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Abstract

A bounded operator T acting on a Hilbert space H is said to be supercyclic if there is a

vector fAH such that the projective orbit flTnf : nX0 and lACg is dense in H: We use a new

method based on a very simple geometric idea that allows us to decide whether an operator is

supercyclic or not. The method is applied to obtain the following result: A composition

operator acting on the Hardy space whose inducing symbol is a parabolic linear-fractional

map of the disk onto a proper subdisk is not supercyclic. This result finishes the

characterization of the supercyclic behavior of composition operators induced by linear

fractional maps and, thus, completes previous work of Bourdon and Shapiro.
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1. Introduction

A bounded operator T acting on a Hilbert space H is said to be cyclic if there is a
vector fAH such that spanfTnf : nX0g is dense in H: In such a case the vector f is
called cyclic. A very strong form of cyclicity is hypercyclicity. An operator T is said
to be hypercyclic if there is a vector fAH such that the orbit fTnf gnX0 is dense in H:
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In this case the vector f is called hypercyclic. The first example of a hypercyclic
operator in the Hilbert space setting goes back to Rolewicz [19] in the late 1960s.
He proved that if B is the backward shift defined on c2; then lB is hypercyclic
whenever jlj > 1: For more on hypercyclicity and related subjects see Grosse-
Erdmann’s survey [13].

A subtler property is supercyclicity. An operator T is said to be supercyclic if there
is a vector f such that flTnf : lAC; n ¼ 0; 1;yg is dense in H: Such a vector f is
said to be supercyclic for T : For instance, the backward shift B acting on c2 is
supercyclic because lB is hypercyclic for jlj > 1: A nice feature is that the orbit of
either a hypercyclic or a supercyclic vector projects densely onto the unit sphere of
H: The first authors that considered supercyclic operators were Hilden and Wallen
[15]. They proved that every unilateral weighted shift is supercyclic. See also Salas’s
recent work [20] in which he completely characterized the supercyclic bilateral
weighted shifts.

At first glance, one might think that every supercyclic operator has a hypercyclic
scalar multiple. But this is not the case. For instance, there are compact supercyclic
unilateral weighted shifts [15]. They cannot have scalar hypercyclic multiples because
each component of the spectrum of a hypercyclic operator must meet the unit circle
[16, Theorem 2.8]. Also, in [12, Theorem 5.2] it is shown that for aa0 the operator
S ¼ aI"T : C"H-C"H is supercyclic if and only if ð1=aÞT : H-H is
hypercyclic. On the other hand, since the adjoint of a hypercyclic operator has
empty point spectrum [16, Corollary 2.4] and this is not the case for such an S; we
find that no scalar multiple of S can be hypercyclic. But in this vein, the most
interesting example is the one given by Héctor Salas [20]. He constructed an
invertible supercyclic bilateral weighted shift such that any scalar multiple of which
fails to be hypercyclic and has empty point spectrum.

Section 2 is devoted to an overview of the Angle Criterion of supercyclicity, which
turns out to be very useful. This criterion has been previously used by Salas and the
second author [17, Sections 5 and 6] to construct non-supercyclic vectors for
supercyclic operators. In the present work, we will show that the criterion can also be
used to show that certain operators, not just vectors, fail to be supercyclic. As a first
application of the Angle Criterion, we will provide a new proof of a result due to
Herrero that asserts that for any supercyclic operator T there is tX0 such that each
connected component of sðTÞ meets the circle jzj ¼ t [14, Proposition 3.1]. In Section
3 we will show that if we add an extra hypothesis to Clancey–Rogers’ Theorem, a
classical theorem that provides sufficient conditions for an operator to be cyclic (see
[5, Theorem 3]), we obtain sufficient conditions for the operator to be supercyclic.

Sections 4 and 5 are the major part of this work and they are devoted to proving
that if j is a linear fractional map that takes the unit disk into itself and is a
parabolic non-automorphism, then the composition operator Cj acting on the
Hardy space is not supercyclic. This result illustrates the use of the Angle Criterion in
a less trivial situation and completes previous work on cyclicity of Bourdon and
Shapiro [4] and Ansari and Bourdon [2, Proposition 4.2]. Consequently, the
supercyclic behavior of composition operators that are induced by linear fractional
maps is completely characterized. From Herrero’s work [14], it is known that, in
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order to determine whether an operator is supercyclic or not, the first thing to do is
to look at its spectrum. The spectrum of Cj is known by Carl Cowen’s work [6,7]. In
fact, our proof of the non-supercyclicity of Cj depends, in an essential way, on very
nice orthogonality properties possessed by certain well-known inner functions that
are eigenfunctions of Cj: These properties allow a construction, based on
Gerschgorin’s theorem about approximation of eigenvalues, that transfers certain
estimates from finite dimensional Cj-invariant subspaces to the Hardy space. These
ideas are intimately related to Ahern and Clark’s work [1] about functions
orthogonal to invariant subspaces.

2. The angle criterion

The known criteria that enable one to prove an operator is not hypercyclic
do not help in disproving supercyclicity. One of the ideas in [17, Section 5] to
construct a non-supercyclic vector in any infinite-dimensional closed subspace M for
certain weighted shifts W consists of finding a vector fAM such that

sup
n

j/W nf ; e0Sj
jjW nf jj

o1;

where e0 is the first vector of the canonical basis of c2: The point is that the whole
orbit fW nf g lies outside a cone around e0: Therefore, scalar multiples of the orbit
cannot approximate e0 and, consequently, f cannot be supercyclic. Now, the
following supercyclicity criterion for vectors, and therefore, for operators follows
immediately.

The Angle Criterion: Let T be a bounded operator on a separable Hilbert space H:
Then f is supercyclic for T if and only if for any non-zero vector gAH

sup
n

j/Tnf ; gSj
jjTnf jj jjgjj

¼ 1:

Remark. We note here that, in the above supremum, it is sufficient to consider all the
positive integers larger than a fixed one.

The most interesting feature of the Angle Criterion is that the scalar multiples
that appear in the definition of supercyclic operator have been absorbed by
the quotient. In this way, supercyclicity becomes easier to handle. To prove that a
given operator T is not supercyclic it is sufficient to show that for any vector fAH
there is g such that condition (2) fails to be true. The proof of the following
proposition [14, Proposition 3.1] is an excellent example of the use of the
Angle Criterion. Roughly speaking, one has to look for two subspaces: in one of
them the operator is ‘‘small’’ and in the other one the operator is ‘‘big’’. We denote
by sðTÞ the spectrum of T :
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Proposition 2.1. Suppose that T : H-H is supercyclic. Then there is tX0 such that

each connected component of sðTÞ meets the circle flAC : jlj ¼ tg:

Proof. The result is trivial if sðTÞ has just one connected component. Thus suppose
that sðTÞ has two or more connected components. If the conclusion of the
proposition does not hold, then we can find t > 0 and non-void compact subsets Ki;

i ¼ 1; 2 with K1CD and K2CC\D; and a possibly void compact subset K3 disjoint
from K1,K2 such that sðtTÞ ¼ K1,K2,K3: The Riesz Decomposition Theorem
(see [18, Theorem 2.10], for instance) implies that H ¼ H1"H2"H3 and tT ¼
T1"T2"T3 with Ti : Hi-Hi and sðTiÞ ¼ Ki; i ¼ 1; 2; 3: It is known and easy to
show that S ¼ T1"T2 is also supercyclic on H1"H2: Now, the spectral radius
formula provides a constant c in ð0; 1Þ such that jjTn

1 jjocn for n large enough.

Analogously, for n large enough there is a constant C > 1 such that jjTn
2 f jj > Cnjj f jj

for any fAH2:
Let f be a supercyclic vector for S; then f ¼ f1"f2; with fiAHi; i ¼ 1; 2: Since f2

must be a supercyclic vector for T2; we find that jjf2jja0: Now, for any non-zero
vector g in the orthogonal complement of H2 we have

j/Snf ; gSj
jjSnf jj jjgjj

¼
j/Tn

1 f1"Tn
2 f2; gSj

jjTn
1 f1"Tn

2 f2jj jjgjj
p

j/Tn
1 f1; gSj

ðjjTn
2 f2jj � jjTn

1 f1jjÞjjgjj
p

cnjj f1jj
ðCn � cnÞjj f2jj

;

which goes to zero as n-N: Therefore, upon applying the Angle Criterion we see
that f is not supercyclic; a contradiction. Thus the result is proved. &

3. Supercyclicity in Clancey–Rogers’ theorem

It is known [11] that when there is a rich supply of eigenvectors, splitting the
spectrum of an operator in two can also be used to prove that certain operators are
hypercyclic or supercyclic. This is now folklore for the specialists, see for instance
Herrero’s characterization of the norm closure of hypercyclic and supercyclic
operators [14]. In this section we will see that the same method applies to show that
many times there is supercyclicity in Clancey–Rogers’ Theorem.

Let srðTÞ denote the right spectrum of T ; that is, the set of complex numbers l
such that T � l is not right invertible. It is a compact set. Also we denote by
rrðTÞ ¼ C\srðTÞ the right resolvent of T : Clancey–Rogers’ Theorem [5, Theorem 3]
asserts that if spanfkerðT � lÞ : lArrðTÞg is dense in H; then T has a dense
set of cyclic vectors. Observe the dualism between the proof below and that of
Proposition 2.1.

Proposition 3.1. Let T be a bounded linear operator on a separable Hilbert space H
such that spanfkerðl� TÞ : lArrðTÞg is dense in H: Suppose also that there is a

positive number t > 0 such that each component of rrðTÞ meets the circle jzj ¼ t: Then

T is supercyclic. Furthermore, ð1=tÞT is hypercyclic.
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Proof. Let Cn; n ¼ 1; 2;y; denote the (possibly finite) collection of components of
ð1=tÞrrðTÞ: Obviously, each of these components meets the unit circle. Since
ð1=tÞrrðTÞ is an open set, we can take two sequences of non-empty open disks fDng
and fD0

ng satisfying DnCCn-fz : jzjo1g and D0
nCCn-fz : jzj > 1g: Consider the

following sets:

X ¼ span kerðT � lÞ : lA
[

Dn

n o
and Y ¼ span kerðT � lÞ : lA

[
D0

n

n o
:

By Lemma 1 in [5] both sets X and Y are dense in H: Since the eigenvalues
corresponding to the eigenvectors in X are o1 in modulus and the eigenvalues
corresponding to the eigenvectors in Y are > 1 in modulus, it can be concluded as in
the proof of Proposition 2.4 in [11] that ð1=tÞT is hypercyclic.

An operator is said to be hyponormal if T%T � TT%
X0: Recently, Bourdon [3]

has proved that no hyponormal operator is supercyclic. An operator is said to be
cohyponormal if its adjoint is hyponormal. The following corollary establishes that
there are many cohyponormal operators that are supercyclic. It is an immediate
consequence of Theorems 1 and 2 in [5] and Proposition 3.1.

Corollary 3.2. Suppose that T is a completely non-normal cohyponormal operator such

that srðTÞ has planar Lebesgue measure zero and there is t > 0 such that each

connected component of rrðTÞ meets the circle jzj ¼ t: Then T is supercyclic.

Remark. Proposition 3.1 as well as Corollary 3.2 have particular interest when rrðTÞ
is connected; they can be applied to many classes of operators, but we will not pursue
this direction here.

Most recently, Feldman, Miller and Miller independently obtained some results
related to the work in this section.

4. Composition operators: background

If j is a holomorphic self-map of the unit disk D into itself, the associated
composition operator Cj maps the holomorphic function f on D to the function

Cjf ¼ f 3 j: It is known that Cj acts boundedly on the Hardy space H2 [8,21].

The simplest composition operators are those induced by linear fractional maps

jðzÞ ¼
az þ b

cz þ d
with ad � bca0

and jðDÞCD: The first results about cyclic linear fractional composition operators
appeared in [24, Chapter 5]. The characterization of the linear fractional
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composition operators that induce cyclic or hypercyclic operators can be found in
[4]. In [22] it is proved that, if j is a parabolic non-automorphism, then scalar
multiples of Cj are never hypercyclic on the Hardy space. Ansari and Bourdon [2]

have proved that composition operators whose inducing symbols have a fixed point
in D are not supercyclic in the Hardy space. This latter result, along with the fact that
supercyclicity is an intermediate property between cyclicity and hypercyclicity,
allows us to determine which linear fractional composition operators are supercyclic
(see [4]) except in one case. The exception is when j is a parabolic non
automorphism. Although in this case no scalar multiple is hypercyclic, there still is
the possibility for Cj to be supercyclic. In the next section, we will prove the

following theorem, which completes the characterization of the supercyclic behavior
of linear fractional composition operators on the Hardy space.

Main Theorem 4.1. Let j be a parabolic non-automorphism that takes the unit disk

into itself. Then Cj acting on the Hardy space is not supercyclic.

We stress here that when considering the whole space of holomorphic functions
HðDÞ; the composition operator Cj is not only supercyclic but also hypercyclic (see

[21, p. 123]). On the other hand, as a consequence of the above theorem and
Theorem 2.5 in [4] we see that if the underlying space is the Hardy space, then Cj is

merely cyclic.
The remainder of this section is devoted to developing those facts that are

necessary to prove our Main Theorem. Recall that a function f in H2 has radial
limits almost everywhere on the unit circle, and the norm of f is given by

jj f jj2 ¼
1

2p

Z p

�p
j f ðeiyÞj2 dy:

Throughout this section j will stand for a parabolic non-automorphism that takes
D into itself. We will obtain a simple formula for j that allows us to compute the
iterates of Cj: By definition, parabolic linear fractional maps have just one fixed

point a: In addition, the fact that jðDÞCD implies that a is on @D: Set cðzÞ ¼ az:
We have CcCjC�1

c ¼ Cc�1
3 j 3 c: Therefore, since supercyclicity is invariant under

similarity, we may assume that a is equal to 1: Using the map z-ð1 þ zÞ=ð1 � zÞ that
takes D onto the right half-plane one easily shows that there exists a complex number
a with Ra > 0 such that j is given by

1 þ jðzÞ
1 � jðzÞ

¼
1 þ z

1 � z
þ a and Ra > 0: ð1Þ

The condition Ra > 0 means that j is not an automorphism of the unit disk. Now,
from (1) we have the following expression:

jðzÞ ¼
ð2 � aÞz þ a

�az þ 2 þ a
: ð2Þ
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Let j0 denote the identity map and jn ¼ j 3 jn�1: The connection between the
iterates of j and the iterates of Cj is given by Cn

j ¼ Cjn
: It follows from (1) that the

following expression for the nth iterate holds:

jnðzÞ ¼
ð2 � naÞz þ na

�naz þ 2 þ na
: ð3Þ

The key point of the proof of our Main Theorem is to get norm estimates from above
and from below of Cj acting on certain subspaces. These subspaces are built from

the eigenfunctions of Cj: Cowen [6] proved that the spectrum of Cj is

fe�at : tX0g,f0g: But for our purposes, it is enough to know the eigenvalues and
eigenfunctions of Cj: For each tX0 we consider the inner function

etðzÞ ¼ exp t
z þ 1

z � 1

� �
:

An easy computation, using (1), shows that

CjetðzÞ ¼ e�atetðzÞ:

Hence, e�at is an eigenvalue corresponding to the eigenfunction etðzÞ: This fact will
be used throughout the proof of the Main Theorem. It is not difficult to show that et;
tX0; are all the eigenfunctions of Cj: In addition, the corresponding eigenvalues are

simple, but we will not make use of this fact.
The following result is well known for specialists and it is already contained in the

proof of Theorem 6.1 in [1]. A different proof can be found in [24]. An alternative
and elementary proof which is based on Laguerre polynomials can be found in [9].
The proof we include here was indicated by Donald Sarason.

Lemma 4.2. The set of eigenfunctions of Cj is an spanning set of H2: That is

spanfet : tX0g ¼ H2:

Proof. Under the standard isometry of H2 onto L2ð0;NÞ; the function et maps to a
multiple of the function that equals 0 on ð0; tÞ and equals to ðx � tÞe�x on ðt;NÞ: The

latter functions are easily seen to span L2ð0;NÞ: &

5. Proof of the Main Theorem

In what follows, the unidimensional subspace generated by a function fAH2

will be denoted by ½ f �: The orthogonal decompositions that precede Lemma 5.1
improve the orthogonal decompositions that were obtained in Ahern and
Clark’s work [1].
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Proof of the Main Theorem. First of all, we will decompose H2 as the orthogonal
sum of subspaces that are nearly invariant under Cj: To this end, we observe that

/et; esS ¼ es�t whenever tXs:

Now, suppose that tat0: We orthogonalize et and et0 by the Gram–Schmidt method

ftt0 ¼ et �/et; et0Set0 ¼ et � e�jt�t0 jet0 :

The point here is that if tot0; then ftt0 is orthogonal not only to et0 but also to es for
any sXt0: Indeed, we have

/ftt0 ; esS ¼ et�s � et�t0et0�s ¼ 0 whenever 0ptot0ps: ð1Þ

Consequently,

/ftt0 ; fst0S ¼ 0 whenever 0ptot0os: ð2Þ

Let t1 be any positive real number. We define the subspaces

Xt1
¼ spanf ftt1

: 0ptot1g and Yt1
¼ spanf ftt1

: t > t1g:

Therefore, Lemma 4.2 along with (2) allows us to obtain the following orthogonal
decomposition:

H2 ¼ Xt1
"½et1

�"Yt1
: ð3Þ

Next, we take an arbitrary real number t2 > t1: We will show that we can decompose

Yt1
in a similar way as H2: As before, for each t > t1 and tat2 we orthogonalize ftt1

and ft2t1
by the Gram–Schmidt method

gt ¼ ftt1
�

/ftt1
; ft2t1

S

jj ft2t1
jj2

ft2t1
:

Again gt is not only orthogonal to ft2t1
but also for t1otot2os we have

/gt; fst1
S ¼/ftt1

; fst1
S�

/ftt1
; ft2t1

S

jj ft2t1
jj2

/ft2t1
; fst1

S

¼ et�s � e2t1�t�s �
ðet�t2 � e2t1�t�t2Þðet2�s � e2t1�t2�sÞ

1 � e2t1�2t2

¼ et�s � e2t1�t�s �
et�s � e2t1�2t2þt�s � e2t1�s�t þ e4t1�2t2�s�t

1 � e2t1�2t2

¼ 0:

Consequently,

/gt; gsS ¼ 0 whenever t1otot2os: ð4Þ
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Now, we consider the subspaces,

Zt1;t2
¼ spanfgt : t1otot2g and Zt2

¼ spanfgt : t > t2g:

The definitions of Yt1
and gt along with (4) yields the following orthogonal

decomposition:

Yt1
¼ Zt1t2

"½ ft2t1
�"Zt2

:

Hence, the following decomposition of H2 holds:

H2 ¼ Xt1
"½et1

�"Zt1t2
"½ ft2t1

�"Zt2
:

Replacing t1 by t2 in the decomposition in (3) we have

H2 ¼ Xt2
"½et2

�"Yt2
;

where Xt2
and Yt2

are defined in the obvious way. On the other hand, one easily
checks that the following identity holds:

Xt1
"½et1

�"Zt1t2
"½ ft2t1

� ¼ Xt2
"½et2

�:

Hence, it follows from the uniqueness of the orthogonal complement of a subspace
that Zt2

¼ Yt2
: Now, we set F ¼ spanfet1

; ft2t1
g ¼ spanfet1

; et2
g: Obviously, F is a

two-dimensional invariant subspace of Cj: Let #H2 denote the quotient space H2=F :

Given a function fAH2 we denote by f̂ its projection onto #H2: Also, given any

subspace Z of H2; its projection onto #H2 will be denoted by Ẑ: Clearly, the
following orthogonal decomposition holds:

#H2 ¼ X̂t1
"Ẑt1;t2

"Ŷt2
: ð5Þ

If fAH2 is any representative of f̂A #H2; then we define Ĉj f̂ ¼ dCjfCjf : As F is invariant

under Cj; the operator Ĉj is well defined. Now we have the advantage that all the

spaces that appear in (5) are invariant under Ĉj: In the remainder of the proof and in

the proof of Lemma 5.1 below it is convenient to have in mind the natural

identification of #H2 as the orthogonal complement of F in the Hardy space. In

particular, as Xt1
is already orthogonal to ft2t1

; we can identify X̂t1
¼ Xt1

=F with
Xt1

=½et1
� and this space can, in turn, be identified with Xt1

: Of course, the

corresponding identifications can also be made for Ŷt2
: In addition, there is also an

obvious identification between the operator Ĉj acting on #H2 and the compression of

Cj to the orthogonal complement of F : In particular, it is possible to identify ĈjjX̂t1

and CjjXt1
: To show the non supercyclicity of Cj we need an estimate of the norm of

the restriction of Ĉn
j to Ŷt2

: To do this, we set Y ¼ spanfet : tXt2g and observe that
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the following equalities hold:

et2
H2 ¼ et2

spanfet : tX0g ¼ spanfetþt2
: tX0g ¼ Y :

In fact, since et2
ðzÞ is an inner function, the multiplication operator Met2

defined by

the pointwise multiplication ðMet2
f ÞðzÞ ¼ et2

ðzÞf ðzÞ is an isometric isomorphism from

H2 onto Y : On the other hand, for any fAH2 we have

Cjðet2
ðzÞf ðzÞÞ ¼ et2

ðjðzÞÞf ðjðzÞÞ ¼ e�t2aet2
ðzÞCjf ðzÞ: ð6Þ

Therefore, we find that Cn
jjY is similar under Met2

to e�nt2aCn
j acting on the Hardy

space. Since Met2
is an isometry, it follows that

jjCn
jjY jj ¼ e�nt2RajjCn

jjj:

Since Yt2
is contained in Y ; we conclude that

jjĈn
jjŶt2

jj ¼ jjCn
jjYt2

jjpe�nt2RajjCn
jjj: ð7Þ

We also need the following lemma whose proof is delayed.

Lemma 5.1. Suppose that t1 > 0 and let Xt1
¼ spanf ftt1

: 0ptpt1g: Then Ĉj is

invertible on X̂t1
¼ Xt1

=F :

An immediate consequence of Lemma 5.1 is that the restriction of Ĉj to X̂t1
is

bounded from below, that is, there is a constant C > 0 such that

jjĈj f̂ jjXCjjf̂ jj ðf̂AX̂t1
Þ: ð8Þ

We have all the necessary ingredients to apply the Angle Criterion. Suppose that Cj

acting on H2 is supercyclic. Therefore, since F is invariant under Cj; it is easy to see

that Ĉj acting on #H2 is also supercyclic (see the proof of Proposition 2.2 in [14]).

Thus assume that f̂ is a supercyclic vector for Ĉj and let f̂t1
and f̂t2

be its orthogonal

projections onto X̂t1
and Ŷt2

; respectively. As the set of supercyclic vectors is dense,

we may suppose that f̂t1
is different from zero. Let #ga0 be any function in Ŷt2

: The
first inequality below is due to the orthogonal decomposition in (5) and the fact that

X̂t1
and Ŷt2

are invariant under Ĉj; the second is due to the Schwarz inequality and

(8); and the third inequality is due to (7)

j/Ĉn
j f̂; #gSj

jjĈn
j f̂ jj jj #gjj

p
j/Ĉn

j f̂t2
; #gSj

jjĈn
j f̂t1

jj jj #gjj
p
jjĈn

jjŶt2
jj jjf̂t2

jj

Cnjjf̂t1
jj

p
jjCjjj

ne�t2nRajjf̂t2
jj

Cnjjf̂t1
jj

:
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Since Ra > 0; we can choose t2 satisfying C�1jjCjjje�t2Rao1 and, then, the last

quantity above tends to zero as n-N: Hence, f̂ cannot be supercyclic; a
contradiction. Therefore, Cj is not supercyclic.

Remark. The similarity in (6) was used in [22] to prove the non-hypercyclicity
of lCj: Alternatively, to obtain the required upper estimate of the norm of

Ĉ n
j on Ŷt2

we could use the techniques of the proof of Lemma 5.1. The

orthogonal decompositions that appeared in Ahern’s and Clark’s work [1] are of
the form

H2 ¼ spanfet � et�tet : 0ptotg"spanfet : tXtg;

and they are what is needed to prove that lCj is not hypercyclic.

Proof of Lemma 5.1. To begin with, we observe that X̂t1
¼ spanfêt : 0ptot1g

and that Ĉjêt ¼ e�atêt for 0ptot1: The proof will be done by constructing the

inverse S of ĈjjX̂t1
: First, S will be defined on spanfêt : 0ptot1g: If P ¼

f0pt1o?otmot1g is any partition of ½0; t1Þ and ci; i ¼ 1;y;m are complex
numbers, then we can define

S
Xm

k¼1

ciêti
¼

Xm

i¼1

eati ciêti
:

As the collection of functions fêt : 0ptot1g is linearly independent, we see that

S is well defined on spanfêt : 0ptot1g: Also, SĈjjX̂t1
¼ ĈjjX̂t1

S is the identity

map on spanfêt : 0ptot1g: Next, we will show that S can be extended to a bounded

operator on X̂t1
: Clearly, it is sufficient to prove that there is a constant C

such that

jjSf̂ jjpCjjf̂ jj ðf̂Aspanfêt : 0ptot1gÞ:

Toward this end, we consider again any partition P as above and observe that

fêt1
;y; êtm

g is a basis of an m-dimensional subspace Ĝm that is invariant under S:
This basis will be replaced by an appropriate orthonormal basis. We set tmþ1 ¼ t1

and consider the functions

#gi ¼ f̂ti ;tiþ1
¼ êti

� eti�tiþ1 êtiþ1
ð1pipmÞ:

Observe that êtmþ1
¼ êt1

is the zero vector in #H2 and, consequently, f̂tm;tmþ1
¼ êtm

:
Obviously, f #g1;y; #gmg spans the same space as fêt1

;y; êtm
g: As a consequence of

(1), we have the following orthogonal relations in the Hardy space H2:

/ftt0 ; fss0S ¼ 0 whenever 0ptot0psos0:
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Now, for 0ptot0ot1 the function ftt0 is orthogonal to et1
and et2

: Therefore, the

above orthogonality relations are transferred to #H2 and we have

/f̂tt0 ; f̂ss0S ¼ 0 whenever 0ptot0psos0ot1:

Consequently, / #gi; #gjS ¼ 0 for iaj: Since the norm of ftt0 in H2 is easily computed

jj ftt0 jj2 ¼ jjet � e�jt�t0 jet0 jj2

¼ jjetjj2 � 2e�2jt�t0 j þ e�2jt�t0 jjjet0 jj2

¼ 1 � e�2jt�t0 j;

the norm of #gi is easily obtained

jj #gi jj #H2 ¼ jjf̂titiþ1
jj #H2 ¼ jj ftitiþ1

jjH2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � e2ðti�tiþ1Þ

p
ð1pipmÞ:

Therefore, an orthonormal basis of Ĝm is formed by the functions

ĥi ¼
1

jj #gijj
ðêti

� eti�tiþ1 êtiþ1
Þ ð1pipmÞ: ð9Þ

Now, we can look for the matrix representation of the restriction of S to the

invariant subspace Ĝm: For 1pjpm we have

Sĥj ¼
1

jj #gj jj
ðeatj êtj

� etj�tjþ1 eatjþ1 êtjþ1
Þ

¼
eatj

jj #gj jj
ðêtj

� eða�1Þðtjþ1�tjÞêtjþ1
Þ

¼
eatj

jj #gj jj
ðêtj

� etj�tjþ1 êtjþ1
þ ðetj�tjþ1 � eða�1Þðtjþ1�tjÞÞêtjþ1

Þ

¼ eatj ĥj þ
etj�tjþ1 ð1 � eaðtjþ1�tj ÞÞ

jj #gj jj
êtjþ1

: ð10Þ

From (9) we have

êtjþ1
¼ jj #gjþ1jjĥjþ1 þ etjþ1�tjþ2 êtjþ2

: ð11Þ

Upon substituting (11) in (10) we obtain

Sĥj ¼ eatj ĥj þ
jj #gjþ1jjetj�tjþ1ð1 � eaðtjþ1�tjÞÞ

jj #gj jj
ĥjþ1

þ
etj�tjþ2ð1 � eaðtjþ1�tjÞÞ

jj #gj jj
êtjþ2

:
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By iterating this procedure we arrive at

Sĥj ¼ eatj ĥj þ
Xm

i¼jþ1

jj #gijjetj�ti ð1 � eaðtjþ1�tjÞÞ
jj #gj jj

ĥi:

Therefore, the matrix representation of the restriction of S to Ĝm is a lower
triangular matrix Am ¼ ðaijÞ; where

aij ¼

0 if ioj;

eatj if i ¼ j;

jj #gi jjetj�ti ð1 � eaðtjþ1�tjÞÞ
jj #gj jj

if i > j:

8>>><>>>:
Since fĥi;y; ĥmg is an orthonormal basis of Ĝm; we have

jjSf̂ jj ¼ jjAmf̂ jjpjjAmjj jjf̂ jj ðf̂AĜmÞ;

where jjAmjj is the norm of the matrix Am; that is, the square root of the maximum of

the eigenvalues of A%
m Am: Therefore, the invertibility of CjjX̂t1

will be established

once we have shown that jjAmjjpC; where C is a constant independent of m and of
the partition P: But it is not an easy task to compute the eigenvalues of an m � m

matrix. Fortunately, it will be sufficient to estimate jjAmjj for m large enough and
only for special choices of the partition P: For each positive integer m we consider
the partition

Pm ¼ ftj ¼ jt1=m : j ¼ 0; 1;y;m � 1g:

We claim that the set

[N
m¼1

spanfêt : tAPmg

is dense in X̂t1
: Let EðsÞ denote the integer valued function defined on the real

numbers by EðsÞ ¼ j if sA½ j; j þ 1Þ: For each positive integer m we consider the
function

kmðsÞ ¼
t1Eðms=t1Þ

m
with sA½0; t1Þ:

Now, consider an arbitrary linear combination f ¼
Pm0

j¼1 cj êsj
; where

0ps1o?osm0ot1: For each positive integer m such that

1

m
pminfðsjþ1 � sjÞ=t1 : j ¼ 1;y;m0g
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(in particular, this implies that mXm0) we take the function f̂m ¼
Pm0

j¼1 cj êkmðsj Þ which

belongs to spanfêt : tAPmg: We have

Xm0

j¼1

cjêkmðsjÞ �
Xm0

j¼1

cjêsj

�����
�����

�����
�����
#H2

p
Xm0

j¼1

jcj j jjêkmðsjÞ � êsj
jj #H2

p
Xm0

j¼1

jcj j jjekmðsjÞ � esj
jjH2

¼
Xm0

j¼1

jcj j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 � 2ekmðsjÞ�sj

p
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 � 2e�t1=m

p Xm0

j¼1

jcj j;

which goes to zero as m-N and our claim follows. Therefore, we may suppose that
the original partition P ¼ f0pt1o?otmot1g is Pm for some positive integer m: In
this way, the entries of the matrix Am have the simpler form

aij ¼

0 if ioj;

eatj if i ¼ j;

etj�ti ð1 � eat1=mÞ if i > j:

8>><>>:
In addition, since spanfêt : tAPmg is contained in spanfêt : tAPm0 g whenever Pm is
contained in Pm0 ; we may consider just partitions Pm where m is as large as desired.
The last ingredient we need to find a common bound for the norm of the matrices
ðaijÞ is the celebrated theorem of Gerschgorin [10] which states that the spectrum of

an m � m matrix B ¼ ðbijÞ is contained in the union of the disks

[m
i¼1

lAC : jbii � ljp
X
jai

jbij j

( )
:

See [23] for an interesting account on this and some related theorems. With
Gerschgorin’s Theorem at hand we can estimate the maximum of the eigenvalues of

A%
m Am: Since Am is a lower triangular matrix, the entries of A%

m Am are

bij ¼
Xm

k¼j

%akiakj ði; j ¼ 1;y;mÞ:

First, we estimate the entries on the diagonal. We have

bii ¼
Xm

k¼i

jakij2 ¼ jaii j2 þ
Xm

k¼iþ1

jakij2:
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Therefore, substituting the values of aij we obtain

jbii j ¼ e2tiRa þ j1 � eat1=mj2
Xm

k¼iþ1

e2ti�2tk

o e2tiRa þ mj1 � eat1=mj2

p e2t1Ra þ 1

for m large enough. Second, we estimate

Xm

j¼1
jai

jbij j ¼
Xm

j¼1
jai

Xm

k¼j

%aki akj

�����
�����: ð12Þ

Now, for jai we have

Xm

k¼j

%akiakj

�����
�����p jajiajj j þ

Xm

k¼jþ1

jakiakj j

¼ etjRaeti�tj j1 � eat1=mj þ j1 � eat1=mj2
Xm

k¼jþ1

etiþtj�2tk

p et1Raet1 j1 � eat1=mj þ et1 mj1 � eat1=mj2:

Thus (12) is less than or equal to

et1Raþt1 mj1 � eat1=mj þ et1 m2j1 � eat1=mj2

and, for m large enough the above quantity is less than

jajt1et1Raþt1 þ jaj2t2
1et1

which only depends on a and t1: Upon applying Gerschgorin’s Theorem we see that
if l is an eigenvalue, then

jljpjl� bii j þ jbii jpM ;

where M is a constant independent of m: It follows that jjAmjjpC for some
constant C independent of m: Therefore, we may conclude that S can be extended

to a bounded linear operator on X̂t1
¼ spanfêt : 0ptot1g that is the inverse of

ĈjjX̂t1
: The proof of Lemma 5.1 and, therefore, that of the Main Theorem is

complete. &

ARTICLE IN PRESS
E.A. Gallardo-Gutiérrez, A. Montes-Rodr!ıguez / Journal of Functional Analysis 203 (2003) 27–43 41



Remark. The constant M in the proof of Lemma 5.1 only depends on a and t1: By
replacing a by na one can get the following estimate for the norm of Sn

jjSnjjpðe2t1nRa þ njajt1et1nRaþt1 þ n2jaj2t2
1et1 þ 1Þ1=2:

Therefore, the spectral radius of the restriction of S to X̂t1
is et1Ra:

6. Concluding remarks

We note here that, with easy modifications, the Angle Criterion also works for
Banach spaces or even for Fréchet spaces. It can be concluded that the Angle
Criterion makes the supercyclicity concept much clearer and the methods in this
work give a transparent idea of how to use it to prove that a given operator is not
supercyclic. We think that it will be very useful in future work on supercyclicity and,
in particular, to solve the following questions posed by Héctor Salas [20].

Question 1. Is the Volterra operator supercyclic?

Question 2. Can a finite rank perturbation of a hyponormal operator be supercyclic?
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