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Abstract

Several classical results on uniform convergence of unconditionally Cauchy series are gen
to weakly unconditionally Cauchy series. This uniform convergence is characterized throug
algebras and subfamilies ofP(N). A generalization of the Orlicz–Pettis theorem is also proved
mean of subalgebras ofP(N).
 2003 Elsevier Inc. All rights reserved.

Keywords: Uniform convergence; Unconditionally Cauchy series; Weakly unconditionally Cauchy series;
Boolean algebras

1. Introduction

Let X be a real Banach space. A series
∑∞

i=1 xi in X is called weakly unconditionall
Cauchy (wuC) if

∑∞
i=1 |f (xi)| < +∞, for f ∈ X∗, and it is called unconditionally con

vergent (uc) if
∑∞

i=1 xπ(i) is convergent for every permutationπ of N. It is well known
(cf. [7,8]) that the series

∑∞
i=1 xi is uc if and only if the series

∑∞
i=1 aixi is convergen

for every(ai)i∈N ∈ 
∞. It is also well known (cf. [5,7,12]) that a Banach space has a c
of c0 if and only if there exists a wuC series

∑∞
i=1 xi in X which is not unconditionally

convergent.
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Let
∑∞

i=1 xi be a wuC series. For every(ai)i∈N ∈ c0, the series
∑∞

i=1 aixi is convergent
Therefore, the mapσ : c0 → X defined, for(ai)i∈N ∈ c0, by σ((ai)i) =∑∞

i=1 aixi is linear
and continuous. Conversely, ifσ : c0 → X is a continuous linear map then

∑∞
i=1 σ(ei) is a

wuC series and, for(ai) ∈ c0, we can writeσ((ai)i ) =∑∞
i=1 aiσ (ei). In this case,

‖σ‖ = sup

{∥∥∥∥∥
∞∑

i=1

aixi

∥∥∥∥∥: (ai)i ∈ Bc0

}
= sup

{∥∥∥∥∥
n∑

i=1

aixi

∥∥∥∥∥: (ai)i ∈ Bc0, n ∈ N

}

= sup

{∥∥∥∥∥
n∑

i=1

εixi

∥∥∥∥∥: |εi | = 1, n ∈ N

}
= sup

{
n∑

i=1

∥∥∥∥∥f (xi)

∥∥∥∥∥: f ∈ BX∗, n ∈ N

}
.

(1.1)

If
∑∞

i=1 xi is a wuC series then, for(ai)i ∈ 
∞, the series
∑∞

i=1 aixi is conver-
gent in X∗∗, with the ∗-weak topology. The mapf : 
∞ → X∗∗ defined byf ((ai)i) =
∗-w

∑∞
i=1 aixi is linear and continuous and verifies that‖f ‖ = ‖σ‖ (cf. [1,3]).

Let S be a subspace of
∞ containingc0. Let us denote

X(S) =
{

x = (xi)i ∈ XN:
∞∑

i=1

aixi converges, for all(ai)i ∈ S

}
.

The spaceX(S), endowed with the norm‖x‖ = sup{‖∑∞
i=1 aixi‖: (ai)i ∈ BS}, is a

Banach space (cf. [2,3]). It can be proved that‖x‖ verifies (1.1).
With the former notations, the spaceX(c0) can be considered as the space of w

series inX (it can also be identified with the space
ω
1 (X) of the weakly 1-summing

sequences). The spaceX(
∞) can be identified with the space of uc series. Cle
X(
∞) ⊂ X(S) ⊂ X(c0). These spaces have been extensively studied (cf. [2,8,13–
In this paper we generalize some results, that appear in [2,6,15], in terms of the un
tionally Cauchy series in the weak topology instead of the norm topology.

2. Uniform convergence of wuC series

Let (xn)n∈N be a sequence inX(c0) that converges tox0 ∈ X(c0). Then

1. limn→∞(∗-w
∑∞

i=1 aix
n
i ) = ∗-w

∑∞
i=1 aix

0
i uniformly in (ai)i ∈ B
∞ .

2. If (aj )j ∈ 
∞ is such that, forn ∈ N, w
∑∞

j=1 ajxn
j = zn, then there existz0 ∈ X such

thatw-
∑∞

j=1 aj x0
j = z0 and limn→∞ zn = z0.

3. If (aj )j ∈ 
∞ is such that, for everyn ∈ N,
∑∞

j=1 aj xn
j converges to somezn ∈ X then

there exists az0 ∈ X such that
∑∞

j=1 aj x0
j = z0 and limn→∞ zn = z0.

Let (xn)n be a sequence inX(c0) and let x0 ∈ X(c0). It can be checked that
limn→∞(∗-w

∑∞
i=1 aix

n
i ) = ∗-w

∑∞
i=1 aix

0
i uniformly in (ai)i ∈ B
∞ then limn→∞ xn =

x0 in X(c0). In the next theorem we study if the pointwise convergence of∗-w
∑∞

i=1 aix
n
i

to ∗-w
∑∞

i=1 aix
0 is sufficient to ensure thatx0 coincides with limn→∞ xn so that it does
i
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ce
not incorrectly presume the limit exists. To solve this question, let us recall some con
(cf. [2]).

Let M be a subspace ofX∗∗ such thatX ⊂ M. We will say thatX is aM-Grothendieck
space if everyσ(X∗,X)-convergent sequence inX∗ is σ(X∗,M)-convergent. It is clea
that a Banach spaceX is a Grothendieck space (every∗-w-convergent sequence inX∗ is
w-convergent) if and only ifX is X∗∗-Grothendieck.

If S is a subspace of
∞ such thatc0 ⊂ S then
∞ can be identified with a subspa
of S∗∗. This can be checked in the following way: ifI is the inclusion mappingI : c0 → S

thenI∗∗ is a linear isometry fromc∗∗
0 ≡ 
∞ to S∗∗; if (aj )j ∈ 
∞, we can identify(aj )j

with the maph : S∗ → R defined, forg ∈ S∗, by h(g) =∑∞
j=1 ajg(ej ).

Theorem 2.1. Let S be a 
∞-Grothendieck subspace of 
∞ such that c0 ⊂ S. Let (xn) be
a sequence in X(c0) such that

lim
n→∞

(
∗-w

∞∑
i=1

aix
n
i

)

exists for all (ai)i ∈ S. Then, there exists x0 ∈ X(c0) such that limn→∞ xn = x0.

Proof. Let us suppose that(xn)n is not a Cauchy sequence inX(c0). There exists aδ > 0
and a subsequence(xnk )k∈N such that, fork ∈ N, ‖xnk − xnk+1‖ > δ.

For everyk ∈ N, we putzk = (zk
i )i , wherezk

i = x
nk

i −x
nk+1
i for i ∈ N. Clearly,‖zk‖ > δ,

for k ∈ N, and limn→∞(∗-w
∑∞

i=1 aiz
n
i ) = 0, for (ai)i ∈ S. For everyk ∈ N, let fk ∈ BX∗

be such that
∞∑

j=1

∣∣fk

(
zk

j

)∣∣> δ, (2.2)

let σk : S → X∗∗ be the map defined byσk((ai)i) = ∗-w
∑∞

i=1 aiz
k
i and let
k : X∗∗ → K

be the map defined by
k(x∗∗) = x∗∗(fk). If (aj )j∈N ∈ S, we have that

∣∣
kσk

(
(aj )j

)∣∣=
∣∣∣∣∣
(

∗-w
∞∑

j=1

aj zk
j

)
(fk)

∣∣∣∣∣�
∥∥∥∥∥∗-w

∞∑
j=1

aj zk
j

∥∥∥∥∥.

Therefore, limk→∞ 
kσk((aj )j ) = 0 and(
kσk)k is ∗-w-convergent to 0 inS∗. If we iden-
tify 
∞ with a subspace ofS∗∗, we deduce that

(aj )(
kσk) =
∞∑

j=1

aj 
kσk(ej ) =
∞∑

j=1

aj fk

(
zk

j

)
,

for (aj )j ∈ 
∞. Therefore, limk→∞
∑∞

j=1 ajfk(zk
j ) = 0 and((fk(zk

j ))j )k is weakly con-
vergent to 0 in
1, which implies that is norm-convergent to 0. This contradicts (2.2).✷
Remark 2.2.

1. As a consequence of Theorem 2.1, we have the following result:Let (xn)n be
a sequence in X(
∞) such that limn→∞

∑∞
i=1 tix

n exists for all (ti )i ∈ 
∞. If
i
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limn→∞ xn
i = x0

i , for i ∈ N, then limn→∞
∑∞

i=1 tix
n
i = ∑∞

i=1 tix
0
i uniformly in

(ti)i ∈ B
∞ . This result, whenX is an F -space, was proved by Swartz [15]. The
rem 3.1 in [2] can also be obtained as a consequence of Theorem 2.1.

2. It is well known that ifF is a Boolean algebra andT is the corresponding Ston
space thenT is a 0-dimensional compact space and the algebra of clopen sets iT is
isomorphic toF . If C(T ) is the space of the real-valued continuous functions defi
on T andC0(T ) is the subspace ofC(T ) of the finite-valued functions, thenC0(T ) is
dense inC(T ).
The Boolean algebra (cf. [16])F has:
(a) The Nikodym (N) property if and only ifC0(T ) is a barrelled space.
(b) The Grothendieck (G) property ifC(T ) is a Grothendieck space.
(c) The Vitali–Hahn–Saks (VHS) property if and ifF has properties (N) and (G).
We will denote byP(N) (resp.φ(N)) the Boolean algebra of the subsets ofN (resp.
finite or cofinite subsets ofN).

Theorem 2.3. Let F be a Boolean algebra with the VHS property such that φ(N) ⊂F and
F is subalgebra of P(N). Let (xn)n be a sequence in X(c0). Let us suppose that there exists
limn→∞ ∗-w

∑
i∈A xn

i in X∗∗, for every A ∈F . There exists x0 such that x0
i = limn→∞ xn

i ,
x0 ∈ X(c0) and limn→∞ xn = x0 in X(c0). As a consequence,

lim
n→∞ ∗-w

∑
i∈A

xn
i = ∗-w

∑
i∈A

x0
i

uniformly in A ∈F .

Proof. Let T be the Stone space ofF . Clearly, C(T ) is linearly isometric to a close
subspaceS ⊂ 
∞ with the Grothendieck property. IfS0 is the subspace ofS generated
by the sequences with a finite range thenS0 is a barrelled space that is dense inS. For
n ∈ N, let us denote byσn : S → X∗∗ the map defined byσn((ai)i) = ∗-w

∑∞
i=1 aix

n
i .

Let σ0n be the restriction ofσn to S0. It is easy to check thatσn is a continuous lin-
ear map and‖σn‖ = ‖σ0n‖ = ‖xn‖, for n ∈ N. It is also clear that, for all(bi)i ∈ S0,
limn→∞ ∗-w

∑∞
i=1 bix

n
i exists. Therefore, the sequence(σ0n)n is pointwise bounded inS0.

SinceS0 is a barrelled space, there existsH > 0 such that‖σn‖ = ‖σ0n‖ < H , for n ∈ N.
We also have that, for(ai)i ∈ S, there exists limn→∞ σn((ai)i), becauseS0 is dense in
S. SinceS is a Grothendieck space, we deduce (from Theorem 2.1) that there
x0 ∈ X(c0) such that limn→∞ xn = x0. ✷
Remark 2.4. A Boolean algebraF is called subsequentially complete (SC) [7,11] if ev
disjoint sequence(Ai)i in F has a subsequence with a least upper bound. It can be ch
that Boolean algebras with the property (SC) have the VHS property. In [11], Haydon
structed, by transfinite induction, a Boolean algebraFH with the following characteristics

(i) FH is a subalgebra ofP(N) such thatφ(N) ⊂P(N);
(ii) FH is subsequentially complete;
(iii) If TH is the Stone space ofFH thenC(TH ) does not have a copy of
∞.



A. Aizpuru et al. / J. Math. Anal. Appl. 284 (2003) 89–96 93

p-

on the
tion of

r

the
We have, therefore, that Theorem 2.3 can be applied to the Boolean algebraFH . The
spaceC(TH ) can isometrically be identified with a closed subspaceSH of 
∞ such that
c0 ⊂ SH . Theorem 2.1 can be applied toSH , butSH does not have a copy of
∞.

In Theorem 2.3 we have supposed thatF has the Vitali–Hahn–Saks property. This pro
erty does not give information on the supremum and separation characteristics ofF . It has
been obtained interesting results in measure theory by means of this information
supremum and separation characteristics [16]. Also, we can mentioned a generaliza
the Orlicz–Pettis theorem in terms of a Boolean algebra with the separation propertyS1 [4]
which is defined in the next paragraph.

We will assume thatF is a subfamily ofP(N) such thatφ0(N) ⊆ F , whereφ0(N) is
the family of finite subsets ofN, andF verifies the following separation property [4]: “Fo
any pair((Ai)i, (Bi)i) of disjoint sequences of mutually disjoint elements ofφ0(N), there
exist an infinite setM ⊆ N and aB ∈ F such thatAi ⊆ B andBi ⊆ N \ B, for i ∈ M.”
Then, we will say thatF has the propertyS1.

In our next result we prove that Theorem 2.3 is valid whenF verifies, instead of Vitali–
Hahn–Saks property, the propertyS1. Let us first give an example of familyF in P(N)

with the propertyS1. Let L the family of subsetsA ⊆ N such thatA andAc have infinite
even numbers and infinite odd numbers. It can be checked thatF = L ∪ φ0(N) has the
former property. Let us observe thatF is not subsequentially complete: the union of
members of any subsequence of({2n})n∈N is not an element ofF .

Theorem 2.5. Let X be a Banach space and let F be a subfamily of P(N) such
that φo(N) ⊆ F and has the property S1. Let (xn)n∈N be a sequence in X(c0) such
that limn(∗-w

∑
j∈A xn

j ) exists for all A ∈ F . Then, there exists x0 ∈ X(c0) such that

limn xn = x0.

Proof. Let us suppose that(xn)n is not a Cauchy sequence inX(c0). There exists anε > 0
and a subsequence(xnk ) such that, fork ∈ N, ||xnk − xnk+1|| > ε. For everyk ∈ N, we put
zk = (zk

i )i , wherezk
i = x

nk

i − x
nk+1
i for i ∈ N. For everyk ∈ N, let fk ∈ BX∗ be such that

∞∑
j=1

∣∣fk

(
zk

j

)∣∣> ε. (2.3)

For everyi, j ∈ N, we setaij = fi(z
i
j ). It is easy to check that the matrix(aij )ij is such

that:

(i) lim i aij = 0 if j ∈ N.
(ii) The sequence(

∑
j∈A aij )i is convergent for everyA ∈ F .

(iii)
∑∞

j=1 aij is unconditionally convergent for everyi ∈ N.

We will prove that the sequence(∑
j∈P

aij

)
i

(2.4)

is convergent, for everyP ⊆ N.
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Let us suppose that there existsP ⊆ N such that(
∑

j∈P aij )i is not a Cauchy sequenc
let α > 0 be such that, for everyk ∈ N, there existsn > k such that|∑j∈P (akj −anj )| > α.

Because of the properties (i), (ii), and (iii) of(aij )ij , we can obtain, inductively, thre
increasing sequences(ki)i , (ni)i , and(mi)i of natural numbers with the following prope
ties:

(a) k1 < n1 < k2 < n2 < · · · .
(b) |∑j∈C(akij − anij )| < α/8, with C ⊆ {1,2, . . . ,mi−1} andi > 1.
(c) |∑j∈Fi

(akij − anij )| > 3α/4 if Fi = P ∩ {mi−1 + 1, . . . ,mi}, for i > 1.
(d) |∑j∈B(akij − anij )| < α/8, with B ⊆ {mi + 1,mi + 2, . . .} andi > 1.

Let Bi = {mi−1 + 1, . . . ,mi} \ Fi , for i > 1. For the pair((Fi)i, (Bi)i) we can find
B ⊆ N and an infinite subsetM ⊆ N such that(

∑
j∈B aij )i is convergent,Fi ⊆ B and

Bi ⊆ Bc for i ∈ M. However, fori ∈ M, i > 1,∣∣∣∣∑
j∈B

(akij − anij )

∣∣∣∣
�
∣∣∣∣∑

j∈Fi

(akij − anij )

∣∣∣∣−
∣∣∣∣∣
∑
j∈B

j�mi−1

(akij − anij )

∣∣∣∣∣−
∣∣∣∣∣
∑
j∈B
j>mi

(akij − anij )

∣∣∣∣∣>
α

2
.

This contradicts the Cauchy condition for(
∑

j∈B aij )i .
From (i) and (iii), it can inductively be deduced that there exists the increasing sequ

(ir)r and(mr)r of natural numbers with the following properties:

(i) mr + 1 < mr+1 if r ∈ N.
(ii)

∑
j∈C |air j | < ε/4 if C ⊆ {1, . . . ,mr−1}.

(iii)
∑

j∈B |air j | < ε/4 if B ⊆ {mr, . . .}.

Hence, by (2.3) for everyr ∈ N is
∑

j∈(mr−1,mr ) |airj | > ε/2. For everyr > 1, let
Ar = {j ∈ (mr−1,mr): air j � 0} and Br = {j ∈ (mr−1,mr): air j < 0} be; then, eithe
|∑j∈Ar

airj | > ε/5 for an infinite number of indicesr or |∑j∈Br
air j | > ε/5 for an infi-

nite number of indicesr.
Let us suppose thatM = {r ∈ N: r > 1 and|∑j∈Ar

air j | > ε/5} is an infinite set. Fo
eachi ∈ N we can consider the measureµi :P(N) → R defined byµi(P ) =∑

j∈P aij .
It follows, from the Vitali–Hahn–Saks Theorem and (2.4), that the sequence(µi)i is uni-
formly strongly additive; i.e.,(µi(Aj ))j converges to zero uniformly ini ∈ N, where(Aj )j

is a disjoint sequence ofP(N). However,|µi(Ar)| > ε/5 for everyr ∈ M. This contradic-
tion proves the theorem.✷

3. Boolean algebras and unconditionally convergence of series

In this section we obtain generalization of the Orlicz–Pettis theorem on uncondi
convergence of series.
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Definition 3.1. LetF be a subalgebra ofP(N) such thatφ(N) ⊂F . Let
∑∞

i=1 xi be a series
in the spaceX. We will say that

∑∞
i=1 xi is F -convergent (resp. weaklyF -convergent) if∑

i∈A xi is convergent (resp. weakly convergent), for everyA ∈F .

Theorem 3.2. Let F be a subalgebra of P(N) such that φ(N) ⊂F . Let
∑∞

i=1 xi be a series
in X.

1. If F has the VHS property and
∑∞

i=1 xi is weakly F -convergent, then
∑∞

i=1 xi is uc.
2. If F has the G property and

∑∞
i=1 xi is wuC and weakly F -convergent then

∑∞
i=1 xi

is uc.
3. If F has the N property and

∑∞
i=1 f (xi) is F -convergent for every f ∈ X∗, then∑∞

i=1 xi is wuC.

Proof.

1. Let
∑∞

i=1 xi be a weaklyF -convergent series. For simplicity of notation we writexA

instead ofw-
∑

i∈A xi , if A ∈ F . We can assume thatX is a separable space.
Let us suppose that

∑∞
i=1 xi is not unconditionally convergent. Letε > 0 be such tha

for everyn ∈ N there exists a finite setF ⊂ N such that infF > n and‖∑i∈F xi‖ > ε.
Inductively, it can be obtained a disjoint sequence(Fn)n∈N of finite subsets ofN such
that, forn ∈ N,

supFn < inf Fn+1

and‖∑i∈Fn
xi‖ > ε. For eachn ∈ N let fn ∈ SX∗ be such that

fn

(∑
i∈Fn

xi

)
> ε.

There exists a subsequence(fnj )j of (fn)n andf0 ∈ X∗ such that

∗-w lim
j

fnj = f0.

For everyj ∈ N let us consider the finitely additive measureµj :F → R defined,
for A ∈ F , by µj (A) = fnj (xA). For A ∈ F , we have that limj→∞ µj (A) = f0(xA).
SinceF has the VHS property,(µj ) is uniformly strongly additive (i.e., if(Ai)i∈N is
a sequence of disjoint elements ofF then limi→∞ µj (Ai) = 0 uniformly in j ∈ N).
This contradicts that

µj (Fnj ) = fnj

( ∑
i∈Fnj

xi

)
> ε

for j ∈ N.
2. Since

∑∞
i=1 xi is wuC, it is easy to check that the preceding sequence(µn)n∈N is

uniformly bounded inF .
3. If F is (N) and

∑∞
i=1 αi is a F -convergent series inR, then it can be checked th∑∞

i=1 |αi | < ∞ [9,10]. ✷
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Remark 3.3.

1. Let us assume thatX does not have a copy ofc0. If F is a subalgebra ofP(N) with
the property (N) and is such thatφ(N) ⊂P(N) then everyF -convergent series inX is
unconditionally convergent.

2. If SH is the space of sequences we have considered in Remark 2.4 thenX(SH ) =
X(
∞) andSH does not have a copy of
∞.

3. It can be proved [4] that the former theorem remains valid ifF is a subfamily ofP(N)

such thatφ0(N) ⊆F andF has the propertyS1.
4. Some open problems on the subject we are studying are the following:

(i) To characterize the subalgebrasF of P(N) such that every weaklyF -convergent
series is unconditionally convergent.

(ii) To determine the subalgebrasF of P(N) for which Theorem 2.3 is valid.
(iii) To characterize the subspacesS of 
∞ for which Theorem 2.1 is valid.
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