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Abstract

Several classical results on uniform convergence of unconditionally Cauchy series are generalized
to weakly unconditionally Cauchy series. This uniform convergence is characterized through sub-
algebras and subfamilies &f(N). A generalization of the Orlicz—Pettis theorem is also proved by
mean of subalgebras @ (N).
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1. Introduction

Let X be a real Banach space. A serfe§:; x; in X is called weakly unconditionally
Cauchy (wuC) ifd_72, | f(xi)| < +oo, for f € X*, and it is called unconditionally con-
vergent (uc) ify_;2, x-(;) is convergent for every permutatianof N. It is well known
(cf. [7,8]) that the seried ", x; is uc if and only if the serie¥":2; a;x; is convergent
for every(a;);en € €. Itis also well known (cf. [5,7,12]) that a Banach space has a copy
of ¢g if and only if there exists a wuC seri@fﬁlxi in X which is not unconditionally
convergent.
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Let) 72, x; be awuC series. For evey;);cn € co, the serie$ ", a;x; is convergent.
Therefore, the map : co — X defined, for(a;);en € co, by o ((a;)i) =Y ;24 aix; is linear
and continuous. Converselydf: co — X is a continuous linear map thén;2, o (¢;) is a
wuC series and, fofa;) € co, we can writeo ((a;);) = Y_;o4 aio (¢;). In this case,

00 n
o]l =SUD{ Zaixi D () € Bco} =SUD{ Zaixi
i=1 i=1
n n
:sup{ Zeixi : |e,-|=1,neN}=su Z
i=1

i=1
If >72,x; is a wuC series then, fofa;); € ¢, the series) 2, a;x; is conver-
gent in X**, with the x-weak topology. The mag : . — X** defined by f ((a;);) =
*-w Y o4 a;x; is linear and continuous and verifies thigt|| = [|o || (cf. [1,3]).
Let S be a subspace @f,, containingco. Let us denote

. (ai)i € Bey, neN}

fx)

ZfEBx*, I’lGN,.

(1.1)

o
X(S) = {x = (x); e XV Zaixi converges, for alia;); € S}.
i=1

The spaceX (S), endowed with the nornijx|| = supl|| Y72, aixill: (a;)i € Bs}, is a
Banach space (cf. [2,3]). It can be proved thaf verifies (1.1).

With the former notations, the spac&(cp) can be considered as the space of wuC
series inX (it can also be identified with the spaé&(X) of the weakly 1-summing
sequences). The spacé({~) can be identified with the space of uc series. Clearly
X (loo) C X(S) C X(co). These spaces have been extensively studied (cf. [2,8,13-15]).
In this paper we generalize some results, that appear in [2,6,15], in terms of the uncondi-
tionally Cauchy series in the weak topology instead of the norm topology.

2. Uniform convergence of wuC series
Let (¥"),en be a sequence il (co) that converges t8° € X (co). Then

Lo My o0 (ow 3501 @ix!) = %-w 3001 a;x? uniformly in (a;); € By, .

2. If (aj)j € € is such that, fon e N, w 724 a;jx’i =zu, then there existo € X such
thatw- Y5 1 a;x9 = z0 and lim,—. o0 2, = 20.

3. If (aj); € € is such that, forevery e N, 372 ajx’} convergesto somsg, € X then
there exists & € X such tha) 3 ; a;x9 = zo and lim,— oo 24 = z0.

Let (¥"), be a sequence iX(co) and letx% € X(co). It can be checked that if
My 00 w3001 @ix!) = %-w 021 a;x? uniformly in (a;); € B, then lim,_o ¥ =
x%1in X (co). In the next theorem we study if the pointwise convergencaemfzfil a;x}'
to x-w Z}’ila,»xio is sufficient to ensure that® coincides with lim_, », x" so that it does
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not incorrectly presume the limit exists. To solve this question, let us recall some concepts
(cf. [2]).

Let M be a subspace af** such thatX c M. We will say thatX is a M-Grothendieck
space if every (X*, X)-convergent sequence Xi* is o (X*, M)-convergent. It is clear
that a Banach spacé is a Grothendieck space (evesyw-convergent sequence Ki* is
w-convergent) if and only i is X**-Grothendieck.

If Sis a subspace of,, such thaicg C S then£,, can be identified with a subspace
of §**. This can be checked in the following way:fifis the inclusion mapping:co — S
then/** is a linear isometry fronaj* = £ to S**; if (a;); € £xo, We can identify(a;);
with the maph : $* — R defined, forg € $*, by ii(g) = Y72 ajg(e)).

Theorem 2.1. Let S be a £~,-Grothendieck subspace of ¢+, such that co C S. Let (x") be
a sequencein X (co) such that

o
. o
nleoo (*-w Zl a;ix; )
=
existsfor all (a;); € S. Then, there exists x° € X (cg) such that lim,,_, o X" = X0.

Proof. Let us suppose thdk"),, is not a Cauchy sequenceiicg). There exists & > 0
and a subsequen€e’ ),y such that, fok e N, || X" — x"+1|| > §.

For everyk € N, we putzh = (zF);, wherezk = x[' —x[*** for i € N. Clearly,||z¥| > &,
for k e N, and lim,— oo (x-w Y724 a;z!) = 0, for (a;); € S. For everyk € N, let f; € By«
be such that

o

Yol > 2.2)

j=1

let oy : S — X** be the map defined by, ((a;);) = *w Y 12, a;zk and letéy: X** — K
be the map defined b8 (x**) = x**(fi). If (a;) jen € S, we have that

(*-wZajz§>(fk) *-wZa;zﬁ
j=1

j=1
Therefore, lim_, o £kox((a;) ;) = 0 and(£xoy ) is x-w-convergentto O irf*. If we iden-
tify ¢ with a subspace of**, we deduce that
o o
(@j) (o) =Y _ajlio(e)) =Y a;jfi(25),

j=1 j=1

|erox((@));)| = <

for (a;); € €. Therefore, lim_ Zj‘;lajfk(z’;) =0 and((fk(z’]‘.))j)k is weakly con-
vergent to 0 ir¢q, which implies that is norm-convergent to 0. This contradicts (2.2).

Remark 2.2.

1. As a consequence of Theorem 2.1, we have the following rekefit:(x"), be
a sequence in X (£o) such that lim,_, Zfiltix{’ exists for all (;); € £oo. If
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iMoo X7 = 0, for i € N, then lim,—oe 3520, fix? = 322, 13x0 uniformly in
(t;)i € Be,,. This result, whenX is an F-space, was proved by Swartz [15]. Theo-
rem 3.1in [2] can also be obtained as a consequence of Theorem 2.1.

2. It is well known that if 7 is a Boolean algebra anfl is the corresponding Stone
space therf" is a 0-dimensional compact space and the algebra of clopen sBtsin
isomorphic toF. If C(T) is the space of the real-valued continuous functions defined
on T andCo(T) is the subspace «f(T) of the finite-valued functions, thefy(7T) is
dense irC(T).

The Boolean algebra (cf. [16]) has:

(a) The Nikodym (N) property if and only #o(7') is a barrelled space.

(b) The Grothendieck (G) property@i(T') is a Grothendieck space.

(c) The Vitali-Hahn—Saks (VHS) property if and#f has properties (N) and (G).
We will denote byP (N) (resp.¢(N)) the Boolean algebra of the subsetNofresp.
finite or cofinite subsets a¥).

Theorem 2.3. Let F be a Boolean algebra with the VHS property such that ¢ (N) c F and
F issubalgebraof P(N). Let (x),, bea sequencein X (cp). Let ussupposethat there exists
im0 x-w ) ;o4 X7 in X**, for every A € F. There exists X9 such that xl.o =lim, o x/',
%0 e X (co) and lim, o0 ¥* = %% in X (co). As a consequence,

lim *-w E X! =s%-w E xio
n—0o0

i€eA i€eA

uniformlyin A € F.

Proof. Let T be the Stone space d¢f. Clearly,C(T) is linearly isometric to a closed
subspace’ C ¢, with the Grothendieck property. I§g is the subspace of generated
by the sequences with a finite range th¥nis a barrelled space that is denseSinFor
n € N, let us denote by, :S — X** the map defined by, ((4,);) = %w ) 2 a;x].
Let oo, be the restriction ob, to Sp. It is easy to check that, is a continuous lin-
ear map and|o, || = |loo:ll = IIX"]|, for n € N. It is also clear that, for allb;); € So,
iMoo #-w Y 02 bix]' exists. Therefore, the sequenee, ), is pointwise bounded ip.
SinceSy is a barrelled space, there exigfs> 0 such that|o, || = |loo,|| < H, forn € N.
We also have that, fofa;); € S, there exists lim_ - 0,((a;);), becausesy is dense in
S. Since S is a Grothendieck space, we deduce (from Theorem 2.1) that there exists
%% € X (co) such that lim_ ¥ =x°. O

Remark 2.4. A Boolean algebré is called subsequentially complete (SC) [7,11] if every
disjoint sequencéA;); in F has a subsequence with a least upper bound. It can be checked
that Boolean algebras with the property (SC) have the VHS property. In [11], Haydon con-
structed, by transfinite induction, a Boolean algeBgawith the following characteristics:

() Fg is asubalgebra g?(N) such thaw (N) Cc P(N);
(i) Fp is subsequentially complete;
(i) If Ty isthe Stone space d¢fy thenC(Ty) does not have a copy 6f.
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We have, therefore, that Theorem 2.3 can be applied to the Boolean alfgbithe
spaceC(Ty) can isometrically be identified with a closed subspégeof ¢, such that
co C Sy. Theorem 2.1 can be applied $g;, but Sy does not have a copy éf.

In Theorem 2.3 we have supposed tidtas the Vitali-Hahn—Saks property. This prop-
erty does not give information on the supremum and separation characteristict bbs
been obtained interesting results in measure theory by means of this information on the
supremum and separation characteristics [16]. Also, we can mentioned a generalization of
the Orlicz—Pettis theorem in terms of a Boolean algebra with the separation prSpgity
which is defined in the next paragraph.

We will assume thafF is a subfamily of P(N) such thatpo(N) C F, wherego(N) is
the family of finite subsets df, and.F verifies the following separation property [4]: “For
any pair((A;);, (B;);) of disjoint sequences of mutually disjoint elementefN), there
exist an infinite set C N and aB € F such thatdA; C B andB; C N\ B, fori e M.
Then, we will say thatF has the property;.

In our next result we prove that Theorem 2.3 is valid wttéwerifies, instead of Vitali—
Hahn-Saks property, the propedy. Let us first give an example of famil§ in P(N)
with the propertyS;. Let £ the family of subsetst € N such thatA and A¢ have infinite
even numbers and infinite odd numbers. It can be checkedARatl U ¢o(N) has the
former property. Let us observe thatis not subsequentially complete: the union of the
members of any subsequencg #n}), n is not an element aof.

Theorem 2.5. Let X be a Banach space and let F be a subfamily of P(N) such
that ¢,(N) € F and has the property S1. Let (x"),en be a sequence in X (co) such
that lim, (+-w 3" ;4 ") exists for all A € F. Then, there exists %% € X (co) such that

lim,, x" = xY.

Proof. Letus suppose th&t™), is nota Cauchy sequenceicp). There exists aa > 0
and a subsequen¢&*) such that, fok € N, ||x"* — x"*1|| > €. For everyk € N, we put
7% = (%);, wherezF = x[* — x*** for i € N. For everyk € N, let f € By~ be such that

Yo lA(E)] > e 2.3)
j=1

For everyi, j € N, we seta;; = f,»(z?). It is easy to check that the matrix;;);; is such
that:

(i) lim;a;; =0if j eN.
(i) The sequencezjeA a;j)i is convergent for everg € F.
(i) Zj‘;laij is unconditionally convergent for eveiye N.

We will prove that the sequence
(Za) (2.9
jeP i
is convergent, for every C N.
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Let us suppose that there exigts- N such tha(Zjep a;;); is not a Cauchy sequence;
letor > O be such that, for everye N, there exista > k suchthat ) p (ax; —anj)| > a.

Because of the properties (i), (i), and (iii) ¢4;;);;, we can obtain, inductively, three
increasing sequenceék);, (n;);, and(m;); of natural numbers with the following proper-
ties:

(@) k1<ni<ka<np<---.

(b) |Zjec(akij —ap )| <a/8,withC € {1,2,...,m;_1} andi > 1.

(c) |ZjeF,-(akij —an )| >3a/A4if F;=PN{mi_1+1,...,m},fori >1.
(d) |ZjEB(aki./ —an;j) <a/8,withB C{m; +1,m; +2,...}andi > 1.

Let B; ={mj—1+1,...,m;} \ F;, fori > 1. For the pair((F;);, (B;);) we can find

B € N and an infinite subse? € N such that(ZieB a;j)i is convergentF; € B and
B; C B¢ fori € M. However, forie M,i > 1, '

Y @k = an )

JjeB
o
= Z(akij_an,‘j) - Z (ak;j_an;j) - Z(akij_anij) >§’
JEF; JjEB JjEB
Jjsmi-1 j>mi

This contradicts the Cauchy condition @jeg aij)i-
From (i) and (iii), it can inductively be deduced that there exists the increasing sequences
(ir)r and(m, ), of natural numbers with the following properties:

(i) mr+1<mpypif reN.
(i) X jeclaijl <e/4ifCC{L,....my_a}.
(i) > ;eplaijl <€/4if B S {m,, ...}

Hence, by (2.3) for every € N is Zje(mrfl)mr) la;, j| > €/2. For everyr > 1, let
Ar={jemr—1,my): a;,; >0} and B, = {j € (m,—1,m,): a; ; <0} be; then, either
| 2" jea, ai,j1 > €/5 for an infinite number of indicesor | 3,5 i, j| > €/5 for an infi-
nite number of indices.

Let us suppose thaf = {r e N: r > 1 and| ZjeA, a;, j| > €/5} is an infinite set. For
eachi € N we can consider the measutg: P(N) — R defined byu; (P) = Zjepaij.
It follows, from the Vitali-Hahn—Saks Theorem and (2.4), that the sequgngeis uni-
formly strongly additive; i.e.(u; (A ;)); convergesto zero uniformly ine N, where(A4 ;) ;
is a disjoint sequence @ (N). However,|u; (A,)| > €/5 for everyr € M. This contradic-
tion proves the theorem.o

JEB,

3. Boolean algebras and unconditionally convergence of series

In this section we obtain generalization of the Orlicz—Pettis theorem on unconditional
convergence of series.
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Definition 3.1. Let 7 be a subalgebra 6?(N) such thatp (N) C F. Let) ;°, x; be a series
in the spaceX. We will say that) 2, x; is F-convergent (resp. weaklf-convergent) if
Y ica Xi is convergent (resp. weakly convergent), for evarg 7.

Theorem 3.2. Let 7 bea subalgebra of P(N) suchthat ¢ (N) C F. Let > 72, x; beaseries
inX.

1. If F hasthe VHSproperty and )77, x; isweakly F-convergent, then 3 ":°; x; isuc.

2. If 7 hasthe G property and )72, x; is wuC and weakly F-convergent then >, x;
isuc.

3. If F has the N property and Y 2, f(x;) is F-convergent for every f € X*, then
Y2 xi iswuC.

Pr oof.

1. Let) 72, x; be a weaklyF-convergent series. For simplicity of notation we write
instead ofw-) ;4 x;, if A€ F. We can assume thatis a separable space.
Let us suppose thg;°, x; is not unconditionally convergent. Let> 0 be such that
for everyn € N there exists a finite sét C N such that inf" > n and|| >, _p xill > €.
Inductively, it can be obtained a disjoint sequeKeg), «n Of finite subsets oN such
that, forn e N,

Supk, < inf Fna

and|| Zian xi|| > €. For eachn e N let f,, € Sx+ be such that

fn<2xi> > €.

i€Fy

There exists a subsequeng®;); of (f,).» and fo € X* such that
*-w lim fnj = fo.
J

For everyj e N let us consider the finitely additive measyrg: 7 — R defined,
for A e F, by u;(A) = fp;(xa). For A € 7, we have that lim_, o 1 (A) = fo(xa).
SinceF has the VHS propertyu ;) is uniformly strongly additive (i.e., itA;);en is
a sequence of disjoint elements Bfthen limy_, o, 1t (A;) = 0 uniformly in j € N).
This contradicts that

jj(Fo,) = fn,.< > x,») > €

i€E1/

for j e N.

2. Since) 2, x; is wuC, it is easy to check that the preceding sequenG,cn is
uniformly bounded inF.

3. If Fis (N) and) 2, «; is a F-convergent series ik, then it can be checked that
Yo leil <00[9,10]. O
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Remark 3.3.

1. Let us assume tha does not have a copy @b. If F is a subalgebra P (N) with
the property (N) and is such thatN) c P(N) then everyF-convergent series iX is
unconditionally convergent.

2. If Sy is the space of sequences we have considered in Remark 2.4 {{Sgn) =
X ({5) andSy does not have a copy @f,.

3. Itcan be proved [4] that the former theorem remains valil i§ a subfamily ofP (N)
such thatpo(N) € F andF has the propert§;.

4. Some open problems on the subject we are studying are the following:

(i) To characterize the subalgebraf P (N) such that every weaklg-convergent
series is unconditionally convergent.
(ii) To determine the subalgebr&sof P(N) for which Theorem 2.3 is valid.
(iii) To characterize the subspacg®f £, for which Theorem 2.1 is valid.
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