(A)) is order-isomorphic to the universal group of
the monoid of countable generated intervals on Kþ

0 (A). Recently, Perera
(2001) strengthened Goodearl’s results by working with monoids of in-
tervals over V(A), in the particular case of a simple C�-algebra A with
V(A) strictly unperforated. He showed that V(M(A)) is isomorphic to
V(A)tWd

s(Su), where W
d
s(Su) is a semigroup of affine lower semicontin-

uous functions. These results allowed to study the ideal structure of
V(M(A)) and V(M(A)=A), as well as its cancellation properties, working
with functions instead of intervals, which allows to obtain interesting
results in a simplest way. A relevant property enjoyed by the C�-algebra
A in the above mentioned cases is that K0(A) turns out to be a Riesz
group (see, e.g., Goodearl, 1986). This result, proved by Zhang (1990a,
Theorem 3.2), endows K0(A) with an extra structure that plays a major
role in the work of Goodearl and Perera, allowing them to obtain impor-
tant results about the structure of V(M(A)).

The idea of our work is to follow this line, i.e., to abstract the
study to monoids of intervals of simple, cancellative, non-atomic,
refinement monoids (i.e., to positive cones of simple Riesz groups), and
to translate the results we obtain to the K-theoretical context. In this
line is essential to consider into our scope recent results of Wehrung
(1998), and Pardo (1998a, 2002), where some methods for con-
structing large families of strictly perforated simple Riesz groups are
introduced. The examples obtained in these works allow to construct
monoids of intervals satisfying special pathologies, such as failure of
separativity of the monoid of intervals (see Ara et al., 1998), among
others. Also, Villadsen (1998), Rørdam and Villadsen (1998), Elliott
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and Villadsen (2000), and Toms (to appear) constructed examples of
simple C�-algebras of stable rank one whose K0 groups are torsion free
and strictly perforated. These examples suggests the possibility of con-
structing C�-algebras A with real rank zero, stable rank one, with K0(A)
being strictly perforated. Since K0(A) is then a simple Riesz group, the
connection between both kinds of examples suggests the convenience of
studying the results of Goodearl and Perera in the strictly perforated
case, in order to extend the scope of their results to a wider class. Aside
of this application, it is interesting to study monoids of intervals in
this case, in order to get new pathological examples in the monoid-
theoretical context.

In this paper we study the monoids of intervals of non-atomic, sim-
ple, strictly perforated monoids, specially in the countable case (that cor-
responds to separable C�-algebras or countable von Neumann regular
rings). We center our interest in Perera’s functional representation, and
we conclude that under mild hypotheses this representation is always
onto. Also, we characterize injectivity of this representation, and as a
consequence we obtain a specially interesting failure of strong separativ-
ity in a particular subsemigroup of intervals. Unfortunately we haven’t
been able to characterize failure of separativity of the monoid of intervals
in terms of strict perforation.

The paper is organized as follows. Sec. 1 is devoted to introduce the
basic definitions and results needed to develop our task. In Sec. 2, we
study a particular kind of soft interval, that becomes the key point for
pointing out our results on Perera’s representation. This is done in Sec. 3,
where we outline some special applications of these results. Finally, Sec. 4
contains the applications to the context of multiplier rings for non-unital
C�-algebras and von Neumann regular rings.

Throughout, we will refer to Goodearl (1986) for the background on
ordered abelian groups, to Goodearl (1991) for the applications to von
Neumann regular rings, and to Blackadar (1998), Brown and Pedersen
(1991) and Murphy (1990) for the applications to C�-algebras.

1. BASIC RESULTS

First, we recall some basics on abelian monoids. Let M be an abe-
lian monoid; we write M� to denote the set of non-zero elements of M.
We say that M is conical if, for all x, y in M, xþ y¼ 0 only when
x¼ y¼ 0. A well-known example of conical, abelian monoid associated
to a ring R is the monoid V(R) of equivalence classes of idempotents
(see Sec. 4). We will use it in the last Section of this paper. An element
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x2M is directly finite if for any y2M, xþ y¼ x implies y¼ 0. An ele-
ment x2M is stably finite if nx is directly finite for any n2N. We say
that M is stably finite if every element x2M is stably finite. A monoid
M is cancellative if, for all x, y, z2M such that xþ z¼ yþ z, we have
x¼ y. If x, y in M, we write x� y if there exists z2M such that
xþ z¼ y; if z2M�, then we write x < y. Here � is a translation-invar-
iant pre-order on M. We say that M is strictly unperforated if for any
n2N and for any x, y2M, nx < ny implies x < y; otherwise, M is said
to be strictly perforated. A non-zero element u of M is said to be an
order-unit for M if, for each x2M, there exists a positive integer n such
that x� nu. If u is an order-unit of M, then we call the pair (M, u) a
monoid with order-unit. Given (M, u) and (N, v) monoids with order-
unit, a monoid morphism f :M!N is said to be normalized provided
that f(u)¼ v. We say that M is simple if M is non-zero, conical, and
every non-zero element is an order-unit. For other basic definitions
and results on abelian monoids, see for example Perera (2001), Wehrung
(1992) and Wehrung (1994a).

Now, we recall some definitions (see, e.g., Perera, 2001) about mono-
ids of intervals of conical monoids. Let M be a conical monoid. A non-
empty subset X of M is an interval in M if X is upwards directed and
order-hereditary, i.e., if x, y2M, such that x� y and y2X then x2X
(see Goodearl and Handelman, 1982; Goodearl, 1990). We denote by
L(M ) the set of intervals in M. Note that L(M ) becomes an abelian
monoid endowed with the operation defined by XþY¼fz2M j z� xþ y
for some x2X, y2Y g. An interval X in M is said to be generating if
every element ofM is a sum of elements from X. If X2L(M ), we say that
X is countably generated provided that X has a countable cofinal subset
(i.e., there is a sequence fxng of elements in X such that for any x2X
there exists n2N such that x� xn). Notice that, since any interval is
upwards directed, if fxng is a countable cofinal subset generating an inter-
val X, then we can choose a countable cofinal subset fyng generating X
with the property that yn� ynþ1 for all n� 1. We denote by Ls(M ) the
set of all countably generated intervals in M. If D is a fixed interval in
Ls(M ), we denote by Ls,D(M ) the submonoid of Ls(M ) whose elements
are intervals X2Ls(M ) such that X� nD for some n2N, and we denote
by WD

s (M ) the submonoid of Ls,D(M ) whose elements are intervals
X2Ls,D(M ) such that there exists Y2Ls,D(M ) with XþY¼ nD for
some n2N.

Now, we proceed to state some basic results on intervals in a refine-
ment monoid. They are analogous to results of Goodearl and Handelman
(1982), Goodearl (1996) or Perera (2001), but the original hypotheses are
reduced to the minimum necessary.
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Lemma 1.1 (c.f. Goodearl, 1996, Lemma 3.8). Let M be a conical, can-
cellative monoid, and let x2M. Then:

(1) [0, x]¼fy2M j y� xg is an interval.
(2) If X2WD

s (M ) and x2X, then there exists an interval Y2
WD

s (M ) such that [0, x]þY¼X.
(3) If D is a generating, countably generated interval, then [0, x]2

WD
s (M ).

Proof. It is obvious that [0, x] is an interval. To prove (2), let
X2WD

s (M ) and assume that x2X. Set Y¼fy2M j xþ y2Xg. Clearly,
Y is non-empty and hereditary. Suppose that y1, y22Y. Then xþ y1,
xþ y22X whence there exists z2X such that xþ y1, xþ y2� z. Let
t1, t22M such that xþ y1þ t1¼ z¼ xþ y2þ t2. Since M is cancellative,
set v¼ y1þ t1¼ y2þ t2. Then y1, y2� v. Also xþ v¼ z2X, so that
v2Y, and thus Y is an interval. Of course, [0, x]þY�X by definition.
Now, take z2X, and let w2X such that x, z�w. Thus there exist a,
b2M with xþ a¼w¼ zþ b. Then a2Y, and z2 [0, x]þ [0, a]� [0,
x]þY. It only remains to show that Y is countably generated. But since
X is countably generated, andM is cancellative, it is a trivial computation
to show that so is Y. Hence (2) holds, and then we get (3) by taking
X¼ nD for a suitable n2N so that x2 nD. &

If M is a conical monoid, then we say that an interval X in M is soft
if for each x2X, there exist y2X and n2N such that (nþ 1)x� ny.

Lemma 1.2 (c.f. Goodearl and Handelman, 1982, Lemma 7.4). Let M be
a conical, stably finite, simple monoid, and let D�M be an interval. Then
D is soft if and only if

For any x 2 D; there exists v 2 M� such that xþ v 2 D ð�Þ
Proof. Assume that (�) holds and let x2D. Then we have xþ v¼ y2D.
Since there exists n2N with x� nv, we get (nþ 1)x¼ nxþ x� nxþ nv¼
n(xþ v)¼ ny. Thus D is soft. Now suppose that D is soft, and x be a non-
zero element of D. By definition there exist n2N, y2D such that
(nþ 1)x� ny. Since D is an interval, there exists z2D with x, y� z.
Thus (nþ 1)x� nz and x� z. Let t, t 0 2M such that xþ t¼ z and
(nþ 1)xþ t 0 ¼ nz. If t¼ 0, then

nxþ ðxþ t0Þ ¼ ðnþ 1Þxþ t0 ¼ nz ¼ nx;

whence xþ t 0 ¼ 0, and thus x¼ t 0 ¼ 0, which is impossible. Thus t 6¼ 0,
and xþ t2D, as desired. &
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Note that we use the stably finite hypothesis only to prove that con-
dition (�) implies that D is soft.

Lemma 1.3 (c.f. Goodearl and Handelman, 1982, Lemma 8.1). Let M be
a conical, simple monoid, and let D1, D2�M be intervals. If D1 is soft, then
so is D1þD2.

Proof. Let x2D1þD2. Then there exist x12D1, x22D2 such that
x� x1þ x2. Let x�¼ x1þ x2. Suppose that there exist n2N, y2D1þD2

such that (nþ 1)x�� ny. Then (nþ 1)x� ny, so that, without loss of gen-
erality, we can assume that x¼ x1þ x2 with x12D1, x22D2. Since M
is simple, the intervals D1, D2 are generating. Then the argument of
Goodearl and Handelman (1982, Lemma 8.1) applies, whence the desired
result holds. &

Lemma 1.4 (c.f. Perera, 2001, Lemma 3.4). Let M be a conical, simple
monoid. If D is an interval, then it is either soft or of the form [0, x] for
some x2M, but not both.

Proof. Suppose that there exists an element x2D such that for every
y2D we have x´ y. Take y2D. Then there is z2D such that x, y� z.
Since x´ z, we have that z¼ x. Thus D¼ [0, x].

Take x2D and find y2D and t2M� such that xþ t¼ y2D.
Since M is simple, there exists n2N such that x� nt. Thus,
(nþ 1)x¼ nxþ x� nxþ nt¼ n(xþ t)¼ ny. Hence D is soft. &

An element a2M� is said to be an atom if for all b2M, if b� a, then
b¼ a or b¼ 0. A simple monoid M is non-atomic if it has no atoms. We
say that M is a refinement monoid if, for all a, b, c, d in M such that
aþ b¼ cþ d, there exist w, x, y, z in M such that a¼wþ x, b¼ yþ z,
c¼wþ y and d¼ xþ z. As we will see in Sec. 4, if R is a C�-algebra of
real rank zero, or a von Neumann regular ring, it is well-known that
V(R) is a refinement monoid (see, e.g., Ara et al., 1998; Goodearl,
1991; Zhang, 1990a). A special kind of soft intervals, very useful in the
sequel, arises in case that M is simple and non-atomic.

Proposition 1.5. Let M be a conical, cancellative, non-atomic, simple,
refinement monoid, and let x2M�. Then the set

½0; xÞ ¼ fy 2 M j y < xg
is a soft interval. Furthermore, if X is a countably generated soft interval
and x2X, then there exists a countably generated soft interval Y such that
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[0, x)þY¼X. In particular, [0, x)2WD
s (M ) whenever D is soft and M is

countable.

Proof. The set [0, x) is non-empty by construction. Clearly, [0, x) is here-
ditary by definition. Now, let y1, y22 [0, x). By Goodearl (1986, Proposi-
tion 14.6), there exists z2M� such that y1, y2 < z < x. Hence z2 [0, x),
whence [0, x) is upwards directed. Thus, [0, x) is an interval. Moreover,
by Lemma 1.2, [0, x) is soft.

Let X be a countably generated soft interval with x2X, and let
fxngn�1 be a countable cofinal subset for X. By Lemma 1.4, we can
assume that xn < xnþ1 for all n� 1. Since x2X, there exists m2N such
that x� xm. Re-indexing if necessary we can assume without loss of
generality that m¼ 1. Let yn2M be such that xþ yn¼ xn for any n� 1.
Since M is cancellative, the set fyngn�1 is an ascending chain. Let
Y ¼ S

n�1 ½0; yn� be the interval generated by fyng. Notice that Y is soft
because of Lemma 1.2. By construction, we have [0, x)þY�X. Conver-
sely, let a2X. Since X is soft, there exists b2X such that a, x < b. As
b2X, there is n2N so that b < xn, and notice that xn¼ xþ yn. Since
M is simple, cancellative and non-atomic, Goodearl (1986, Proposition
14.6) guarantees that there exist non-zero elements b1, b22M such that
b¼ b1þ b2 with b1 < x and b2 < yn. Hence, b2 [0, x)þ [0, yn]�
[0, x)þY, and then also a2 [0, x)þY. Thus [0, x)þY¼X.

Now assume that M is countable. Since M is simple, every non-zero
interval is generating and countably generated. Thus, for any non-zero
element x2M there is n2N so that x2 nD. Since D is soft, so is nD
by Lemma 1.3. Then [0, x)2WD

s (M ) by the first part of the proof. &

Remark 1.6. Under the hypotheses of Proposition 1.5, for any x2M�

we have [0, x]¼ [0, x)[fxg. Thus, [0, x) is the biggest soft interval con-
tained in [0, x]. Also notice that, under the same hypotheses, we have that
[0, x)þ [0, y)¼ [0, xþ y) for any x, y2M.

2. SOME SPECIAL SOFT INTERVALS

We will use some techniques for representing intervals as functions on
a compact space in order to get, in case of strictly perforated monoids,
some special behaviors on soft intervals. For this, we recall some defini-
tions. Given an abelian monoid M and x, y2M, we write x� y if there
exists z2M such that xþ z¼ yþ z. This is an equivalence relation on
M, and we write [x] for the equivalence class of an element x2M. We
define G(M )¼f[x]� [y] j x, y2Mg, where [a]� [b]¼ [c]� [d] if and only
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if [aþ d]¼ [cþ b]. Endowed with the operation [x]þ [y]¼ [xþ y], the set
G(M ) becomes a group, called the Grothendieck group of M. The sub-
monoid G(M )þ¼f[x] j x2Mg is called the positive cone of G(M ), and
induces an order on G(M ) as follows: given x, y2G(M ), we say that
x� y if there exists z2G(M )þ such that xþ z¼ y (see Goodearl, 1986).
If M is cancellative then G(M )þ¼M. Given a monoid with order-unit
(M, u), we denote Su the compact convex space of states (i.e., the set
of monoid morphisms from M to Rþ that send u to 1). Clearly,
Su¼S(G(M ), u), the set of states on G(M ) (see Goodearl, 1986). We
denote by Aff(Su)

þ the monoid of positive, affine and continuous func-
tions from Su to Rþ, endowed with the supremum norm, denoted k f k,
and the natural pointwise ordering of functions. Given f, g2Aff(Su)

þ,
we write f	 g if f(s) < g(s) for all s2Su. We denote by fu :M�!Aff(Su)

þ

the natural evaluation map. Also, we denote by LAffs(Su)
þþ the semi-

group of strictly positive, affine, lower semicontinuous functions from
Su to Rþ that are pointwise suprema of increasing sequences of functions
in Aff(Su)

þ. Given an interval X in M, we define rðXÞ ¼ supx2XfuðxÞ,
where sup denotes the pointwise supremum.

Proposition 2.1 (cf Perera, 2001, Lemma 3.8). Let M be a conical, can-
cellative, non-atomic, simple, refinement monoid, and let u2M�. Then:

(1) If X�M is a non-zero interval, then r(X )2LAff(Su)
þþ and it is

bounded away from zero.
(2) r(X )þ r(Y )¼ r(XþY ) for any intervals X, Y on M.
(3) If f2LAff(Su)

þþ, then r0( f )¼fx2M jfu(x)	 fg is a soft inter-
val in M, and rr0( f )¼ f.

Proof. (1) and (2) are proved in the same way as Perera (2001, Lemma
3.8 (1), (2)).

(3) Obviously the set r0( f ) is non-empty and hereditary. Let x,
y2 r0( f ), and set g¼ sup ffu(x), fu( y)g. Clearly g is an upper semicontin-
uous convex function, and g	 f. By Goodearl (1986, Theorem 11.12)
and Pardo (1998b, Theorem 3.5), there exists z0 2M such that
g	fu(z

0)	 f. Since fu(x), fu( y)	fu(z
0), by Goodearl (1986, Theorem

4.12), there exists n2N such that nx, ny < nz0. By compactness of Su we
can choose e > 0 such that fu(z

0)þ e	 f. By Pardo (1998b, Corollary
2.6), there exists de2M with kfu(de)k < e, such that x, y < z0 þ de. Define
z¼ z0 þ de. Then z2r0( f ), whence it is upwards directed, and so is an
interval. Clearly is soft because of Lemma 1.2. The rest of the proof
follows the argument of Perera (2001, Lemma 3.8 (3)). &

5018 Ortus and Pardo



We denote X0 ¼ r0r(X ) for any interval X. Notice that, under the
hypotheses of Proposition 2.1,X0 ¼ r0r(X0), because r0r(X0)¼ r0rr0r(X )¼
r0r(X )¼X0. By Perera (2001, Lemma 3.8), for any soft interval X in M
we have r0r(X )¼X, whenever M is strictly unperforated. As we will
see, when strict unperforation fails, we can construct soft intervals X such
that X 6¼ r0r(X ). This is the key point of our arguments.

Lemma 2.2. Let M be a conical, cancellative, non-atomic, simple, refine-
ment monoid, and let u2M�. Let X, Y�M be intervals. Then,

r0ðrðXÞ þ rðYÞÞ ¼ r0rðXÞ þ r0rðYÞ

Proof. Let f¼ r(X ), g¼ r(Y ), and let x2 r0( fþ g). Then, fu(x)	 fþ g,
so that there exist x02X and y02Y with fu(x)	fu(x0)þfu( y0). By
Goodearl (1986, Theorem 4.12), there exists m2N with mx < mx0þmy0.
Let e > 0 such that e < minfkf�fu(x0)k, kg�fu( y0)kg. By Pardo (1998b,
Corollary 2.6), there exists t2M with kfu(t)k < e and x < (x0þ y0)þ t.
If t¼ 0, then x < x0þ y02 r0r(X )þ r0r(Y ). If t 6¼ 0, then since M is
non-atomic, there exist te, te

0 2M such that teþ te
0 ¼ t. Thus kfu(te)k,

kfu(te
0)k < e, and x < (x0þ te)þ ( y0þ te

0). Moreover, fu(x0þ te)	 f and
fu(y0þ te

0)	 g. Hence x0þ tE2 r0r(X ) and y0þ tE
0 2r0r(Y ), so that

r0(r(X )þ r(Y ))� r0r(X )þ r0r(Y ).
Conversely, let x2 r0( f )þ r0(g). Then x¼ yþ z, with y2 r0( f ),

z2 r0(g), i.e., fu( y)	 f, fu(z)	 g. Thus, fu(x)¼fu( yþ z)	 fþ g,
whence x2 r0( fþ g)¼ r0(r(X )þ r(Y )), as required. &

Proposition 2.3. Let M be a conical, cancellative, non-atomic, simple,
refinement monoid, and let u2M�. If X, Y are soft intervals, then

X þ Y 0 ¼ ðX þ Y Þ0:

Proof. By Lemma 2.2 and Proposition 2.1,

X þ Y 0 � X 0 þ Y 0 ¼ ðX þ YÞ0:

Conversely, let z2 (XþY )0. Then there exist x2X0 and y2Y0 such
that fu(z)	fu(x)þfu( y). By definition of X0, fu(x)	 r(X ). Analo-
gously fu( y)	 r(Y ). By compactness of Su, there exists e > 0 such that

e <
1

2
minfkrðXÞ � fuðxÞk; krðY Þ � fuðyÞkg:

Monoids of Intervals 5019



By Goodearl (1986, Theorem 4.12) and Pardo (1998b, Corollary 2.6),
there exist d, d0 2M such that

fuðdÞk k; fuðd 0Þk k < e

and z < (xþ d )þ ( yþ d0). Notice that xþ d2X0 and yþ d0 2Y0. By
Goodearl (1986, Proposition 14.6), we get decompositions z¼ z1þ z2
with z1 < (xþ d ), z2 < ( yþ d0). By the argument in the proof of
Goodearl and Handelman (1982, Proposition 7.7), there exists t2X such
that fu(z1)	fu(t). Let e0 > 0 be such that fu(z2)þ e0 	 r(Y ). By
Pardo (1998b, Theorem 4.12), there exist decompositions z1¼ z3þ z4,
t¼ z5þ z4 with kfu(z3)k < e0. Suppose z5¼ 0. Then t¼ z4, and hence
z1¼ z3þ z4¼ z3þ t. But then fu(t)�fu(z1)	fu(t), which is impossible.
Thus, z¼ z2þ z3þ z4, with z4 < t2X, and

fuðz2 þ z3Þ ¼ fuðz2Þ þ fuðz3Þ 	 fuðz2Þ þ e0 	 rðYÞ:

Hence z42X and z2þ z32Y0, as required. &

As a consequence we have

Corollary 2.4. Let M be a conical, cancellative, non-atomic, simple,
refinement monoid, and let u2M�. If X is a soft interval, then

X þ X 0 ¼ 2X 0:

Let M be a monoid. In order to study the properties of a separative
positively ordered monoid, Wehrung (1994a) defined the equivalence
relation 
 for a, b2M: a
 b if and only if there exist m, n2N such that
a�mb, b� na.

Lemma 2.5. Let M be a conical, cancellative, non-atomic, simple, refine-
ment monoid, and let u2M�. If x, y2M�, then:

(1) [0, x)
 [0, y).
(2) r0r([0, x))
 r0r([0, y)).
(3) r0r([0, x))
 [0, x) if and only if there exists n02N such that for

any n� n0, r0r([0, nx))¼ [0, nx).

Proof. (1) Since M is simple, there exist m2N, z, t2M such that
xþ t¼my, yþ z¼mx. Hence [0, x)þ [0, t)¼m[0, y) and [0, y)þ
[0, z)¼m[0, x), as desired.
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(2) Using (1), Lemma 2.2, Proposition 2.1 (2) and Proposition
2.3, we get r0r([0, x))þ [0, t)¼mr0r([0, y)) and r0r([0, y))þ [0, z)¼
mr0r([0, x)).

(3) Suppose that r0r([0, x))
 [0, x). By Proposition 1.5, [0, x) is a soft
interval. Then by Corollary 2.4, we have [0, x)þ r0r([0, x))¼ 2r0r([0, x)).
By Blackadar (1990, Theorem 2.1.9), there exists n02N such that, for
any n� n0, we have nr0r([0, x))¼ n[0, x). By Lemma 2.2, Proposi-
tion 2.1 (2) and Remark 1.6, we have nr0r([0, x))¼ r0(nr([0, x)))¼
r0r(n[0, x))¼ r0r([0, nx)). Then, r0r([0, nx))¼ [0, nx). The converse is
obvious. &

The next result allows us to construct the pathological soft intervals
we need in the sequel.

Lemma 2.6. Let M be a conical, cancellative, non-atomic, strictly perfo-
rated, simple, refinement monoid. Then there exist n2N and x2G(M )
such that nx and (nþ 1)x2G(M )þ but nx 62 [0, (nþ 1)x).

Proof. SinceM is strictly perforated, there existsx2G(M ) n f0g such that
x 62G(M )þ and nx2G(M )þ for some n2N. We may assume that
(nþ 1)x 62G(M )þ, as otherwise we are done. As nx is an order-unit, there
exists k2N with (nþ 1)x� knx. Then, [(k� 1)n� 1]x2G(M )þ. Since
[(k� 1)n� 1] is 1 minus a multiple of n, we have g.c.d.([(k� 1)n� 1], n)¼ 1.
Hence, there exist p, q2N such that pn� q[(k� 1)n� 1]¼ 1,
whence pn¼ 1þ q[(k� 1)n� 1]. Set m¼ q[(k� 1)n� 1]. Then, mx¼
q[(k� 1)n� 1]x2G(M )þ and (mþ 1)x¼ (1þ q[(k� 1)n� 1])x¼ pnx2
G(M )þ. On the other hand, mx 62 [0, (mþ 1)x), as otherwise, we get
x2G(M )þ, which is impossible. &

Proposition 2.7. Let M be a conical, cancellative, non-atomic, strictly
perforated, simple, refinement monoid, and let u2M�. Then, for any x,
y2M�, [0, x) 6
 r0r([0, y)).

Proof. By conditions (1) and (2) in Lemma 2.5, it is enough to find an
element x2M� for which [0, x) 6
 r0r([0, x)). By Lemma 2.6, there exist
n2N and y2G(M ), such that y 62G(M )þ but ny, (nþ 1)y2G(M )þ. If
N¼ n(nþ 1)� 2n� 1, then for any k2N we have (Nþ k)y2G(M )þ

(see, e.g., Rørdam and Villadsen, 1998, Lemma 2.3). Set x¼ (nþ 1)y.
If [0, x)
 r0r([0, x)), by Lemma 2.5 there exists m02N such

that [0, mx)¼ r0r([0, mx)) for all m�m0. Take m�m0 so that
(mþ 1)(nþ 1)�Nþ 2. Thus, r0r([0, (mþ 1)x))¼ [0, (mþ 1)x). Set
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z¼ [(mþ 1)(nþ 1)� 1]y, and notice that z2G(M )þ. Since y 62G(M )þ, we
have z 62 [0, (mþ 1)x). This contradicts [0, mx)¼ r0r([0, mx)) for all
m�m0. Hence, [0, x) 6
 r0r([0, x)), as desired. &

Corollary 2.8. Let M be a conical, cancellative, non-atomic, strictly per-
forated, simple, refinement monoid, and let u2M�. Then, [0, x) 6¼ r0r([0,
x)) for any x2M�.

3. THE FUNCTIONAL REPRESENTATION

We recall the key result of Perera’s work on the structure of the
monoid of intervals of a non-atomic, strictly unperforated, simple, refine-
ment monoid.

Theorem 3.1 (Perera, 2001, Theorem 3.9). Let M be a conical, simple,
refinement monoid, let u2M�, let D be a countably generated soft interval
in M, and let d¼ r(D). Define

j : WD
s ðMÞ �!M tWd

s ðSuÞ
X 7�! rðXÞ if X is a soft interval

½0; x� 7�! x if x 2 M:

Then j is a normalized monoid morphism. Moreover, if M is non-atomic,
strictly unperforated and cancellative, then j is an isomorphism.

We say that a soft interval X in M is functionally complete whenever
r0r(X )¼X. Injectivity and surjectivity of the map j strongly depend on
the fact that, when M is strictly unperforated, any soft interval X in M is
functionally complete (Perera, 2001, Lemma 3.8 (4)). It is always true that
X� r0r(X ). Nevertheless, as we have seen in Corollary 2.8, this equality
may fail when M is strictly perforated.

Now, we will show that under some mild hypotheses, this map is a
monomorphism if and only if M is strictly unperforated, and that it is
always an epimorphism. Recall that, if M is a (semigroup) monoid, we
say that M is separative if it satisfies the weak cancellation condition that,
for all a, b in M, aþ a¼ aþ b¼ bþ b only if a¼ b. Similarly, we say that
M is strongly separative if it satisfies the weak cancellation condition that,
for all a, b in M, aþ a¼ aþ b only if a¼ b.

We define Efin¼ff2Wd
s(Su ) j f@eSu

is finiteg, where @eSu denotes the
extreme boundary of Su (see Goodearl, 1986).
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Theorem 3.2. Let M be a countable, conical, cancellative, non-atomic, sim-
ple, refinement monoid, and let u2M�. Then the following are equivalent:

(1) M is strictly unperforated.
(2) Every soft interval X�M is functionally complete.
(3) The morphism j of Theorem 3.1 is injective for any soft interval

D in M.
(4) For any soft interval D in M, the subsemigroup E¼j�1(Efin) of

WD
s (M ) is strongly separative.

(5) For any x2M�, [0, x) is functionally complete.

Proof. (1)) (2) This is Perera (2001, Lemma 3.8 (4)).

(2)) (1) Suppose that M is strictly perforated. By Corollary 2.8, [0,
x)w r0r([0, x)) for any x2M�.

(1)) (3) This is Theorem 3.1.

(3)) (1) Suppose that M is strictly perforated. As in the proof
of (2)) (1), there exist y, z2M such that z 62 [0, y) but fu(z)	fu( y).
Let X¼ [0, y), X0 ¼ r0r(X ). Fix a soft interval D such that r0r(D)¼D
(take for example an interval of the form r0r(I ), for any interval I in
M). By Proposition 1.5, X2WD

s (M ), and thus there exist Y2WD
s (M )

and n2N such that XþY¼ nD. By Lemma 2.2 and Proposition 2.1,

r0rðXÞ þ r0rðY Þ ¼ nr0rðDÞ ¼ nD:

Hence X0 2WD
s (M ). Since z 62X, but z2X0, we have XwX0 and by

Proposition 2.1 (3),

jðX 0Þ ¼ rðX 0Þ ¼ rðr0rðXÞÞ ¼ rr0ðrðXÞÞ ¼ rðXÞ ¼ jðXÞ;

whence j is not injective.

(1)) (4) It is Theorem 3.1.

(4)) (1) Suppose that M is strictly perforated. As in the proof of
(3)) (1), there exists x2M� such that, if X¼ [0, x), then X 6¼X0. On
the other hand, XþX0 ¼ 2X0 by Corollary 2.4. Moreover X2E by defini-
tion, whence the result holds.

(2)) (5) It is obvious, since [0, x) is a soft interval by Proposition 2.1.

(5)) (1) It is the same proof as (2)) (1). &
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Notice that we only need the hypothesis ‘‘M is a countable monoid’’
to show (3)) (1) and (4)) (1). Because of its own interest, we will state
(4)) (1) in Theorem 3.2 as follows:

Corollary 3.3. Let M be a countable, conical, cancellative, non-atomic,
strictly perforated, simple, refinement monoid, and let D be a non-zero func-
tionally complete soft interval in M. Then, the subsemigroup E¼j�1(Efin)
of WD

s (M ) fails to be strongly separative.

Remark 3.4.

(1) Perera (2001) showed that, whenever we consider a strictly
unperforated simple Riesz group, its monoid of intervals satisfy
the separativity property. On the other hand, Wehrung (1998,
Example 3.14) constructed a torsion free simple Riesz group
G, whose positive cone is strictly perforated, containing an inter-
val D 6¼Gþ such that 2D¼Gþ. Thus, the monoid of intervals
WD

s (G
þ) fails separativity. Nevertheless, we cannot guarantee

that given a strictly perforated, simple, refinement monoid M,
its monoid of intervals WD

s (M ) will always be non-separative.
For example, Pardo (1998a, Sec. 3) gave examples of torsion
free simple Riesz groups G, whose positive cones are strictly per-
forated, and with the property that any interval D such that
r(D)¼ r(Gþ) implies D¼Gþ. Then, in order to check if such
examples fail separativity, we need to study carefully the beha-
vior of intervals D such that nD 6¼Gþ for every n2N. Thus,
it remains as an open question

Given any countable, simple refinement monoid M that fails to be
strictly perforated, is WD

s (M ) always non-separative?

(2) Notice that, in the proof of Theorem 3.2 (3)) (1), a key point is
to choose a functionally complete interval D to show the failure
of injectivity for the map j. Even if we take a non functionally
complete interval D as order-unit for WD

s (M ), it is possible to
show the failure of injectivity for the map j in some special
cases. Wehrung’s example (Wehrung, 1998, Example 3.14) fits
one possibility. Another possibility is the following: suppose
that there exists a simple Riesz group (G, Gþ) containing an
interval D�Gþ such that r(D)¼ r(Gþ), but for every n2N,
nD 6¼Gþ (in particular G is strictly perforated). Then, WD

s (G
þ)

is stably finite, so that nD 6¼mD whenever n 6¼m, but
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j(nD)�1. In terms of the K-Theory of multiplier algebras (see
Sec. 4), the existence of such a group implies that it could be
possible to construct a s-unital, non-unital, simple C�-algebra
with real rank zero and stable rank one A, such that its multi-
plier algebra M(A) contains a non-zero projection P with
M(PAP) stably finite, but with identically infinite scale (Perera,
2001). Thus, according to Rørdam (1998, Proposition 3.6) (also
see Pardo, 2001, Theorem 2.10), PAP is not an stable algebra.
The existence of such an example will fix the exact limits of
application of Pardo (2001, Proposition 2.11).

Theorem 3.5. Let M be a conical, cancellative, non-atomic, simple, refine-
ment monoid, let u2M�, and let D be a non-zero, functionally complete,
countably generated, soft interval of M. Then the normalized morphism
of Theorem 3.1 is onto.

Proof. If x2M, then let X¼ [0, x]2WD
s (M ), so that j(X )¼ x. Now,

let f2Wd
s(Su). Then, there exists h2Wd

s(Su) such that fþ h¼ nd, where
d¼ r(D), n2N. We have f¼ sup gn, where fgng is an ascending se-
quence of functions in Aff(Su)

þþ. By Pardo (1998b, Theorem 3.5), there
is a m2N such that, for n�m, there exists xn2M with
0 	 gn � 1

2n 	 fuðxnÞ 	 gnþ1 � 1
2nþ1. Then,

0	 gn � 1

2n
	 fuðxnÞ 	 gnþ1 � 1

2nþ1
	 fuðxnþ1Þ 	 gnþ2 � 1

2nþ2
	 �� �

By compactness of Su we get, for each n2N, an en > 0 such that
fuðxnþ1Þ þ en 	 gnþ2 � 1

2nþ2 (see, e.g., Goodearl and Handelman, 1982,
Proposition 7.7). Then using Pardo (1998b, Theorem 4.12), we get
b2M such that xn < xnþ1þ b and kfu(b)k < en. Thus,

0	 gn � 1

2n
	 fuðxnÞ 	 gnþ1 � 1

2nþ1
	 fuðxnþ1 þ bÞ

	 gnþ2 � 1

2nþ2
	 �� �

Define yn¼ xn, ynþ1¼ xnþ1þ b. Then, for ynþ1 and xnþ2 we have

� � � 	 gnþ1 � 1

2nþ1
	 fuðynþ1Þ 	 gnþ2 � 1

2nþ2
	 fuðxnþ2Þ

	 gnþ3 � 1

2nþ3
	 �� �

By recurrence on this procedure we get an ascending sequence fyngn2N
with f¼ supfu( yn). Let X be the interval generated by fyng (in particular,
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it is countably generated). Thus, X ¼S
n2N½0;yn�, so that r(X )¼ f. As

fu( yn)	 f for all n, we have X� r0( f ), and X is soft by Lemma 1.4.
It only remains to show that X2WD

s (M ). Since fþ h¼ nd, we apply
the same argument to h, and we construct a countably generated, soft
interval Z such that r(Z)¼ h, so that Z� r0(h). By Corollary 2.4,

X þ r0rðXÞ ¼ 2r0rðXÞ
Z þ r0rðZÞ ¼ 2r0rðZÞ

Hence,

X þ r0rðXÞ þ Z þ r0rðZÞ ¼ 2ðr0rðXÞ þ r0rðZÞÞ;
whence by Lemma 2.2,

X þ Z þ r0ðrðX Þ þ rðZÞÞ ¼ 2r0ðrðX Þ þ rðZÞÞ;
that is,

X þ Z þ r0ðf þ hÞ ¼ 2r0ðf þ hÞ:
Since fþ h¼ nd,

X þ Z þ r0ðndÞ ¼ 2r0ðndÞ:
As d¼ r(D),

X þ Z þ r0ðnrðDÞÞ ¼ 2r0ðnrðDÞÞ;
whence by Lemma 2.2,

X þ Z þ nr0rðDÞ ¼ 2nr0rðDÞ:
Since r0r(D)¼D, we have

X þ Z þ nD ¼ 2nD:

Finally, as Z and D are countably generated, so is Zþ nD, whence
X2WD

s (M ). &

As an immediate consequence of Theorem 3.2 and Theorem 3.5,
we get

Corollary 3.6. Let M be a countable, conical, cancellative, non-atomic,
strictly perforated, simple, refinement monoid, let u2M�, and let D�M
be a non-zero functionally complete soft interval. Then the map j of
Theorem 3.1 is always onto, but never injective.
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Remark 3.7.

(1) Notice that for any monoid with order-unit (M, u), we have that
r0r(M )¼M, and M is a countably generated interval, because
fnu j n2Ng generates it as an interval. Then, for any monoid
there is at least one interval satisfying the hypothesis of Corol-
lary 3.6, whence Theorem 3.5 applies at least in this case.

(2) Recall that a subset S of a monoid M is called an order-ideal,
or simply an ideal, if S is a subset of M containing 0, closed
under taking sums and summands within M; that is, S is a sub-
monoid such that, for all x2M and e2S, if x� e then x2S.
For any a2M, the principal ideal generated by a is
M(a)¼fx2M j x� na for some positive integer ng. We denote
the set of ideals of M by L(M ). If M is a refinement monoid
then, byAra et al. (1998, Lemma 2.1),L(M ) forms a lattice under
sum and intersection. Perera used Perera (2001, Theorem 3.9)
in order to describe this lattice in terms of the behavior of the
extremal states on Su. As a consequence of Corollary 2.8, even
in the case of principal ideals, for any x2M� we have
WD

s (M )([0, x))�WD
s (M )(r0r([0, x))). Thus, Perera’s descrip-

tion of L(WD
s (M )) is no longer valid. Nevertheless, in the case

j being onto, if we are able to describe the set j�1( f ), it seems
reasonable to recover the structure of this lattice.

Finally, even if injectivity fails, we still preserve a certain ‘‘good’’
behavior of divisibility for soft intervals, in a similar way to that of
Goodearl (1996, Lemma 4.2(b)).

Proposition 3.8. Let M be a conical, non-atomic, simple, refinement
monoid. For any n2N and any non-zero soft interval X2WD

s (M ), there
exists Y2WD

s (M ) such that X¼ nY.

Proof. The proof is an adaptation of that of Zhang (1991, Theorem I
(ii)), using Pardo (1998b, Theorem 5.2).

Let X be the interval generated by the ascending sequence fxig, let
pi2X such that xi�1þ pi¼ xi for any i > 1, and set p1¼ x1. Thus,Pk

i¼1pi¼ xk. Applying Pardo (1998b, Theorem 5.2) to p1 and p2, we get
r1, s12M with p1¼ nr1þ s1 and (n� 1)s1 < p2. Hence, there exists
z22M such that (n� 1)s1þ z2¼ p2. Since r1, s1� p1 and z2� p2, we have
r1, s1, z22X.

Applying again Pardo (1998b, Theorem 5.2) to z2 and p3, we get s2,
r22M with z2¼ nr2þ s2 and (n� 1)s2 < p3. Hence, there exists z32M
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such that (n� 1)s2þ z3¼ p3. Since r2, s2� p2 and z3� p3, we have r2, s2,
z32X.

By recurrence on this argument we obtain

zi ¼ nri þ si with ðn� 1Þsi þ ziþ1 ¼ piþ1 ; i > 1 ; z1 ¼ p1:

Defining yi¼
Pi

j¼1(rjþ sj�1) for i� 1, and s0¼ 0, we get an ascending
chain fyig. Set Y the interval generated by fyig. Then,

nyi ¼ n
Xi

j¼1

ðrj þ sj�1Þ ¼ ns0 þ nri þ
Xi�1

j¼1

ðnrj þ sjÞ þ
Xi�1

j¼1

ðn� 1Þsj

¼ nri þ
Xi�1

j¼1

zj þ
Xi�1

j¼1

ðn� 1Þsj

¼ nri þ ðn� 1Þsi�1 þ
Xi�1

j¼1

ðzj þ ðn� 1Þsj�1Þ

¼
Xi

j¼1

ðzj þ ðn� 1Þsj�1Þ ¼
Xi

j¼1

pj ¼ xi

so that nyi2X. Also, for each i� 1,

xi ¼
Xi

j¼1

pj ¼
Xi

j¼1

ðzj þðn� 1Þsj�1Þ ¼
Xi

j¼1

ðnrj þ sj þðn� 1Þsj�1Þ

¼
Xi

j¼1

ððn� 1Þrj þ rj þ sj þðn� 1Þsj�1Þ

¼
Xi

j¼1

ððn� 1Þsj�1þðn� 1ÞrjÞþ
Xi

j¼1

ðrj þ sjÞ

¼ ðn� 1Þ
Xi

j¼1

ðsj�1þ rjÞþ
Xi

j¼1

ðrj þ sjÞ � ðn� 1Þyi þ
Xi

j¼1

ðrj þ sjÞþ riþ1

¼ ðn� 1Þyi þ
Xiþ1

j¼1

ðrj þ sj�1Þ ¼ ðn� 1Þyi þ yiþ1 � nyiþ1 2 nY :

Hence, X¼ nY, as desired. &

Notice that, in spite of Goodearl (1996, Lemma 4.2(b)), Proposition
3.8 does not guarantee the uniqueness of the interval Y.
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4. APPLICATIONS TO MULTIPLIER RINGS

In this section we apply the results we obtained in the previous sec-
tions to context of non-stable K-Theory of multiplier rings for non-unital
von Neumann regular rings and C�-algebras. We start by recalling some
definitions and results of Ara and Perera (2000), Goodearl (1996) and
Perera (2001).

Given a ring R, we denote by M1(R)¼ lim�!Mn(R), under the maps

Mn(R)!Mnþ1(R) defined by x 7! diag(x, 0). Notice that M1(R) can
also be described as the ring of countable infinite matrices over R with
only finitely many nonzero entries. Given p, q2M1(R) idempotents, we
say that p and q are equivalent, denoted p� q, if there exist elements
x, y2M1(R) such that xy¼ p and yx¼ q. We also write p� q provided
that p¼ pq¼ qp, and we write p. q if there exists an idempotent
r2M1(R) such that p� r� q. Given idempotents p, q2M1(R), we

define the direct sum of p and q as p q ¼
�

p 0

0 q

�
. Also, for an idempo-

tent p2M1(R) and a positive integer n, we denote by n�p the direct sum
of n copies of p. For a ring R, we denote by V(R) the abelian monoid of
equivalence classes of idempotents in M1(R) under the relation �
defined above, with the operation [p]þ [q]¼ [p q]. We consider this
monoid endowed with the algebraic pre-ordering, denoted by �, that
corresponds to the ordering induced by the relation .. Given a ring
R, it is easy to see that V(R) is conical, and if R is simple, then so is
V(R). Also, if R is a separable C�-algebra or a countable ring, then
V(R) is a countable monoid. In the case of a C�-algebra A, we can also
obtain a picture of V(A) by considering the equivalence classes of
projections (self-adjoint idempotents) in M1(A), under the same equi-
valence relation we introduced before (see, e.g., Blackadar, 1998,
Chapter 5).

Given a ring R, we say that a double centralizer for R is a pair (L, R)
of additive maps L, R :R!R satisfying R(x)y¼ xL( y) for all x, y2R.
Notice that for any element a2R, the pair (La, Ra), where the maps
are left=right multiplication by a respectively, is a double centralizer.
The set of double centralizers over R, endowed with the operations
(L1, R1)þ (L2, R2)¼ (L1þL2, R1þR2) and (L1, R1)�(L2, R2)¼
(L1�L2, R2�R1), has structure of ring with unit (Id, Id), and it is called
the ring of multipliers of R, denoted M(R). Notice that R is an ideal of
M(R) through the identification of a2R with (La, Ra)2M(R); more-
over, M(R) coincides with R whenever R is a unital ring. In the case of
A being a C�-algebra, it is well-known that M(A) is also a C�-algebra
(see, e.g., Wegge-Olsen, 1993).
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Let R be a ring, and let S be a unital ring containing R as a two-sided
ideal (for example, we can choose S¼M(R)). Then we say that R has
stable rank one (denoted sr(R)¼ 1) if, whenever SaþSb¼S with a� 1,
b2R, there exists t2R such that S(aþ tb)¼S. This definition does not
depend on the choice of S (Vaserstein, 1971); moreover, if sr(R)¼ 1
and e2R is an idempotent, then sr(eRe)¼ 1 (Vaserstein, 1984, Theorem
3.9). Since for a unital ring R it is well-known that sr(R)¼ 1 implies that
V(R) is a cancellative monoid (see Evans, 1973), we conclude by Vaser-
stein (1984, Theorem 3.9) that if R is a non-unital ring, then V(R) is also
a cancellative monoid.

A C�-algebra A has real rank zero provided that the set of invertible
self-adjoint elements of A is dense in the set of self-adjoint elements of A
(see Brown and Pedersen, 1991). According to Ara et al. (1998), this is
equivalent to the fact that the C�-algebra A is an exchange ring in the
sense of Warfield (1972). A non-unital C�-algebra A is said to be s-unital
whenever it has a countable approximate unit; in particular every separ-
able C�-algebra is s-unital (see, e.g., Murphy, 1990). If A has real rank
zero and is s-unital, then it has an approximate unit consisting of an
increasing sequence of projections (Brown and Pedersen, 1991, 2.9). In
fact, if A is a s-unital C�-algebra with real rank zero, then, for any projec-
tion P2M(A), we have that PAP is a s-unital C�-algebra with real rank
zero, and it has an approximate unit consisting of an increasing sequence
of projections; moreover, given projections p2A and P2M(A), if fpng is
an approximate unit of PAP consisting of an increasing sequence of pro-
jections, then p.P if and only if p. pn for some n� 1 (Goodearl, 1996,
Lemma 1.3). Thus, if A is a s-unital C�-algebra with real rank zero and
stable rank one, and P2M(A) nA is a projection with fpng an appro-
ximate unit of PAP consisting of an increasing sequence of projections,
we define Y([P])¼f[p]2V(A) j p is a projection in PM1(A)Pg¼
f[p]2V(A) j [p]� [pn] for some n2Ng. Then, Y([P]) is a countably gener-
ated soft interval in V(A), and moreover, if D(A)¼Y([1M(A)]), then the
map

Y : ðVðMðAÞÞ; ½1MðAÞ�Þ ! WDðAÞ
s ðVðAÞÞ ð1Þ

is a normalized monoid isomorphism (Goodearl, 1996, Sec. 1), (Perera,
2001, Sec. 2).

A ring R is said to be (von Neumann) regular provided that, for every
x2R, there exists y2R such that xyx¼ x. We say that a regular ring R
has countable unit if there exists an increasing sequence of idempotents
feng such that R¼S

n�1enRen; such a sequence feng is called a countable
unit; in particular every countable regular ring has countable unit
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(Ara and Perera, 2000, Sec. 1). In fact, if R is a regular ring with counta-
ble unit, then, for any idempotent E2M(R), we have that ERE is a reg-
ular ring with countable unit; moreover, given idempotents e2R and
E2M(R), if feng is a countable unit of ERE, then e.E if and only if
e. en for some n� 1 (Ara and Perera, 2000, Lemma 2.1). Thus, if
R is a regular ring with stable rank one and countable unit, and
E2M(R) nR is an idempotent with feng a countable unit of ERE,
we define Y([E ])¼f[e]2V(R) j e is an idempotent in EM1(R)Eg¼
f[e]2V(R) j [e]� [en] for some n2Ng. Then, Y([E ]) is a countably
generated soft interval in V(R), and moreover, if D(R)¼Y([1M(R)]), then
the map

Y : ðVðMðRÞÞ; ½1MðRÞ�Þ ! WDðRÞ
s ðVðRÞÞ ð2Þ

is a normalized monoid isomorphism (Ara and Perera, 2000, Sec. 2).
Thus, the results in previous sections apply for R any (separable) s-

unital, non-unital, non-elementary, simple C�-algebra with real rank zero
and stable rank one, or for any (countable) non-unital, non-artinian, sim-
ple von Neumann regular ring of stable rank one with countable unit,
since in both cases it is well-known that the monoid V(R) is a (countable)
cancellative, non-atomic, simple, refinement monoid. Also, if d¼ r(D(R))
and u¼ [e] for any non-zero idempotent e2R, then by composing the
map j defined in Theorem 3.1 with the map defined above, we get a nor-
malized monoid morphism

F : ðVðMðRÞÞ; ½1MðRÞ�Þ ! ðVðRÞ tWd
s ðSuÞ; dÞ ð3Þ

which is an isomorphism if V(R) is strictly unperforated (Ara and Perera,
2000, Theorem 2.11; Perera, 2001, Theorem 3.9).

In order to simplify the notation, throughout this Section we will say
that a ring R lies in the class N if it is a non-unital, non-artinian, simple
von Neumann regular ring of stable rank one with countable unit; simi-
larly, we will say that a C�-algebra A lies in the class N� if it is a s-unital,
non-unital, non-elementary, simple C�-algebra with real rank zero and
stable rank one.

Given R a ring in the class N, or a C�-algebra in the class N�,
we can define a new relation between idempotents in M(R) through the
isomorphisms defined in (1) and (2), as follows: given P, Q2M(R), we
say that P��Q if Y([P])�Y([Q]). Notice that, if p, q2R are idempotents,
then p�� q if and only if p. q.

Let R be a countable ring R in the class N, or a separable C�-
algebra in the classN� such that D(R) is a functionally complete interval.
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Given an idempotent P2M(R), we say that P is functionally complete if
Y([P]) is a functionally complete interval; in particular, 1M(R) is a
functionally complete idempotent if and only if D(R) is a functionally
complete interval. Also, given an idempotent P2M(R), we have that
r0r(Y([P]))2WDðRÞ

s (V(R)), so that there exists an idempotent Q2M(R)
with Y([Q])¼ r0r(Y([P])). We denote such an idempotent Q by Pc. Since
for any idempotents Q1, Q22M(R), we have Y([Q1])¼Y([Q2]) if and
only if Q1�Q2, notice that P

c is determined up to equivalence. Certainly
Pc is functionally complete. Moreover, it is clear that P is functionally
complete if and only if P�Pc, and in particular, for any idempotent P
in M(R), F([P])¼F([Pc]). Under the same hypotheses on R, if e2R is
an idempotent, then there exists an idempotent E2M(R) such that
Y([E ])¼ [0, [e]). As above, the idempotent E is determined up to equiva-
lence, and we denote it by O(e).

Thus, using the results in previous Sections, we get the following
results, that state the existence of some special pathological idempotents
in multiplier algebras.

Proposition 4.1. Let R be a countable ring R in the classN, or a separable
C�-algebra in the class N� such that 1M(R) is functionally complete, and
let e2R, E, F2M(R) be non-zero idempotents. Then:

(1) O(e)�� e, and is the biggest idempotent (up to equivalence) in
M(R) satisfying this property.

(2) E��Ec, and if [Ec] is stably finite, then E.Ec if and only if
E�Ec.

(3) (Ec)c�Ec, and EFc�EcFc� (EF )c.
(4) If V(R) is strictly perforated, then O(e)_O(e)c.

Proof. Notice that countability hypothesis on V(R) is required to guar-
antee that O(e)2M(R), and 1M(R) functionally complete is required to
guarantee that Pc2M(R) for any idempotent P2M(R).

(1) It is Remark 1.6.
(2) The first part is immediate. The second one is an immediate con-

sequence of Corollary 2.4.
(3) The first part is immediate. The second one is Proposition 2.3.
(4) It is Corollary 2.8.

&

Also, as a consequence of Proposition 3.8, we have the following
result about divisibility of idempotents.
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Proposition 4.2. Let R be a ring in the class N, or a C�-algebra in the
class N�, and let E2M(R) nR be an idempotent. Then, for every n2N
there exists an idempotent En2M(R) nR such that E� n�En.

In the case of C�-algebras, Proposition 4.2 is Zhang (1991, Theorem I
(ii)). For the case of von Neumann regular rings, this result is not known,
as far as we know. Now, as a corollary of Theorem 3.2, we get the follow-
ing result.

Theorem 4.3. Let R be a countable ring R in the class N, or a separable
C�-algebra in the class N�, let u2V(R)�, and let d¼F([1M(R)]). Then, the
following conditions are equivalent:

(1) V(R) is strictly unperforated.
(2) Every idempotent in M(R) nR is functionally complete.
(3) The map F : (V(M(R)), [1M(R)])! (V(R)tWd

s(Su), d ) is an injec-
tive monoid morphism.

(4) The subsemigroup of V(M(R)) consisting of equivalence classes of
idempotents E2M(R) nR such that r(Y([E ]))2Efin is strongly
separative.

(5) For any non-zero idempotent e2R, O(e) is functionally complete.

Now, as a corollary of Theorem 3.5, we get the following result.

Theorem 4.4. Let R be a ring in the class N, or a C�-algebra in the class
N�, let u2V(R)�, and let d¼F([1M(R)]). If 1M(R) is functionally complete,
then the map

F : ðVðMðRÞÞ; ½1MðRÞ�Þ ! ðVðRÞ tWd
s ðSuÞ; dÞ

is a normalized monoid epimorphism.

There is an interesting case of application for Theorem 4.4. Recall
that a C�-algebra A is said to be stable provided that AffiA�K, where
K denotes the algebra of compact operators over a countable-dimen-
sional Hilbert space. In the case of rings, we say that a ring R is stable
provided that RffiM1(R). Notice that, if A is a C�-algebra, then
A�K is isomorphic to the norm completion of the pre-C�-algebra
M1(A).

Lemma 4.5. If R is a stable ring in the class N, or a stable C�-algebra in
the class N�, then 1M(R) is functionally complete.
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Proof. Since R is stable, we have a countable unit feng consisting on an
increasing sequence of idempotents such that, for every n� 1, all the
idempotents enþ1� en are equivalent to a fixed non-zero projection
p2R. Then, Y([1M(R)])¼fx2V(R) j x� n[p] for some n� 1g, and since
R is simple, we conclude that Y([1M(R)])¼V(R). &

Hence, we get the following result.

Corollary 4.6. Let R be a stable ring in the class N, or a stable C�-alge-
bra in the class N�. Let u2V(R)�, and let d¼F([1M(R)]). Then the map

F : ðVðMðRÞÞ; ½1MðRÞ�Þ ! ðVðRÞ tWd
s ðSuÞ; dÞ

is a normalized monoid epimorphism. Moreover, if V(R) is strictly perfo-
rated, then F fails to be injective.

Notice that, if A is a s-unital C�-algebra of real rank zero, then the
lattice of closed ideals of M(A) is isomorphic to the lattice of order-ideals
of V(M(A)) (Zhang, 1990b, Theorem 2.3). The same result is true for a
s-unital von Neumann regular ring, because of Ara and Perera (2000,
Theorem 2.7). Hence, in view of Remark 3.7(2), even if injectivity is lost
in the strictly perforated case, we still could study the structure of the lat-
tice of (closed) ideals of M(A) using the techniques developed by Perera
(2001), provided we could state the arithmetical properties of the set
F�1( f ) for any f2Wd

s(Su). Thus, to extend the results of Perera to this
context, the following question should be answered.

Problem 4.7. Let M be a (countable) conical, cancellative, non-atomic,
strictly perforated, simple refinement monoid, let u2M be a non-zero
element, let D be a non-zero functionally complete soft interval, and let
d¼ r(D). Describe j�1( f ) for every function f2Wd

s(Su).

In the same line, and in order to extend the scope of the results
obtained in this paper, there are two questions that should be answered.

Problem 4.8. Let M be a conical, cancellative, non-atomic, simple
refinement monoid, and let D be a countably generated soft interval. Is
then r0r(D) a countably generated interval?

Problem 4.9. Can we eliminate the hypothesis ‘‘M countable’’ in Propo-
sition 1.5 in order to get [0, x) countably generated?

5034 Ortus and Pardo



An affirmative answer to this question would imply that results about
injectivity are also true for arbitrary C�-algebras of real rank zero or von
Neumann regular rings.
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