

WWW.MATHEMATICSWEB.ORG

*Journal of* MATHEMATICAL ANALYSIS AND APPLICATIONS

J. Math. Anal. Appl. 284 (2003) 89-96

www.elsevier.com/locate/jmaa

# Boolean algebras and uniform convergence of series $\stackrel{\text{\tiny{$\varpi$}}}{\xrightarrow{}}$

A. Aizpuru, A. Gutiérrez-Dávila, and F.J. Pérez-Fernández\*

Departamento de Matemáticas, Universidad de Cádiz, Apdo. 40, 11510-Puerto Real, Cádiz, Spain

Received 28 January 2002 Submitted by J. Diestel

#### Abstract

Several classical results on uniform convergence of unconditionally Cauchy series are generalized to weakly unconditionally Cauchy series. This uniform convergence is characterized through sub-algebras and subfamilies of  $\mathcal{P}(\mathbb{N})$ . A generalization of the Orlicz–Pettis theorem is also proved by mean of subalgebras of  $\mathcal{P}(\mathbb{N})$ .

© 2003 Elsevier Inc. All rights reserved.

*Keywords:* Uniform convergence; Unconditionally Cauchy series; Weakly unconditionally Cauchy series; Boolean algebras

## 1. Introduction

Let *X* be a real Banach space. A series  $\sum_{i=1}^{\infty} x_i$  in *X* is called weakly unconditionally Cauchy (wuC) if  $\sum_{i=1}^{\infty} |f(x_i)| < +\infty$ , for  $f \in X^*$ , and it is called unconditionally convergent (uc) if  $\sum_{i=1}^{\infty} x_{\pi(i)}$  is convergent for every permutation  $\pi$  of  $\mathbb{N}$ . It is well known (cf. [7,8]) that the series  $\sum_{i=1}^{\infty} x_i$  is uc if and only if the series  $\sum_{i=1}^{\infty} a_i x_i$  is convergent for every  $(a_i)_{i \in \mathbb{N}} \in \ell_{\infty}$ . It is also well known (cf. [5,7,12]) that a Banach space has a copy of  $c_0$  if and only if there exists a wuC series  $\sum_{i=1}^{\infty} x_i$  in *X* which is not unconditionally convergent.

<sup>\*</sup> Supported in part by PAI II of CEJA, under Grant FQM-257.

<sup>\*</sup> Corresponding author.

*E-mail addresses:* antonio.aizpuru@uca.es (A. Aizpuru), antonio.gutierrez@uca.es (A. Gutiérrez-Dávila), javier.perez@uca.es (F.J. Pérez-Fernández).

<sup>0022-247</sup>X/ $\$  – see front matter © 2003 Elsevier Inc. All rights reserved. doi:10.1016/S0022-247X(03)00241-5

Let  $\sum_{i=1}^{\infty} x_i$  be a wuC series. For every  $(a_i)_{i \in \mathbb{N}} \in c_0$ , the series  $\sum_{i=1}^{\infty} a_i x_i$  is convergent. Therefore, the map  $\sigma : c_0 \to X$  defined, for  $(a_i)_{i \in \mathbb{N}} \in c_0$ , by  $\sigma((a_i)_i) = \sum_{i=1}^{\infty} a_i x_i$  is linear and continuous. Conversely, if  $\sigma : c_0 \to X$  is a continuous linear map then  $\sum_{i=1}^{\infty} \sigma(e_i)$  is a wuC series and, for  $(a_i) \in c_0$ , we can write  $\sigma((a_i)_i) = \sum_{i=1}^{\infty} a_i \sigma(e_i)$ . In this case,

$$\|\sigma\| = \sup\left\{ \left\| \sum_{i=1}^{\infty} a_i x_i \right\| : (a_i)_i \in B_{c_0} \right\} = \sup\left\{ \left\| \sum_{i=1}^n a_i x_i \right\| : (a_i)_i \in B_{c_0}, \ n \in \mathbb{N} \right\} \\ = \sup\left\{ \left\| \sum_{i=1}^n \epsilon_i x_i \right\| : |\epsilon_i| = 1, \ n \in \mathbb{N} \right\} = \sup\left\{ \sum_{i=1}^n \left\| f(x_i) \right\| : \ f \in B_{X^*}, \ n \in \mathbb{N} \right\}.$$
(1.1)

If  $\sum_{i=1}^{\infty} x_i$  is a wuC series then, for  $(a_i)_i \in \ell_{\infty}$ , the series  $\sum_{i=1}^{\infty} a_i x_i$  is convergent in  $X^{**}$ , with the \*-weak topology. The map  $f: \ell_{\infty} \to X^{**}$  defined by  $f((a_i)_i) =$ \*- $w \sum_{i=1}^{\infty} a_i x_i$  is linear and continuous and verifies that  $||f|| = ||\sigma||$  (cf. [1,3]).

Let S be a subspace of  $\ell_{\infty}$  containing  $c_0$ . Let us denote

$$X(S) = \left\{ \overline{x} = (x_i)_i \in X^{\mathbb{N}} \colon \sum_{i=1}^{\infty} a_i x_i \text{ converges, for all } (a_i)_i \in S \right\}.$$

The space X(S), endowed with the norm  $\|\overline{x}\| = \sup\{\|\sum_{i=1}^{\infty} a_i x_i\|: (a_i)_i \in B_S\}$ , is a Banach space (cf. [2,3]). It can be proved that  $\|\overline{x}\|$  verifies (1.1).

With the former notations, the space  $X(c_0)$  can be considered as the space of wuC series in X (it can also be identified with the space  $\ell_1^{\omega}(X)$  of the weakly 1-summing sequences). The space  $X(\ell_{\infty})$  can be identified with the space of uc series. Clearly  $X(\ell_{\infty}) \subset X(S) \subset X(c_0)$ . These spaces have been extensively studied (cf. [2,8,13–15]). In this paper we generalize some results, that appear in [2,6,15], in terms of the unconditionally Cauchy series in the weak topology instead of the norm topology.

## 2. Uniform convergence of wuC series

Let  $(\overline{x}^n)_{n \in \mathbb{N}}$  be a sequence in  $X(c_0)$  that converges to  $\overline{x}^0 \in X(c_0)$ . Then

- 1.  $\lim_{n\to\infty} (*-w\sum_{i=1}^{\infty} a_i x_i^n) = *-w\sum_{i=1}^{\infty} a_i x_i^0$  uniformly in  $(a_i)_i \in B_{\ell_{\infty}}$ . 2. If  $(a_j)_j \in \ell_{\infty}$  is such that, for  $n \in \mathbb{N}$ ,  $w\sum_{j=1}^{\infty} a_j x_j^n = z_n$ , then there exist  $z_0 \in X$  such
- that  $w \sum_{j=1}^{\infty} a_j x_j^0 = z_0$  and  $\lim_{n \to \infty} z_n = z_0$ . 3. If  $(a_j)_j \in \ell_{\infty}$  is such that, for every  $n \in \mathbb{N}$ ,  $\sum_{j=1}^{\infty} a_j x_j^n$  converges to some  $z_n \in X$  then there exists a  $z_0 \in X$  such that  $\sum_{j=1}^{\infty} a_j x_j^0 = z_0$  and  $\lim_{n \to \infty} z_n = z_0$ .

Let  $(\bar{x}^n)_n$  be a sequence in  $X(c_0)$  and let  $\bar{x}^0 \in X(c_0)$ . It can be checked that if  $\lim_{n\to\infty} (*-w\sum_{i=1}^{\infty}a_ix_i^n) = *-w\sum_{i=1}^{\infty}a_ix_i^0$  uniformly in  $(a_i)_i \in B_{\ell_\infty}$  then  $\lim_{n\to\infty} \bar{x}^n = \bar{x}^0$  in  $X(c_0)$ . In the next theorem we study if the pointwise convergence of  $*-w\sum_{i=1}^{\infty}a_ix_i^n$ to  $*-w \sum_{i=1}^{\infty} a_i x_i^0$  is sufficient to ensure that  $\overline{x}^0$  coincides with  $\lim_{n\to\infty} \overline{x}^n$  so that it does

not incorrectly presume the limit exists. To solve this question, let us recall some concepts (cf. [2]).

Let *M* be a subspace of  $X^{**}$  such that  $X \subset M$ . We will say that *X* is a *M*-Grothendieck space if every  $\sigma(X^*, X)$ -convergent sequence in  $X^*$  is  $\sigma(X^*, M)$ -convergent. It is clear that a Banach space X is a Grothendieck space (every \*-w-convergent sequence in X<sup>\*</sup> is w-convergent) if and only if X is  $X^{**}$ -Grothendieck.

If S is a subspace of  $\ell_{\infty}$  such that  $c_0 \subset S$  then  $\ell_{\infty}$  can be identified with a subspace of  $S^{**}$ . This can be checked in the following way: if I is the inclusion mapping  $I: c_0 \to S$ then  $I^{**}$  is a linear isometry from  $c_0^{**} \equiv \ell_\infty$  to  $S^{**}$ ; if  $(a_j)_j \in \ell_\infty$ , we can identify  $(a_j)_j$  with the map  $h: S^* \to \mathbb{R}$  defined, for  $g \in S^*$ , by  $h(g) = \sum_{j=1}^{\infty} a_j g(e_j)$ .

**Theorem 2.1.** Let *S* be a  $\ell_{\infty}$ -Grothendieck subspace of  $\ell_{\infty}$  such that  $c_0 \subset S$ . Let  $(\bar{x}^n)$  be a sequence in  $X(c_0)$  such that

$$\lim_{n\to\infty} \left( * -w \sum_{i=1}^{\infty} a_i x_i^n \right)$$

exists for all  $(a_i)_i \in S$ . Then, there exists  $\overline{x}^0 \in X(c_0)$  such that  $\lim_{n \to \infty} \overline{x}^n = \overline{x}^0$ .

**Proof.** Let us suppose that  $(\bar{x}^n)_n$  is not a Cauchy sequence in  $X(c_0)$ . There exists a  $\delta > 0$ 

and a subsequence  $(\overline{x}^{n_k})_{k \in \mathbb{N}}$  such that, for  $k \in \mathbb{N}$ ,  $\|\overline{x}^{n_k} - \overline{x}^{n_{k+1}}\| > \delta$ . For every  $k \in \mathbb{N}$ , we put  $\overline{z}^k = (z_i^k)_i$ , where  $z_i^k = x_i^{n_k} - x_i^{n_{k+1}}$  for  $i \in \mathbb{N}$ . Clearly,  $\|\overline{z}^k\| > \delta$ , for  $k \in \mathbb{N}$ , and  $\lim_{n \to \infty} (* - w \sum_{i=1}^{\infty} a_i z_i^n) = 0$ , for  $(a_i)_i \in S$ . For every  $k \in \mathbb{N}$ , let  $f_k \in B_{X^*}$ be such that

$$\sum_{j=1}^{\infty} \left| f_k(z_j^k) \right| > \delta, \tag{2.2}$$

let  $\sigma_k : S \to X^{**}$  be the map defined by  $\sigma_k((a_i)_i) = *-w \sum_{i=1}^{\infty} a_i z_i^k$  and let  $\ell_k : X^{**} \to K$  be the map defined by  $\ell_k(x^{**}) = x^{**}(f_k)$ . If  $(a_j)_{j \in \mathbb{N}} \in S$ , we have that

$$\left|\ell_k \sigma_k((a_j)_j)\right| = \left|\left(*-w\sum_{j=1}^{\infty} a_j z_j^k\right)(f_k)\right| \leq \left\|*-w\sum_{j=1}^{\infty} a_j z_j^k\right\|.$$

Therefore,  $\lim_{k\to\infty} \ell_k \sigma_k((a_i)_i) = 0$  and  $(\ell_k \sigma_k)_k$  is \*-w-convergent to 0 in S\*. If we identify  $\ell_{\infty}$  with a subspace of  $S^{**}$ , we deduce that

$$(a_j)(\ell_k \sigma_k) = \sum_{j=1}^{\infty} a_j \ell_k \sigma_k(e_j) = \sum_{j=1}^{\infty} a_j f_k(z_j^k),$$

for  $(a_j)_j \in \ell_{\infty}$ . Therefore,  $\lim_{k\to\infty} \sum_{j=1}^{\infty} a_j f_k(z_j^k) = 0$  and  $((f_k(z_j^k))_j)_k$  is weakly convergent to 0 in  $\ell_1$ , which implies that is norm-convergent to 0. This contradicts (2.2).  $\Box$ 

#### Remark 2.2.

1. As a consequence of Theorem 2.1, we have the following result: Let  $(\bar{x}^n)_n$  be a sequence in  $X(\ell_{\infty})$  such that  $\lim_{n\to\infty}\sum_{i=1}^{\infty}t_ix_i^n$  exists for all  $(t_i)_i \in \ell_{\infty}$ . If  $\lim_{n\to\infty} \overline{x}_i^n = \overline{x}_i^0$ , for  $i \in \mathbb{N}$ , then  $\lim_{n\to\infty} \sum_{i=1}^{\infty} t_i x_i^n = \sum_{i=1}^{\infty} t_i x_i^0$  uniformly in  $(t_i)_i \in B_{\ell_{\infty}}$ . This result, when X is an *F*-space, was proved by Swartz [15]. Theorem 3.1 in [2] can also be obtained as a consequence of Theorem 2.1.

2. It is well known that if  $\mathcal{F}$  is a Boolean algebra and T is the corresponding Stone space then T is a 0-dimensional compact space and the algebra of clopen sets in T is isomorphic to  $\mathcal{F}$ . If  $\mathcal{C}(T)$  is the space of the real-valued continuous functions defined on T and  $\mathcal{C}_0(T)$  is the subspace of  $\mathcal{C}(T)$  of the finite-valued functions, then  $\mathcal{C}_0(T)$  is dense in  $\mathcal{C}(T)$ .

The Boolean algebra (cf. [16])  $\mathcal{F}$  has:

- (a) The Nikodym (N) property if and only if  $C_0(T)$  is a barrelled space.
- (b) The Grothendieck (G) property if  $\mathcal{C}(T)$  is a Grothendieck space.
- (c) The Vitali–Hahn–Saks (VHS) property if and if  $\mathcal{F}$  has properties (N) and (G).

We will denote by  $\mathcal{P}(\mathbb{N})$  (resp.  $\phi(\mathbb{N})$ ) the Boolean algebra of the subsets of  $\mathbb{N}$  (resp. finite or cofinite subsets of  $\mathbb{N}$ ).

**Theorem 2.3.** Let  $\mathcal{F}$  be a Boolean algebra with the VHS property such that  $\phi(\mathbb{N}) \subset \mathcal{F}$  and  $\mathcal{F}$  is subalgebra of  $\mathcal{P}(\mathbb{N})$ . Let  $(\overline{x}^n)_n$  be a sequence in  $X(c_0)$ . Let us suppose that there exists  $\lim_{n\to\infty} x \cdot w \sum_{i\in A} x_i^n$  in  $X^{**}$ , for every  $A \in \mathcal{F}$ . There exists  $\overline{x}^0$  such that  $x_i^0 = \lim_{n\to\infty} x_i^n$ ,  $\overline{x}^0 \in X(c_0)$  and  $\lim_{n\to\infty} \overline{x}^n = \overline{x}^0$  in  $X(c_0)$ . As a consequence,

$$\lim_{n \to \infty} * -w \sum_{i \in A} x_i^n = * -w \sum_{i \in A} x_i^0$$

uniformly in  $A \in \mathcal{F}$ .

**Proof.** Let *T* be the Stone space of  $\mathcal{F}$ . Clearly,  $\mathcal{C}(T)$  is linearly isometric to a closed subspace  $S \subset \ell_{\infty}$  with the Grothendieck property. If  $S_0$  is the subspace of *S* generated by the sequences with a finite range then  $S_0$  is a barrelled space that is dense in *S*. For  $n \in \mathbb{N}$ , let us denote by  $\sigma_n : S \to X^{**}$  the map defined by  $\sigma_n((a_i)_i) = *-w \sum_{i=1}^{\infty} a_i x_i^n$ . Let  $\sigma_{0n}$  be the restriction of  $\sigma_n$  to  $S_0$ . It is easy to check that  $\sigma_n$  is a continuous linear map and  $\|\sigma_n\| = \|\sigma_{0n}\| = \|\overline{x}^n\|$ , for  $n \in \mathbb{N}$ . It is also clear that, for all  $(b_i)_i \in S_0$ ,  $\lim_{n\to\infty} *-w \sum_{i=1}^{\infty} b_i x_i^n$  exists. Therefore, the sequence  $(\sigma_{0n})_n$  is pointwise bounded in  $S_0$ . Since  $S_0$  is a barrelled space, there exists H > 0 such that  $\|\sigma_n\| = \|\sigma_{0n}\| < H$ , for  $n \in \mathbb{N}$ . We also have that, for  $(a_i)_i \in S$ , there exists  $\lim_{n\to\infty} \sigma_n((a_i)_i)$ , because  $S_0$  is dense in *S*. Since *S* is a Grothendieck space, we deduce (from Theorem 2.1) that there exists  $\overline{x}^0 \in X(c_0)$  such that  $\lim_{n\to\infty} \overline{x}^n = \overline{x}^0$ .  $\Box$ 

**Remark 2.4.** A Boolean algebra  $\mathcal{F}$  is called subsequentially complete (SC) [7,11] if every disjoint sequence  $(A_i)_i$  in  $\mathcal{F}$  has a subsequence with a least upper bound. It can be checked that Boolean algebras with the property (SC) have the VHS property. In [11], Haydon constructed, by transfinite induction, a Boolean algebra  $\mathcal{F}_H$  with the following characteristics:

- (i)  $\mathcal{F}_H$  is a subalgebra of  $\mathcal{P}(\mathbb{N})$  such that  $\phi(\mathbb{N}) \subset \mathcal{P}(\mathbb{N})$ ;
- (ii)  $\mathcal{F}_H$  is subsequentially complete;
- (iii) If  $T_H$  is the Stone space of  $\mathcal{F}_H$  then  $\mathcal{C}(T_H)$  does not have a copy of  $\ell_{\infty}$ .

We have, therefore, that Theorem 2.3 can be applied to the Boolean algebra  $\mathcal{F}_H$ . The space  $\mathcal{C}(T_H)$  can isometrically be identified with a closed subspace  $S_H$  of  $\ell_{\infty}$  such that  $c_0 \subset S_H$ . Theorem 2.1 can be applied to  $S_H$ , but  $S_H$  does not have a copy of  $\ell_{\infty}$ .

In Theorem 2.3 we have supposed that  $\mathcal{F}$  has the Vitali–Hahn–Saks property. This property does not give information on the supremum and separation characteristics of  $\mathcal{F}$ . It has been obtained interesting results in measure theory by means of this information on the supremum and separation characteristics [16]. Also, we can mentioned a generalization of the Orlicz–Pettis theorem in terms of a Boolean algebra with the separation property  $S_1$  [4] which is defined in the next paragraph.

We will assume that  $\mathcal{F}$  is a subfamily of  $\mathcal{P}(\mathbb{N})$  such that  $\phi_0(\mathbb{N}) \subseteq \mathcal{F}$ , where  $\phi_0(\mathbb{N})$  is the family of finite subsets of  $\mathbb{N}$ , and  $\mathcal{F}$  verifies the following separation property [4]: "For any pair  $((A_i)_i, (B_i)_i)$  of disjoint sequences of mutually disjoint elements of  $\phi_0(\mathbb{N})$ , there exist an infinite set  $M \subseteq \mathbb{N}$  and a  $B \in \mathcal{F}$  such that  $A_i \subseteq B$  and  $B_i \subseteq \mathbb{N} \setminus B$ , for  $i \in M$ ." Then, we will say that  $\mathcal{F}$  has the property  $S_1$ .

In our next result we prove that Theorem 2.3 is valid when  $\mathcal{F}$  verifies, instead of Vitali– Hahn–Saks property, the property  $S_1$ . Let us first give an example of family  $\mathcal{F}$  in  $\mathcal{P}(\mathbb{N})$  with the property  $S_1$ . Let  $\mathcal{L}$  the family of subsets  $A \subseteq \mathbb{N}$  such that A and  $A^c$  have infinite even numbers and infinite odd numbers. It can be checked that  $\mathcal{F} = \mathcal{L} \cup \phi_0(\mathbb{N})$  has the former property. Let us observe that  $\mathcal{F}$  is not subsequentially complete: the union of the members of any subsequence of  $(\{2n\})_{n \in \mathbb{N}}$  is not an element of  $\mathcal{F}$ .

**Theorem 2.5.** Let X be a Banach space and let  $\mathcal{F}$  be a subfamily of  $\mathcal{P}(\mathbb{N})$  such that  $\phi_o(\mathbb{N}) \subseteq \mathcal{F}$  and has the property  $S_1$ . Let  $(\overline{x}^n)_{n \in \mathbb{N}}$  be a sequence in  $X(c_0)$  such that  $\lim_{n \to \infty} (* -w \sum_{j \in A} x_j^n)$  exists for all  $A \in \mathcal{F}$ . Then, there exists  $\overline{x}^0 \in X(c_0)$  such that  $\lim_{n \to \infty} \overline{x}^n = \overline{x}^0$ .

**Proof.** Let us suppose that  $(\overline{x}^n)_n$  is not a Cauchy sequence in  $X(c_0)$ . There exists an  $\epsilon > 0$ and a subsequence  $(\overline{x}^{n_k})$  such that, for  $k \in \mathbb{N}$ ,  $||\overline{x}^{n_k} - \overline{x}^{n_{k+1}}|| > \epsilon$ . For every  $k \in \mathbb{N}$ , we put  $\overline{z}^k = (z_i^k)_i$ , where  $z_i^k = x_i^{n_k} - x_i^{n_{k+1}}$  for  $i \in \mathbb{N}$ . For every  $k \in \mathbb{N}$ , let  $f_k \in B_{X^*}$  be such that

$$\sum_{j=1}^{\infty} \left| f_k(z_j^k) \right| > \epsilon.$$
(2.3)

For every  $i, j \in \mathbb{N}$ , we set  $a_{ij} = f_i(z_j^i)$ . It is easy to check that the matrix  $(a_{ij})_{ij}$  is such that:

- (i)  $\lim_{i \to j} a_{ij} = 0$  if  $j \in \mathbb{N}$ .
- (ii) The sequence  $(\sum_{j \in A} a_{ij})_i$  is convergent for every  $A \in \mathcal{F}$ .
- (iii)  $\sum_{i=1}^{\infty} a_{ij}$  is unconditionally convergent for every  $i \in \mathbb{N}$ .

We will prove that the sequence

$$\left(\sum_{j\in P} a_{ij}\right)_i \tag{2.4}$$

is convergent, for every  $P \subseteq \mathbb{N}$ .

Let us suppose that there exists  $P \subseteq \mathbb{N}$  such that  $(\sum_{j \in P} a_{ij})_i$  is not a Cauchy sequence; let  $\alpha > 0$  be such that, for every  $k \in \mathbb{N}$ , there exists n > k such that  $|\sum_{j \in P} (a_{kj} - a_{nj})| > \alpha$ .

Because of the properties (i), (ii), and (iii) of  $(a_{ij})_{ij}$ , we can obtain, inductively, three increasing sequences  $(k_i)_i$ ,  $(n_i)_i$ , and  $(m_i)_i$  of natural numbers with the following properties:

(a)  $k_1 < n_1 < k_2 < n_2 < \cdots$ . (b)  $|\sum_{j \in C} (a_{k_i j} - a_{n_i j})| < \alpha/8$ , with  $C \subseteq \{1, 2, ..., m_{i-1}\}$  and i > 1. (c)  $|\sum_{j \in F_i} (a_{k_i j} - a_{n_i j})| > 3\alpha/4$  if  $F_i = P \cap \{m_{i-1} + 1, ..., m_i\}$ , for i > 1. (d)  $|\sum_{j \in B} (a_{k_i j} - a_{n_i j})| < \alpha/8$ , with  $B \subseteq \{m_i + 1, m_i + 2, ...\}$  and i > 1.

Let  $B_i = \{m_{i-1} + 1, \dots, m_i\} \setminus F_i$ , for i > 1. For the pair  $((F_i)_i, (B_i)_i)$  we can find  $B \subseteq \mathbb{N}$  and an infinite subset  $M \subseteq \mathbb{N}$  such that  $(\sum_{i \in B} a_{ij})_i$  is convergent,  $F_i \subseteq B$  and  $B_i \subseteq B^c$  for  $i \in M$ . However, for  $i \in M$ , i > 1,

$$\left|\sum_{j\in B} (a_{k_ij} - a_{n_ij})\right|$$
  
$$\geqslant \left|\sum_{j\in F_i} (a_{k_ij} - a_{n_ij})\right| - \left|\sum_{\substack{j\in B\\j\leqslant m_{i-1}}} (a_{k_ij} - a_{n_ij})\right| - \left|\sum_{\substack{j\in B\\j>m_i}} (a_{k_ij} - a_{n_ij})\right| > \frac{\alpha}{2}.$$

This contradicts the Cauchy condition for  $(\sum_{j \in B} a_{ij})_i$ .

From (i) and (iii), it can inductively be deduced that there exists the increasing sequences  $(i_r)_r$  and  $(m_r)_r$  of natural numbers with the following properties:

- (i)  $m_r + 1 < m_{r+1}$  if  $r \in \mathbb{N}$ . (ii)  $\sum_{j \in C} |a_{i_r j}| < \epsilon/4$  if  $C \subseteq \{1, \dots, m_{r-1}\}$ . (iii)  $\sum_{j \in B} |a_{i_r j}| < \epsilon/4$  if  $B \subseteq \{m_r, \dots\}$ .

Hence, by (2.3) for every  $r \in \mathbb{N}$  is  $\sum_{j \in (m_{r-1}, m_r)} |a_{i_r j}| > \epsilon/2$ . For every r > 1, let  $A_r = \{j \in (m_{r-1}, m_r): a_{i_r j} \ge 0\}$  and  $B_r = \{j \in (m_{r-1}, m_r): a_{i_r j} < 0\}$  be; then, either  $|\sum_{j \in A_r} a_{i_r j}| > \epsilon/5$  for an infinite number of indices r or  $|\sum_{j \in B_r} a_{i_r j}| > \epsilon/5$  for an infinite number of indices r or  $|\sum_{j \in B_r} a_{i_r j}| > \epsilon/5$  for an infinite number of indices r or  $|\sum_{j \in B_r} a_{i_r j}| > \epsilon/5$  for an infinite number of indices r > 1. nite number of indices r.

Let us suppose that  $M = \{r \in \mathbb{N}: r > 1 \text{ and } | \sum_{j \in A_r} a_{i_r j} | > \epsilon/5 \}$  is an infinite set. For each  $i \in \mathbb{N}$  we can consider the measure  $\mu_i : \mathcal{P}(\mathbb{N}) \to \mathbb{R}$  defined by  $\mu_i(P) = \sum_{j \in P} a_{i_j}$ . It follows, from the Vitali–Hahn–Saks Theorem and (2.4), that the sequence  $(\mu_i)_i$  is uniformly strongly additive; i.e.,  $(\mu_i(A_j))_j$  converges to zero uniformly in  $i \in \mathbb{N}$ , where  $(A_j)_j$ is a disjoint sequence of  $\mathcal{P}(\mathbb{N})$ . However,  $|\mu_i(A_r)| > \epsilon/5$  for every  $r \in M$ . This contradiction proves the theorem.  $\Box$ 

#### 3. Boolean algebras and unconditionally convergence of series

In this section we obtain generalization of the Orlicz-Pettis theorem on unconditional convergence of series.

**Definition 3.1.** Let  $\mathcal{F}$  be a subalgebra of  $\mathcal{P}(\mathbb{N})$  such that  $\phi(\mathbb{N}) \subset \mathcal{F}$ . Let  $\sum_{i=1}^{\infty} x_i$  be a series in the space *X*. We will say that  $\sum_{i=1}^{\infty} x_i$  is  $\mathcal{F}$ -convergent (resp. weakly  $\mathcal{F}$ -convergent) if  $\sum_{i \in A} x_i$  is convergent (resp. weakly convergent), for every  $A \in \mathcal{F}$ .

**Theorem 3.2.** Let  $\mathcal{F}$  be a subalgebra of  $\mathcal{P}(\mathbb{N})$  such that  $\phi(\mathbb{N}) \subset \mathcal{F}$ . Let  $\sum_{i=1}^{\infty} x_i$  be a series in X.

- 1. If  $\mathcal{F}$  has the VHS property and  $\sum_{i=1}^{\infty} x_i$  is weakly  $\mathcal{F}$ -convergent, then  $\sum_{i=1}^{\infty} x_i$  is uc. 2. If  $\mathcal{F}$  has the G property and  $\sum_{i=1}^{\infty} x_i$  is wuC and weakly  $\mathcal{F}$ -convergent then  $\sum_{i=1}^{\infty} x_i$ is uc.
- 3. If  $\mathcal{F}$  has the N property and  $\sum_{i=1}^{\infty} f(x_i)$  is  $\mathcal{F}$ -convergent for every  $f \in X^*$ , then  $\sum_{i=1}^{\infty} x_i$  is wuC.

#### Proof.

1. Let  $\sum_{i=1}^{\infty} x_i$  be a weakly  $\mathcal{F}$ -convergent series. For simplicity of notation we write  $x_A$ instead of  $w - \sum_{i \in A} x_i$ , if  $A \in \mathcal{F}$ . We can assume that X is a separable space.

Let us suppose that  $\sum_{i=1}^{\infty} x_i$  is not unconditionally convergent. Let  $\epsilon > 0$  be such that for every  $n \in \mathbb{N}$  there exists a finite set  $F \subset \mathbb{N}$  such that  $\inf F > n$  and  $\|\sum_{i \in F} x_i\| > \epsilon$ . Inductively, it can be obtained a disjoint sequence  $(F_n)_{n \in \mathbb{N}}$  of finite subsets of  $\mathbb{N}$  such that, for  $n \in \mathbb{N}$ ,

 $\sup F_n < \inf F_{n+1}$ 

and  $\|\sum_{i \in F_n} x_i\| > \epsilon$ . For each  $n \in \mathbb{N}$  let  $f_n \in S_{X^*}$  be such that

$$f_n\bigg(\sum_{i\in F_n}x_i\bigg)>\epsilon.$$

There exists a subsequence  $(f_{n_i})_j$  of  $(f_n)_n$  and  $f_0 \in X^*$  such that

$$*-w\lim_{j} f_{n_j} = f_0$$

For every  $j \in \mathbb{N}$  let us consider the finitely additive measure  $\mu_j : \mathcal{F} \to \mathbb{R}$  defined, for  $A \in \mathcal{F}$ , by  $\mu_j(A) = f_{n_j}(x_A)$ . For  $A \in \mathcal{F}$ , we have that  $\lim_{j \to \infty} \mu_j(A) = f_0(x_A)$ . Since  $\mathcal{F}$  has the VHS property,  $(\mu_j)$  is uniformly strongly additive (i.e., if  $(A_i)_{i \in \mathbb{N}}$  is a sequence of disjoint elements of  $\mathcal{F}$  then  $\lim_{i\to\infty} \mu_i(A_i) = 0$  uniformly in  $j \in \mathbb{N}$ ). This contradicts that

$$\mu_j(F_{n_j}) = f_{n_j}\left(\sum_{i \in F_{n_j}} x_i\right) > \epsilon$$

for  $j \in \mathbb{N}$ .

- 2. Since  $\sum_{i=1}^{\infty} x_i$  is wuC, it is easy to check that the preceding sequence  $(\mu_n)_{n \in \mathbb{N}}$  is uniformly bounded in  $\mathcal{F}$ .
- 3. If  $\mathcal{F}$  is (N) and  $\sum_{i=1}^{\infty} \alpha_i$  is a  $\mathcal{F}$ -convergent series in  $\mathbb{R}$ , then it can be checked that  $\sum_{i=1}^{\infty} |\alpha_i| < \infty [9,10]. \quad \Box$

## Remark 3.3.

- 1. Let us assume that X does not have a copy of  $c_0$ . If  $\mathcal{F}$  is a subalgebra of  $\mathcal{P}(\mathbb{N})$  with the property (N) and is such that  $\phi(\mathbb{N}) \subset \mathcal{P}(\mathbb{N})$  then every  $\mathcal{F}$ -convergent series in X is unconditionally convergent.
- 2. If  $S_H$  is the space of sequences we have considered in Remark 2.4 then  $X(S_H) = X(\ell_{\infty})$  and  $S_H$  does not have a copy of  $\ell_{\infty}$ .
- 3. It can be proved [4] that the former theorem remains valid if  $\mathcal{F}$  is a subfamily of  $\mathcal{P}(\mathbb{N})$  such that  $\phi_0(\mathbb{N}) \subseteq \mathcal{F}$  and  $\mathcal{F}$  has the property  $S_1$ .
- 4. Some open problems on the subject we are studying are the following:
  - (i) To characterize the subalgebras  $\mathcal{F}$  of  $\mathcal{P}(\mathbb{N})$  such that every weakly  $\mathcal{F}$ -convergent series is unconditionally convergent.
  - (ii) To determine the subalgebras  $\mathcal{F}$  of  $\mathcal{P}(\mathbb{N})$  for which Theorem 2.3 is valid.
  - (iii) To characterize the subspaces *S* of  $\ell_{\infty}$  for which Theorem 2.1 is valid.

### References

- A. Aizpuru, F.J. Pérez–Fernández, Characterizations of series in Banach spaces, Acta Math. Univ. Comenian. (N.S.) 68 (2) (1999) 337–344.
- [2] A. Aizpuru, F.J. Pérez–Fernández, Spaces of S-bounded multiplier convergent series, Acta Math. Hungar. 87 (1–2) (2000) 135–146.
- [3] A. Aizpuru, F.J. Pérez-Fernández, Sequence spaces associated to a series in a Banach space, Indian, J. Pure Appl. Math. 33 (2002) 1317–1329.
- [4] A. Aizpuru, A. Gutiérrez-Dávila, Summing Boolean algebras, Acta Math. Sinica, to appear.
- [5] C. Bessaga, A. Pelczynski, On bases and unconditional convergence of series in Banach spaces, Stud. Math. 17 (1958) 151–164.
- [6] J.K. Brooks, Sur les suites uniformément convergentes dans un espace de Banach, C. R. Acad. Sci. Paris 274 (1972) A1037–A1040.
- [7] J. Diestel, Sequences and Series in Banach Spaces, Springer-Verlag, New York, 1984.
- [8] J. Diestel, H. Jarchow, A. Tonge, Absolutely Summing Operators, Cambridge Univ. Press, Cambridge, UK, 1995.
- [9] L. Drewnowski, M. Florencio, P.J. Paul, Barrelled subspaces of spaces with subseries decompositions of Boolean rings of projections, Glasgow Math. J. 36 (1994) 57–69.
- [10] L. Drewnowski, P.J. Paul, The Nikodym property for ideals of sets defined by matrix summability methods, Rev. Real Acad. Cienc. Exact. Fís. Natur. Madrid, to appear.
- [11] R. Haydon, A non-reflexive Grothendieck space that does not contain  $\ell_{\infty}$ , Israel J. Math. 40 (1981) 65–73.
- [12] C.W. McArthur, On relationships amongst certain spaces of sequences in an arbitrary Banach space, Canad. J. Math. 8 (1956) 192–197.
- [13] Q. Bu, C. Wu, Unconditionally convergent series of operators on Banach spaces, J. Math. Anal. Appl. 207 (1997) 291–299.
- [14] R. Li, Q. Bu, Locally convex spaces containing no copy of c<sub>0</sub>, J. Math. Anal. Appl. 172 (1993) 205–211.
- [15] C. Swartz, The Schur lemma for bounded multiplier convergent series, Math. Ann. 263 (1983) 283–288.
- [16] W. Schachermayer, On some classical measure theoretic theorems for non-σ-complete Boolean algebras, Technical report, Linz University, Linz, 1978.