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Abstract

We study the expansion of the Eisenstein series for Fq½T � of weight qk � 1; kAN; and using

the fact that they are eigenfunctions for the Hecke operators, we prove congruences for some

of their coefficients.
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Introduction

In two previous works (cf. [3,5]), the existence of congruences for the coefficients
of two distinguished Drinfeld modular forms, the discriminant function D and its
ðq � 1Þth root h; was proven. In both cases, the result was obtained using the fact
that those modular forms are eigenfunctions for the action of the Hecke operators;
the congruences allowed to prove empirical rules (obtained from examples) for some
coefficients of both modular forms. In the present work, using the same basic
argument, we prove that there exist (weaker) similar congruences for the Eisenstein

ARTICLE IN PRESS

�Corresponding author. Fax: +34-956-016288.

E-mail address: bartolome.lopez@uca.es (B. L !opez).
1 The second author thanks the Ministerio de Ciencia y Tecnologı́a of Spain (project BFM2001-1488-

C02-C01) for financial support.

0022-314X/03/$ - see front matter r 2003 Elsevier Science (USA). All rights reserved.

doi:10.1016/S0022-314X(03)00063-5



series of weight qk � 1; kAN (compare Theorem 2 with Theorem 2.4 of [3] and
Theorem 1 of [5]). Using these ‘‘weak’’ congruences, the coefficients aqdþkþqk�1þ?þ1 of

the Eisenstein series of weight qk � 1; for dAN; are determined up to a factor of

degree qk � q (see Corollary 7).
The proof of the main result of this work, the congruences of Theorem 2, follows

the same scheme as the proof of the congruences in [5]. Nevertheless, there are three
differences, which are essential ingredients of the present proof. First, due to the fact
that there exist no ‘‘strong’’ congruences in this case (see Remark 6), Hecke
operators Tpm associated to mth powers of an irreducible polynomial p have to be

used instead of simple operators Tp: Secondly, the known property ana0 ) n 	
0; 1 mod q; satisfied by the Eisenstein series of weight qk � 1 (cf. [2, Proposition 6.10,
p. 684]), has to be replaced by the property stated in Proposition 1. Third, in order to
arrive to our conclusion, a more detailed study of the multinomial coefficients
ði0þ?þimd Þ!

i0!?imd !
mod p; where p is the characteristic of Fq; has to be done (see Lemma 4).

Here, the case of the coefficients aqdþkþqk�1þ?þ1 of the Eisenstein series of weight

qk � 1 has been dealt with. There are two directions in which this work may be
continued. The first one is to extend our result to the Eisenstein series of weight
rðq � 1Þ; rAN: The second, to study other coefficients of the Eisenstein series; for
example, it seems that there exist (empirical) rules for the coefficients aqdþk and

aqdþkþqk�1þ?þql ; l ¼ 0; 1;y; k � 1; of the Eisenstein series of weight qk � 1; a first

problem would be to prove these rules. We think that, in both cases, new arguments
should be brought up in order to extend our result. The reason being, the Goss
polynomials (the basic tool used here) are inefficient in some examples and
furthermore, handling these polynomials becomes much more complicated in the
general situation than in the case dealt with in this work.

1. Preliminaries

Let A :¼ Fq½T � be the ring of polynomials over the finite field Fq and let K :¼ FqðTÞ
be its quotient field. We consider the completion KN :¼ Fqðð1=TÞÞ of K at the place

N; and the completed algebraic closure of KN; C :¼ #%KN:
Let Cftg be the ring of non-commutative polynomials over C; where t is the

Frobenius endomorphism; the product in Cftg satisfies the rule ta ¼ aqt; aAC: The

ring Cftg can be identified with the ring of q-additive polynomials
Pl

i¼0 ciX
qi

; where

the product is given by substitution.
A Drinfeld module of rank r over C is a ring Fq-homomorphism f : A-Cftg

determined by

fT ¼ Tt0 þ
Xr

i¼1

citi;

where ciAC; cra0: Two modules f; f0 are isomorphic if there exists an element uAC�

such that u � fa ¼ f0
a � u for any aAA:
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An A-lattice in C of rank r is a discrete free A-module LCC of rank r: The
exponential function

eLðzÞ ¼ z
Y

lAL�f0g
ð1 � z=lÞ

can be associated to L: Through this function, a Drinfeld module of rank r can be
constructed. This construction establishes a bijection between the set of lattices of
rank r in C and the set of Drinfeld modules of rank r over C:

The Carlitz module is the rank one module determined by

rT ¼ Tt0 þ t ¼ TX þ X q:

Let L ¼ %pA be the lattice in C corresponding to r (the element %pAC is determined up
to a unit of A). From the exponential function eL associated to L; we define the
functions

tðzÞ ¼ eLð %pzÞ�1 and sðzÞ ¼ tðzÞq�1:

These functions will be used along the work as parameters of the expansion of the

Eisenstein series of weight qk � 1:

Let aAA: We consider the polynomial ra ¼
Pdeg a

i¼0 liX
qi

: Then l0 ¼ a and the

leading coefficient of ra is the leading coefficient of a; the rest of the coefficients of ra

satisfy the recursion

li ¼
l
q
i�1 � li�1

½i� ; ð1Þ

where ½i� ¼ Tqi � T ¼
Q

p monic; prime
deg pji

p:

The A-lattices of rank two in C are of the form uðzA þ AÞ; where uAC�; zAO :¼
C � KN: Homothetic lattices correspond to isomorphic Drinfeld modules; hence,
any Drinfeld module of rank two is isomorphic to one in the form

fT ¼ Tt0 þ gðzÞtþ DðzÞt2; ð2Þ

where zAO: The functions gðzÞ and DðzÞ (on O) are modular forms for the group

Gð1Þ :¼ GLð2;AÞ of weights q � 1 and q2 � 1; respectively. A function h on O is
called a modular form of weight k for the group Gð1Þ if it is holomorphic on O (in the

rigid analytic sense), it has an expansion of the form h ¼
P

nX0 cnsðzÞn and it satisfies

h
az þ b

cz þ d

� �
¼ ðcz þ dÞk

hðzÞ

for every a
b

c
d

� �
AGð1Þ: The C-vector space of modular forms of weight k is denoted

by Mk; it follows from the definition of modular form that Mk is trivial for
kc0 mod q � 1: Distinguished modular forms are the Eisenstein series of weight k;
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which are defined as

EkðzÞ ¼
X

c;dAA
ðc;dÞað0;0Þ

1

ðcz þ dÞk
: ð3Þ

The functions g and D considered above can be expressed in terms of Eisenstein

series: g ¼ ðTq � TÞEq�1 and D ¼ ðTq2 � TÞEq2�1 þ ðTq � TÞqðEq�1Þqþ1 (cf. [2,

Proposition 6.9, p. 684], or [4, Theorem 2.1.1, p. 27]).
In the sequel, the symbols a; p will denote monic polynomials in A: Let p be an

irreducible (and monic) polynomial with deg p ¼ d: Let mAN; the Hecke operators

Tpm act on the spaces Mk and this action can be explicitly given on t-expansions of

modular forms: if h ¼
P

nX0 cntnAMk; then

Tpm

X
nX0

cntn

 !
¼
Xm

i¼0

pðm�iÞ k
X
nX0

cnGn;piðpitpm�iÞ; ð4Þ

where taðzÞ ¼ tðazÞ ¼ tqdeg a

=faðtÞ; faðXÞ ¼ raðX�1ÞX qdeg a

; and Gn;pi is the nth Goss

polynomial with respect to ker rpi : The Goss polynomials can be defined by the

following recursion formula (cf. [2, p. 323]): let raðXÞ ¼ l0X þ l1X q þ?þ
ldeg aX qdeg a

and ai ¼ li=a; then Gn;a ¼ 0 for np0; G1;a ¼ X and

Gn;aðXÞ ¼ X ðGn�1;a þ a1Gn�q;a þ a2Gn�q2;a þ?Þ for n41:

There also exists an explicit formula for the polynomials Gn;a that will be used in

Section 2.

2. Coefficients of the Eisenstein series Eqk�1

Let us now consider the Eisenstein series of weight qk � 1; Eqk�1 (see Eq. (3)). It

follows that

%p1�qk

Eqk�1ðzÞ ¼ ð�1Þkþ1
L�1

k �
X

a monic

Gqk�1ðtaÞ; ð5Þ

where L0 ¼ 1 and Lk ¼ ½k�½k � 1�?½1�; and Gqk�1 is the Goss polynomial associated

to the lattice L ¼ %pA (cf. [2, Eq. (6.3), p. 682]). An explicit formula for Gqk�1 is

given by

Gqk�1 ¼
X
iok

ð�1Þi
L�1

i X qk�qi

;
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this formula is deduced from Proposition (3.10) and Eq. (4.3) of [2]. We conclude
that

%p1�qk

Eqk�1ðzÞ ¼ ð�1Þkþ1
L�1

k �
X
iok

ð�1Þi
L�1

i

X
a monic

tqk�qi

a

 !
: ð6Þ

From Eq. (6), it is seen that the expansion of Eqk�1 as power series in sðzÞ satisfies

that %p1�qk

Eqk�1ðzÞ ¼
P

nX0 ansn; with anAKð¼ FqðTÞÞ:

Proposition 1. Let
P

nX0 ansn be the expansion of Eqk�1: Then ana0 implies that

n 	 0; qk�1; qk�1 þ qk�2;y; qk�1 þ?þ q þ 1 mod qk:

Proof. Let aAA be a monic polynomial. For iAN; we consider

tqi�1
a ¼ sqdeg aþi�1þ?þqdeg a

fa

f
qi

a

: ð7Þ

It is seen that faðsÞ ¼ 1 þ b1sqdeg a�1 þ?þ bdeg asqdeg a�1þ?þqþ1; where biAA: Hence, if

we write sqdeg aþi�1þ?þqdeg a

fa ¼
P

nX0 cnsn; then cna0 implies

n 	 0; qi�1; qi�1 þ qi�2;y; qi�1 þ?þ q þ 1 mod qi;

and t
qi�1
a satisfies the same congruence property. Therefore, from the expression for

Eqk�1 given in Eq. (6), the result is easily derived. &

Congruences for some coefficients of the series %p1�qk

Eqk�1 are now proven.

Observe that, from the formula for Eqk�1 given in Eq. (6), it follows that the

coefficients considered in Theorem 2 belong to A:

Theorem 2. Let %p1�qk

Eqk�1ðzÞ ¼
P

nX0 ansn be the expansion of Eqk�1 with respect to

sðzÞ: Let pAA be irreducible and monic with deg p ¼ d: If d ¼ 1; then, for each mAN;
we have that

aqmþkþqk�1þ?þ1 	 aqkþ?þqþ1 mod p:

If d41; then, for each mAN; we have that

aqmdþkþqk�1þ?þ1 	 aqkþ?þqþ1 mod pqk

:

Proof. Let %p1�qk

Eqk�1ðzÞ ¼
P

nX0 cntn be the expansion of Eqk�1 with respect to tðzÞ:
For each mAN; we will prove that, if deg p ¼ 1; then

cðqkþ?þqþ1Þðq�1Þ 	 cðqmþkþqk�1þ?þ1Þðq�1Þ mod p; ð8Þ
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and if deg p41; then

cðqkþ?þqþ1Þðq�1Þ 	 cðqmdþkþqk�1þ?þ1Þðq�1Þ mod pqk

: ð9Þ

The series Eqk�1 is an eigenfunction for all the operators Ta with aAA monic, and the

corresponding eigenvalues are aqk�1 (cf. Proposition 1.4 of [1, p. 95]). Eq. (4) gives
the effect of Tpm on t-expansions of modular forms; for the series Eqk�1 we get:

pmðqk�1Þ
X
nX0

cntn

 !
¼ pmðqk�1Þ

X
nX0

cntn
pm þ?þ pqk�1

X
nX0

cnGn;pm�1ðpm�1tpÞ

þ
X
nX0

cnGn;pmðpmtÞ: ð10Þ

In order to prove the congruences of Eqs. (8) and (9), we determine the tqkþ1�1-
coefficient of the right-hand side in Eq. (10). For deg p ¼ 1; this term may only

appear in pqk�1
P

nX0 cnGn;pm�1ðpm�1tpÞ or
P

nX0 cnGn;pmðpmtÞ; and for deg p41; it

may only appear in
P

nX0 cnGn;pmðpmtÞ; this claim is proven in Lemma 5.

The tqkþ1�1-coefficient of pqk�1
P

nX0 cnGn;pm�1ðpm�1tpÞ (for any polynomial p with

deg p ¼ 1) is also studied in Lemma 5; we prove that it belongs to A and it is

determined mod pmðqk�1Þþ1: In Lemma 4, we prove that the tqkþ1�1-coefficient ofP
nX0 cnGn;pmðpmtÞ (for any irreducible polynomial p) belongs to A; and it is

determined mod pmðqk�1Þþqk

: From both lemmas, the congruences of Eqs. (8) and (9)
are easily derived. &

The following remark will be used in the proof of Lemmas 4 and 5; it is an
immediate consequence of the Lucas formula.

Remark 3. Let pAN be a prime and vp the p-adic valuation on Q: Let m; nAN be

such that nom and vpðnÞovpðmÞ; then ðm
n
Þ 	 0 mod p:

Lemma 4. Let pAA be irreducible and monic with deg p ¼ d: Let g be the tqkþ1�1-

coefficient of cnGn;pmðpmtÞ; then gAA: Furthermore, if n ¼ ðqmdþk þ qk�1 þ?þ
1Þðq � 1Þ; then g ¼ cnp

mðqk�1Þ; and if naðqmdþk þ qk�1 þ?þ 1Þðq � 1Þ; then g 	
0 mod pmðqk�1Þþqk

:

Proof. We first observe that, from Proposition 1, it follows that cn ¼ 0 for

nc0; qk � qk�1; qk � qk�2;y; qk � 1 mod qkðq � 1Þ: Now, if n 	 0; qk � qk�1; qk �
qk�2;y; qk � q mod qkðq � 1Þ; then Gn;pmðXÞ is a qth power of some polynomial in

K ½X �: In view of property Gqn;pmðXÞ ¼ ðGn;pmðXÞÞq of Goss polynomials, we have to

study only Gn;pmðpmtÞ for n 	 qk � 1 mod qkðq � 1Þ; in this case, cnAA (this follows

from the formula for Eqk�1 given in Eq. (6)).
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Let us consider the following explicit formula for Gn;pm (cf. [2, Eq. (3.8), p. 676]).

Let rpmðX Þ ¼
P

0pipmd liX
qi

; ai ¼ li=p
m; then

Grþ1;pmðXÞ ¼
X
jpr

X
%
i

j

%
i

 !
a%iX jþ1; ð11Þ

where
%
i ¼ ði0;y; imdÞ runs over the set of ðmd þ 1Þ-tuples satisfying i0 þ?þ imd ¼ j

and i0 þ i1q þ?þ imdqmd ¼ r; a%i ¼ ai0
0 ?aimd

md and ðj

%
i
Þ ¼ j!=ði0!?imd !Þ:

Let b be the tqkþ1�1-coefficient of Grþ1;pmðpmtÞ: Then

b ¼
X
%
i

j

%
i

 !
ai0

0 ?aimd

mdp
mðqkþ1�1Þ;

where 1 þ i0 þ?þ imd ¼ j þ 1 ¼ qkþ1 � 1 and i0 þ i1q þ?þ imdqmd ¼ r: In the

sequel, we will assume that r þ 1 	 qk � 1 mod qkðq � 1Þ; which is the only case that

we have to study. From Eq. (1), it follows that a0 ¼ 1; amd ¼ 1=pm; and pm�1aiAA;

for i ¼ 1;y;md � 1: Thus, if
%
i ¼ ði0;y; imdÞ satisfies ðm � 1Þði1 þ?þ imd�1Þ þ

mimdpmqkðq � 1Þ � qk; then ai0
0 ?aimd

md pmðqkþ1�1ÞAA and

ai0
0 ?aimd

md pmðqkþ1�1Þ 	 0 mod pmðqk�1Þþqk

:

Assume now that
%
i ¼ ði0;y; imdÞ satisfies

ðm � 1Þði1 þ?þ imd�1Þ þ mimd4mqkðq � 1Þ � qk: ð12Þ

It follows that i1 þ?þ imd4qkðq � 2Þ and so i0p2qk � 3: We now divide 1 þ i0 þ
i1q þ?þ imdqmd by qkðq � 1Þ considering q as an indeterminate. The remainder of
this division is

ðimd þ?þ ikÞqk þ ik�1qk�1 þ?þ i1q þ i0 þ 1

¼ ðqkþ1 � 2 � ði0 þ?þ ik�1ÞÞqk þ?þ i1q þ i0 þ 1:

Since r þ 1 	 qk � 1 mod qkðq � 1Þ; we get the congruence

ik�1ðqk � qk�1Þ þ?þ i1ðqk � qÞ þ ði0 þ 2Þðqk � 1Þ 	 0 mod qkðq � 1Þ:
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From this congruence, the following sequence of congruences is easily derived:

i0 þ 2 	 0 mod q;

qi1 þ ði0 þ 2Þ 	 0 mod q2;

^

qk�1ik�1 þ?þ qi1 þ ði0 þ 2Þ 	 0 mod qk: ð13Þ

Assume that ðj

%
i
Þa0 as an element in Fq: Then, since vpð j � i0Þ ¼ vpði0 þ 2Þ (recall that

j ¼ qkþ1 � 2), applying the claim of Remark 3 and the fact that vpðe!ÞXvpððe�
dÞ!Þ þ vpðd!Þ for any e; dAN; with doe; we conclude that

vpði1ÞXvpði0 þ 2Þ;y; vpðik�1ÞXvpði0 þ 2Þ:

Thus, vpði1ÞXvpði0 þ 2ÞXvpðqÞ; but now, the second congruence of Eq. (13) implies

that vpði0 þ 2ÞXvpðq2Þ; and so vpði1ÞXvpðq2Þ;y; vpðik�1ÞXvpðq2Þ: Using the rest of

the congruences of Eq. (13), we can repeat this argument recursively and we

conclude that vpði0 þ 2ÞXvpðqkÞ: Since i0p2qk � 3; one gets that i0 ¼ qk � 2; hence,

by Eq. (12), imd4qkðq � 2Þ: Now, applying Remark 3 again and the fact that

vpðe!ÞXvpððe� dÞ!Þ þ vpðd!Þ; it holds that imd ¼ qkðq � 1Þ:
In summary, we have that if ði0;y; imdÞ satisfies the condition of Eq. (12), then

j

%
i

 !
ai0

0 ?aimd

md pmðqkþ1�1Þ ¼
pmðqk�1Þ if i0 ¼ qk � 2 and imd ¼ qkþ1 � qk;

0 if i0aqk � 2 or imdaqkþ1 � qk:

(

This finishes the proof of the lemma. &

Lemma 5. Let pAA be an irreducible polynomial with deg p ¼ d; and let m; aAN: Let

g be the tqkþ1�1-coefficient of paðqk�1ÞcnGn;pm�aðpm�atpaÞ (cn as in the proof of Theorem

2). If ad41; then g ¼ 0: If d ¼ 1 and a ¼ 1; then gAA and g 	 0 mod pmðqk�1Þþ1:

Proof. As in the proof of Lemma 4, we only have to study the expressions

Gn;pm�aðpm�atpaÞ for n 	 qk � 1 mod qkðq � 1Þ:
Let tpa ¼ tqad

=fpaðtÞ: The term tqkþ1�1 may occur in ti
pa only if ipqk�adþ1 � 1: Let b

be the X i-coefficient of the polynomial Gn;pm�aðX Þ; ipqk�adþ1 � 1; and let

rpm�aðX Þ ¼
P

0prpðm�aÞd lrX
qr

; ar ¼ lr=p
m�a: Using the explicit formula for

Gn;pm�aðXÞ (see Eq. (11)), we find that

b ¼
X
%
i

j

%
i

 !
ai0

0 ?a
iðm�aÞd
ðm�aÞd ;
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where 1 þ i0 þ?þ iðm�aÞd ¼ j þ 1 ¼ ipqk�adþ1 � 1 and i0 þ i1q þ?þ
iðm�aÞdqðm�aÞd ¼ n � 1: Assume that ðj

%
i
Þa0 as an element in Fq; as in the proof of

Lemma 4, the congruences of Eq. (13) imply that i0 þ 2 	 0 mod qk; so i0Xqk � 2:

Hence, since i0 þ?þ iðm�aÞdpqk�adþ1 � 2; if ad41; then ðj

%
i
Þ ¼ 0 as an element in

Fq; and therefore b ¼ 0: This proves the first claim of the lemma.

Assume now that a ¼ 1 and d ¼ 1: By the previous argument, either ðj

%
i
Þ ¼ 0 or

i0 ¼ i � 1 ¼ qk � 2: In this last case, we have that n ¼ qk � 1 and b ¼ 1: Now, since

tp ¼ tq=ð1 þ ptq�1Þ; we have that

ðpm�1tpÞqk�1 ¼ pðm�1Þðqk�1Þðtqkþ1�q þ ptqkþ1�1 þ?Þ:

Hence, the tqkþ1�1-coefficient of expression pðqk�1Þcqk�1Gqk�1;pm�1ðpm�1tpÞ is

cqk�1p
mðqk�1Þþ1: Finally, cqk�1AA (this follows from the formula for Eqk�1 given in

Eq. (6)). &

Remark 6. Following [2], we define the form gk ¼ ð�1Þkþ1
%p1�qk

LkEqk�1: It follows

that the expansion of gk with respect to s satisfies that gk ¼ 1 þ b1s þ?; and the
coefficients of this expansion belong to A: The form gk satisfies the congruences of
Theorem 2; the question is whether it also satisfies ‘‘strong’’ congruences like the
discriminant function (cf. [5, Theorem 1, p. 1056]); the answer is no. For example, if
we take k ¼ 1; the form g1 ¼ g should satisfy the following: for deg p ¼ 1 and each
mAN;

bmq2þ1 	 bmqþ1 mod p;

and for deg p ¼ d41 and each mAN;

bmqdþ1þ1 	 bmqþ1 mod pq:

However, g does not satisfy these congruences in general: for example, the second
congruence is not satisfied for q ¼ 3; m ¼ 4 and any irreducible polynomial p with
deg p ¼ 2:

As a corollary of Theorem 2, we determine, up to a factor of degree qk � q; the
difference aqdþkþqk�1þ?þ1 � aqkþ?þqþ1:

Corollary 7. Let dAN: We have that

aqdþkþqk�1þ?þ1 ¼ aqkþ?þqþ1 �
½d�q

k

PdðTÞ
½1�qk�1

;

with Pd monic and deg Pd ¼ qk � q: For q ¼ 2; aqkþ?þqþ1 ¼ 1; and for q42;

aqkþ?þqþ1 ¼ 0:
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Proof. Let p be irreducible and monic. Let dAN; by Theorem 2, if deg p ¼ 1; then

aqdþkþqk�1þ?þ1 	 aqkþ?þqþ1 mod p; if deg p41 and deg pjd; then aqdþkþqk�1þ?þ1 	
aqkþ?þqþ1 mod pqk

: Thus, since ½d� ¼
Q

p monic;prime
deg pjd

p; we have that

aqdþkþqk�1þ?þ1 	 aqkþ?þqþ1 mod
½d�q

k

½1�qk�1
:

We now determine the coefficient aqkþ?þqþ1 by using the formula for Eqk�1 given in

Eq. (6). An easy analysis of that formula allows us to conclude that aqkþ?þqþ1 equals

the sqkþ?þqþ1-coefficient of �
P

a monic
deg a¼1

t
qk�1
a : By Corollary 3.11 of [2, p. 677], we get

that

�
X

a monic
deg a¼1

tqk�1
a ¼ �

X
0piok

s
qkþ1�qiþ1þqk�1

q�1

ð1 � sq�1 þ ½1�sqÞqk�qi
: ð14Þ

If q ¼ 2 and i ¼ k � 1; then qkþ1 � qiþ1 þ qk�1
q�1

¼ qk þ?þ q þ 1; so aqkþ?þqþ1 ¼ 1;

if q42; then qkþ1 � qiþ1 þ qk�1
q�1

4qk þ?þ q þ 1; so aqkþ?þqþ1 ¼ 0:

Let us now prove that the degree of aqdþkþqk�1þ?þ1 is qdþk � qkþ1 þ qk and its

leading coefficient is �1: The polynomial aqdþkþqk�1þ?þ1 is the sqdþkþqk�1þ?þ1-

coefficient of �
P

a monic t
qk�1
a : Let

Cr ¼ �
X

a monic
deg a¼r

tqk�1
a ¼ �sqkþr�1þ?þqr

X
a monic
deg a¼r

1=f qk�1
a :

The fa ¼ 1 þ b1s þ?; considered as power series in s; satisfy deg bjpj; and so the

sum
P

a monic 1=f
qk�1
a also satisfies this condition. Hence, if we denote by gd the

Tqdþk�qkþ1þqk

-coefficient of aqdþkþqk�1þ?þ1; the terms Cr for r41 do not contribute to

gd : Thus, in order to determine gd ; we only have to study C1 (an expression of it is
given in Eq. (14)); in this case, the only term that contributes to gd is

� s
qkþ1�qkþ

qk�1
q�1

ð1�sq�1þ½1�sqÞqk�qk�1 : Hence, if

ð1 � sq�1 þ ½1�sqÞqk�1�qk

¼
X
nX0

dnsn; ð15Þ

�gd is the Tqdþk�qkþ1þqk

-coefficient of dqdþk�qkþ1þqk : Now, since the degree of the sq�1-

coefficient of 1 � sq�1 þ ½1�sq is less than q � 1; in order to calculate gd ; we can omit
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the summand �sq�1 in the left-hand side of Eq. (15). Thus, if

ð1 þ ½1�sqÞqk�1�qk

¼ ð1 þ ½1�q
k�1

sqkÞð1 � ½1�q
k

sqkþ1 þ ½1�2qk

s2qkþ1 �yÞ ¼
X
nX0

ensn; ð16Þ

then �gd is the Tqdþk�qkþ1þqk

-coefficient of eqdþk�qkþ1þqk : From Eq. (16), we easily

deduce that this last coefficient is equal to 1; and so gd ¼ �1: &

Remark 8. Corollary 7 does not give much information on the polynomial PdðTÞ: In
principle, it may depend on d; nevertheless, we have computed in some cases the
expansion of Eqk�1 up to certain bounds, and in all the examples the polynomial

PdðTÞ equals ½k�=½1�:
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