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Abstract

We study the expansion of the Eisenstein series for F,[7] of weight g — 1, keN, and using
the fact that they are eigenfunctions for the Hecke operators, we prove congruences for some
of their coefficients.
© 2003 Elsevier Science (USA). All rights reserved.

MSC: 11G09; 11F52

Keywords: Drinfeld modular forms; Hecke operators

Introduction

In two previous works (cf. [3,5]), the existence of congruences for the coefficients
of two distinguished Drinfeld modular forms, the discriminant function 4 and its
(¢ — 1)th root h, was proven. In both cases, the result was obtained using the fact
that those modular forms are eigenfunctions for the action of the Hecke operators;
the congruences allowed to prove empirical rules (obtained from examples) for some
coefficients of both modular forms. In the present work, using the same basic
argument, we prove that there exist (weaker) similar congruences for the Eisenstein
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series of weight ¢* — 1, keN (compare Theorem 2 with Theorem 2.4 of [3] and
Theorem 1 of [5]). Using these “weak’ congruences, the coefficients @ gi-1...41 Of
the Eisenstein series of weight ¢ — 1, for deN, are determined up to a factor of
degree ¢* — ¢ (see Corollary 7).

The proof of the main result of this work, the congruences of Theorem 2, follows
the same scheme as the proof of the congruences in [5]. Nevertheless, there are three
differences, which are essential ingredients of the present proof. First, due to the fact
that there exist no ‘“‘strong” congruences in this case (see Remark 6), Hecke
operators Ty associated to mth powers of an irreducible polynomial p have to be
used instead of simple operators T,. Secondly, the known property a,#0 = n =
0, 1 mod ¢, satisfied by the Eisenstein series of weight ¢ — 1 (cf. [2, Proposition 6.10,
p. 684]), has to be replaced by the property stated in Proposition 1. Third, in order to

arrive to our conclusion, a more detailed study of the multinomial coefficients

Wmod p, where p is the characteristic of F,, has to be done (see Lemma 4).

Here, the case of the coefficients @y g14...1 of the Eisenstein series of weight
¢ — 1 has been dealt with. There are two directions in which this work may be
continued. The first one is to extend our result to the Eisenstein series of weight
r(g — 1), reN. The second, to study other coefficients of the Eisenstein series; for
example, it seems that there exist (empirical) rules for the coefficients @y« and
Agiiygiig..rqy [ =0,1,...,k — 1, of the Eisenstein series of weight q" —1; a first
problem would be to prove these rules. We think that, in both cases, new arguments
should be brought up in order to extend our result. The reason being, the Goss
polynomials (the basic tool used here) are inefficient in some examples and
furthermore, handling these polynomials becomes much more complicated in the
general situation than in the case dealt with in this work.

1. Preliminaries

Let A = [F,[T] be the ring of polynomials over the finite field F, and let K = [F,(T)
be its quotient field. We consider the completion K, = F,((1/T)) of K at the place
oo, and the completed algebraic closure of K, C := IA?OO.

Let C{z} be the ring of non-commutative polynomials over C, where 7 is the
Frobenius endomorphism; the product in C{t} satisfies the rule ta = oz, a.e C. The
ring C{t} can be identified with the ring of ¢g-additive polynomials Zi:o ¢iX?, where
the product is given by substitution.

A Drinfeld module of rank r over C is a ring F,-homomorphism ¢ :4— C{t}
determined by

,
¢r =T+ Z et
P

where ¢;e C, ¢, #0. Two modules ¢, ¢’ are isomorphic if there exists an element u e C*
such that u- ¢, = ¢/ - u for any ae A4.
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An A-lattice in C of rank r is a discrete free A-module A< C of rank r. The
exponential function

exz)=z [ (1-z/%)
JeA-{0}

can be associated to A. Through this function, a Drinfeld module of rank r can be
constructed. This construction establishes a bijection between the set of lattices of
rank r in C and the set of Drinfeld modules of rank r over C.

The Carlitz module is the rank one module determined by

pr=T1"+1=TX + X{.

Let L = 74 be the lattice in C corresponding to p (the element 7€ C is determined up
to a unit of A4). From the exponential function e, associated to L, we define the
functions

1(z) =er(7z)”" and s(z) = 1(2)7".

These functions will be used along the work as parameters of the expansion of the
Eisenstein series of weight ¢¢ — 1.

Let ae A. We consider the polynomial p, = Z?ﬁ%” I;X4. Then Iy = a and the
leading coefficient of p,, is the leading coefficient of a; the rest of the coefficients of p,
satisfy the recursion

(1)

where [i] = T — T =[] monic, prime P-
deg pli
The A-lattices of rank two in C are of the form u(z4 4+ A), where ue C*, ze Q ==
C — K. Homothetic lattices correspond to isomorphic Drinfeld modules; hence,
any Drinfeld module of rank two is isomorphic to one in the form

¢r =T +g(2)t + A(2)7, (2)

where ze Q. The functions g(z) and 4(z) (on Q) are modular forms for the group
(1) = GL(2,A4) of weights ¢ — 1 and ¢*> — 1, respectively. A function /# on Q is
called a modular form of weight k for the group I'(1) if it is holomorphic on Q (in the
rigid analytic sense), it has an expansion of the formh =3~ _, cns(2)" and it satisfies

h (2’5 i 2) = (cz+ d)*h(z)

for every (Z 2) el'(1). The C-vector space of modular forms of weight & is denoted
by M;; it follows from the definition of modular form that A is trivial for
k#0mod g — 1. Distinguished modular forms are the Eisenstein series of weight k,
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which are defined as

1
Eu(z) = _ (3
‘ dz (cz+d)f )
(e,d) #(0,0)

The functions g and 4 considered above can be expressed in terms of Eisenstein
series: g = (T9—T)E, , and A= (T% — T)Ep_; +(T9 - T)(E, )" (cf. [2,
Proposition 6.9, p. 684], or [4, Theorem 2.1.1, p. 27]).

In the sequel, the symbols a,p will denote monic polynomials in 4. Let p be an
irreducible (and monic) polynomial with degp = d. Let meN; the Hecke operators
Ty act on the spaces Mj and this action can be explicitly given on z-expansions of
modular forms: if h = ano cpt" € My, then

n=0 n=0

where #,(z) = t(az) = " /o (1), fu(X) = po(X ") X4 and G, is the nth Goss
polynomial with respect to ker p,,. The Goss polynomials can be defined by the
following recursion formula (cf. [2, p. 323]): let p (X)=hX+LHX'+ -+
lgeq X" and o; = I;/a; then G, = 0 for n<0, G, = X and

Gpo(X) = X(Gyo1a +11Gyga + 020G, pp o + ---) for n>1.

There also exists an explicit formula for the polynomials G, , that will be used in
Section 2.

2. Coefficients of the Eisenstein series E_;

Let us now consider the Eisenstein series of weight ¢ — 1, E«_; (see Eq. (3)). It
follows that

A Ee (2)= (DL - Y G, (5)

a monic

where Ly = 1 and Ly = [k][k — 1]---[1], and G_, is the Goss polynomial associated
to the lattice L =74 (cf. [2, Eq. (6.3), p. 682]). An explicit formula for Gy _; is
given by

Gy = (1)L X7,

i<k
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this formula is deduced from Proposition (3.10) and Eq. (4.3) of [2]. We conclude
that

T O (Z SUETEDY r) (6)

i<k a monic

From Eq. (6), it is seen that the expansion of E,_; as power series in s(z) satisfies
that ﬁl"lquk,l(z) = 0 @as", With a,e K(= Fy(T)).

Proposition 1. Let ), _a,s" be the expansion of Eyu_,. Then a,#0 implies that
n=0,¢" ¢ +4% ...+ + ¢+ 1modd-.
Proof. Let ae A be a monic polynomial. For ie N, we consider
deg n+i—l+m+ deg a
g1 T (7)
a i N
1

It is seen that fu(s) = 1 + bys? + o+ + Ddeg o80Tt where by e A. Hence, if

. deg ati—1, | deg a . .
we write s9 T e =D =0 cas”, then ¢, #0 implies

deg a—1

i—1

n=0,q4""¢"+¢% . ..,¢d"+ - +qg+1moddg,

and ti{i*1 satisfies the same congruence property. Therefore, from the expression for
E . given in Eq. (6), the result is easily derived. [J

Congruences for some coefficients of the series ﬁl_quqk_l are now proven.
Observe that, from the formula for Eu_; given in Eq. (6), it follows that the
coefficients considered in Theorem 2 belong to A.

Theorem 2. Let ﬁl’quqk,l(z) =D >0 8" be the expansion of Ey_; with respect to
s(z). Let pe A be irreducible and monic with degp = d. If d = 1, then, for each meN,
we have that

Agnkpgh=1y..] = Aghy gt mod p.
If d>1, then, for each meN, we have that
— Ve
Agrdik g gh=14 ... 41 = Agky ... yq41 mod P
Proof. Let 7' ¢ Ey_1(z) = > ,=0 cat" be the expansion of E_; with respect to #(z).
For each meN, we will prove that, if degp = 1, then

c(q"+---+q+1)(q—1) = C(qrz1+k+qk—]+,,,+1)(q_1) mod P, (8)
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and if degp>1, then

K
Clgh+-+g+1)(g—1) = C(gmi+k4gk=14...+1)(g—1) mod pq . (9)

The series E_ is an eigenfunction for all the operators T, with ae 4 monic, and the

corresponding eigenvalues are af ! (cf. Proposition 1.4 of [1, p. 95]). Eq. (4) gives
the effect of Ty» on t-expansions of modular forms; for the series E«_; we get:

i (z z) D a0 S G (07 11)

n=0 n=0 n=0

+ Z CnGn,v'”(pml)' (10)

n=0
In order to prove the congruences of Egs. (8) and (9), we determine the (L
coefficient of the right-hand side in Eq. (10). For degp = 1, this term may only
appear in p? ! > ons0 G (P"71p) or 3,20 €nGupn (p7'1), and for degp>1, it
may only appear in ), -, ¢;,Gyp=(p"2); this claim is proven in Lemma 5.

The 14"~ -coefficient of p¢ ' 3, _y ¢, G, 1 (p"'2,) (for any polynomial p with
degp =1) is also studied in Lemma 5; we prove that it belongs to 4 and it is
determined mod p™@ D+l In Lemma 4, we prove that the ' ~!-coefficient of
Y w50 CnGupn(p™t) (for any irreducible polynomial p) belongs to 4, and it is
determined mod p’"“’k‘l)*qk. From both lemmas, the congruences of Egs. (8) and (9)
are casily derived. O

The following remark will be used in the proof of Lemmas 4 and 5; it is an
immediate consequence of the Lucas formula.

Remark 3. Let peN be a prime and v, the p-adic valuation on Q. Let m,neN be
such that n<m and v,(n) <v,(m); then (') = 0 mod p.

Lemma 4. Let pe A be irreducible and monic with degp = d. Let y be the [
coefficient of ¢, Gy (P"1); then yeA. Furthermore, if n= (¢"* + g1+ ... +
(g —1), then y = cyp" @V, and if n#(q"* + ¢+ +1)(g— 1), then y =
0 mod pm(@~D+d",

Proof. We first observe that, from Proposition 1, it follows that ¢, =0 for
n#0, ¢ — ¢ ¢¢ — ¢ ..., " —1mod ¢*(q—1). Now, if n =0, ¢ — ¢* !, ¢ —
¢“2, ..., — gmod ¢* (¢ — 1), then G, (X) is a gth power of some polynomial in
K[X]. In view of property Gy pn(X) = (Gupi(X))? of Goss polynomials, we have to
study only G,y (p™t) for n = ¢* — 1 mod ¢*(g — 1); in this case, ¢, €4 (this follows

from the formula for E,_; given in Eq. (6)).
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Let us consider the following explicit formula for G, (cf. [2, Eq. (3.8), p. 676]).
Let pyn(X) = 0cicma XY, i = 1;/p™; then

)= X 3 (1], )

J<rooi

where i = (i, ..., imq) runs over the set of (md + 1)-tuples satisfying iy + -+ + iy =J
and io +i1g + -+ + inaq™ = r, o = o o0 and () = j1/ (ol ima!).
Let S8 be the 14" =1 _coefficient of G11pm(p™t). Then

ﬁ Z ( ) . z,mzpm(qk“fl)’

where 14+ig+ - +img=j+1=¢"""—1 and iy +i1qg+ - + ingq” =r. In the
sequel, we will assume that r + 1 = ¢ — 1 mod ¢*(¢ — 1), which is the only case that
we have to study. From Eq. (1), it follows that g = 1, o,y = 1/p", and p" o€ 4,
for i=1, ...,md— 1. Thus if i= (i, .. i,,,d) satisfies (m — 1)(iy + - + fpa—1) +

Mipg <mgt(q — 1) — ¢*, then o ---olm4 pm< "“Ded and
ol :;:;2 p @' =1 = 0 mod pm@ D",
Assume now that i = (i, ..., ig) satisfies
(m = 1)(i1+ - + ipa1) + miyg>mg* (g — 1) — ¢". (12)

It follows that i; + --- 4 g > ¢ (g — 2) and so iy <2¢* — 3. We now divide 1+ iy +
i1q + - +inaq™ by ¢"(q — 1) considering ¢ as an indeterminate. The remainder of
this division is

(iind + .- “rl.k)qk +l.k_1qkil + .. +llq+10 +1

= (¢ =2 (io+ - +ik1))g" + - +ig+io+ 1.
Since r + 1 = ¢* — 1 mod ¢*(q — 1), we get the congruence

i1 (g = ¢ + - +il(d = q) + (o +2)(¢" — 1) =0mod ¢* (¢ — 1).
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From this congruence, the following sequence of congruences is easily derived:
ip +2 =0mod ¢,

gir + (ip +2) = 0mod ¢,

¢ i1+ - +qiy + (io + 2) = 0mod ¢~. (13)

Assume that (/) #0 as an element in F,. Then, since v,(j — iy) = v,(io + 2) (recall that

j=4¢*t' —2), applying the claim of Remark 3 and the fact that v,(e!)>uv,((c —
0)!) + v,(0!) for any &, e N, with 6 <e, we conclude that

0p(i1) Z0p(io 4+ 2), ..., Up(ik—1) = 0p (i0 + 2).

Thus, v,(i1) >, (io + 2) >v,(q); but now, the second congruence of Eq. (13) implies
that v,(ip +2) >v,(¢?), and so v,(i1) =v,(¢%), ..., vy (ik—1) =v,(¢*). Using the rest of
the congruences of Eq. (13), we can repeat this argument recursively and we
conclude that v, (ip + 2) >v,(¢~). Since iy <2¢* — 3, one gets that iy = ¢* — 2; hence,
by Eq. (12), ima>¢"(q —2). Now, applying Remark 3 again and the fact that
vp (&) =0, ((e — 8)!) + v, (8"), it holds that iyg = ¢*(q —1).

In summary, we have that if (i, ..., i,q) satisfies the condition of Eq. (12), then
j io .“airml pm(qkﬂ_]) _ p’ﬂ(t]k—l) 1f iO = qk _ 2 and imd = qk+1 _ q/(7
i) 0 if ig#q" —2 or ina# g — ¢~

This finishes the proof of the lemma. [

Lemma 5. Let pe A be an irreducible polynomial with degp = d, and let m,aeN. Let
y be the lqkﬂ_l-coe]ﬁciem of p“(‘fk_l>c,,Gn’pmfu(pm_"lpu) (¢, as in the proof of Theorem
2). If ad>1, theny=0.1Ifd=1and a =1, then ye A and y = 0 mod prld =D+,

Proof. As in the proof of Lemma 4, we only have to study the expressions
Gy y-a(p" 1) for n = ¢ — 1 mod ¢* (g — 1).

Let tye = 19 /fa(£). The term 4" ~! may occur in fh, only if i<g*“*! — 1. Let §
be the X'-coefficient of the polynomial G, pyn-e(X), i<g**!' —1, and let
Por-a(X) = D0crcimaahX?, o =1/p" " Using the explicit formula for
Gy pn-a(X) (see Eq. (11)), we find that

j i i/l'l*“
ﬁ:Z<l> gj'“a((m—t)ld)d’
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where  1+ig+ - +ipmga=j+1=i<g" "' —1 and  ip+ig+ -+
i<m,u)dq(m‘“)d =n— 1. Assume that (i);éO as an element in F,; as in the proof of
Lemma 4, the congruences of Eq. (13) imply that iy +2 = 0 mod ¢*, so ip>¢F — 2.
Hence, since i + -+ + ipn_aa <q¢* "' — 2, if ad>1, then (/) =0 as an element in
F,, and therefore f = 0. This proves the first claim of the lemma.

Assume now that ¢ = 1 and d = 1. By the previous argument, either (fl) =0 or
io=i—1=g"— 2. In this last case, we have that n = ¢* — 1 and § = 1. Now, since
ty = t1/(1 + pt~'), we have that

m=1, )q"*l = pm D (@ g T ),

(» P

k41

Hence, the ¢ ~!-coefficient of expression p(‘fk”)ch,lqu,lypmfl(p’”*ltp) is

g1 P @D+ Finally, ¢ €4 (this follows from the formula for E,_, given in
Eq. (6)). O

Remark 6. Following [2], we define the form g; = (—l)kHﬁl*‘IkLquk_l. It follows
that the expansion of g, with respect to s satisfies that gy = 1+ b;s+ ---, and the
coefficients of this expansion belong to A. The form g satisfies the congruences of
Theorem 2; the question is whether it also satisfies “‘strong” congruences like the
discriminant function (cf. [5, Theorem 1, p. 1056]); the answer is no. For example, if
we take k = 1, the form g; = g should satisfy the following: for degp = 1 and each
meN,

bqu+l = bmq+l mod P,
and for degp = d>1 and each meN,
byngisi 11 = bingy1 mod p.

However, g does not satisfy these congruences in general: for example, the second
congruence is not satisfied for ¢ = 3, m = 4 and any irreducible polynomial p with
degp = 2.

As a corollary of Theorem 2, we determine, up to a factor of degree ¢* — ¢, the
difference agakqge1pq — Agepigin-

Corollary 7. Let deN. We have that

[d)” Pa(T)
et

aqd-k+qk—l+,.,+] = aqk+...+q+1 -

with P; monic and deg Py =q* —q. For q=2, Agpsccqr1 = 1, and for q>2,

aqk+,_,+q+1 =0.
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Proof. Let p be irreducible and monic. Let d € N; by Theorem 2, if degp = 1, then

Agivk iyt = Qgey... gy mod p; if degp>1 and degpld, then agn 1. p) =

q

k .
it ... tqr1 mod p?. Thus, since [d] = [ ], monicprime P, We have that
deg p|d

4y

e
[
Atk pgh=1qoq] = Aoy ooqgt] mod [l]q—,‘*l

We now determine the coefficient @y, ..., by using the formula for E,_; given in
Eq. (6). An easy analysis of that formula allows us to conclude that a ..., equals

the s¢++4+1_coefficient of — >4 monic tﬁkil. By Corollary 3.11 of [2, p. 677], we get

deg a=1
that
qk+17qf+l+(]k_7ll
K N 4=
- wt== — (14)
a monic 0<i<k (1 — 5071 + [1]Sq)‘1 !

deg a=1

If g=2and i =k — 1, then g5t — ¢'*! +‘1qk%11:qk+ g+ 1,80 Ay g = 1
if ¢>2, then ¢! — ¢! +qqk%11>qk +-+qgt+ 1,80 aky . 4001 =0.
Let us now prove that the degree of @i ygrip..4 18 gtk — g 4 ¢k and its

. . . . . dik oy k=1 ..
leading coefficient is —1. The polynomial @1y, is the s7 T+l

. k_1
coefficient of — > . & 7. Let
k k+r—1 r k
— _ -1 _ _ 4 +tq q*—1
C=- > = Sy
a monic a monic
deg a=r deg a=r

The fo =1+ bis + ---, considered as power series in s, satisfy deg b;<j, and so the
ki . . . .

sum >y onie 1/fa " also satisfies this condition. Hence, if we denote by 7, the

79" =47+ coefficient of dyr g 1441, the terms C, for r> 1 do not contribute to

y4- Thus, in order to determine y,, we only have to study C; (an expression of it is
given in Eq.(14)); in this case, the only term that contributes to 7, is

-1
qk+1ﬂ/‘+q_1 . §
(]_Sqil+[l]sq>qkiqkil : ence’ 1
(1= 4 (1) =3 6,9, (15)

n=0

. d+k _ k+1_ k . . _
—y4 is the T7 " ~4" 4 -coefficient of 6 a1, . Now, since the degree of the 57 L

coefficient of 1 — 471 4 [1]s? is less than ¢ — 1, in order to calculate y,;, we can omit
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the summand —s?~! in the left-hand side of Eq. (15). Thus, if

(1+[1)s)7 =

= (1+ 171 -7 P ) =) e (16)

n=0

then —y, is the T4 =0+ coefficient of qik_gi g From Eq. (16), we easily
deduce that this last coefficient is equal to 1, and so y, = —1. O

Remark 8. Corollary 7 does not give much information on the polynomial P;(7T'). In
principle, it may depend on d; nevertheless, we have computed in some cases the
expansion of E,_; up to certain bounds, and in all the examples the polynomial
P,(T) equals [k]/[1].
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