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2 Servicio de Informática Cientı́fica y Estadı́stica, Universidad de Cádiz, Polı́gono Rı́o San Pedro, Apartado 40,

Puerto Real 11510, Cádiz, Spain

Received October 4, 2002; accepted December 15, 2002; published online May 19, 2003

# Springer-Verlag 2003

Abstract. A method using artificial neural networks

(ANNs) combined with Fourier Transform (FT) and

Wavelet Transform (WT) was used to resolve over-

lapping electrochemical signals. This method was stud-

ied as a powerful alternative to traditional techniques

such as principal component regression (PCR) and

partial least square (PLS), typically applied to this kind

of problems.

WT and FT were applied to experimental electro-

chemical signals. These are two alternative methods

to reduce dimensions in order to obtain a minimal

recomposition error of the original signals with the

least number of coefficients, which are utilized as

input vectors on neural networks. Tlþ and Pb2þ mix-

tures were used as a proof system.

In this paper, neural networks with a simple topol-

ogy and a high predictive capability were obtained,

and a comparative study using PLS and PCR was

done, producing the neural models with the lowest

RMS errors. By comparing the error distributions

associated with all the different models, it was estab-

lished that models based on FT and WT (with 11

coefficients) neural networks were more efficient in

resolving this type of overlapping than the other

chemometric methods.

Key words: Fourier transform; wavelet transform; artificial neural

networks; overlapped electrochemical signal processing; differen-

tial pulse anodic stripping voltammetry.

The problem of determining two or more species

with similar analytical signals has been a matter of

substantial interest since the former developments

in instrumental techniques of analysis. Nowadays,

instrumental techniques combined with the suitable

chemical procedures are able to resolve this problem

in most situations, but inefficient in others. For exam-

ple, electroanalytical techniques have found numerous

applications [1, 2] due to their simplicity and low cost,

but selectivity problems occur frequently. Overlapped

peaks occur more commonly in voltammetry than in

chromatography or most spectral methods, because

the width of a voltammetric peak is an appreciable

fraction of the accessible potential range. It is in these

situations that statistical techniques and methods

based on signal processing play an important role,

allowing the separation of signals including the most

serious overlapping cases.� Author for correspondence. E-mail: jluis.hidalgo@uca.es



Between the statistical techniques used most fre-

quently for deconvolution and simultaneous evalua-

tion of overlapped signals, independently of the type

of signal, are the signal ratio resolution method

[3], multivariate calibration methods (PLS, PCR, etc)

[4, 5], derivation of signals [6], curve fitting [7],

Fourier transform (FT) [8], wavelet transform (WT)

[9] and ANNs [10–12].

FT is one of the most well-known and most fre-

quently used tools in any scientific discipline. Using

this kind of transform, a signal f(t) is represented as a

combination of basis functions, normally sines and

cosines. This means that the original signal is decom-

posed in a sum of sinusoidal signals at different fre-

quencies. The FT has two fundamental advantages: it

is simple, and it can be explained in physical terms

(undulatory nature of many signals).

WT now plays a special role in the field of

signal processing: data pre-processing [9], de-noising

and compression [13, 14], and overlapped signals

processing [15] among others. While the basis func-

tions of FT are unlimited in duration and smooth

and periodic, the component functions of WT are

finite, asymmetric and non-periodic. This provides

WT with the advantageous characteristic of compress-

ing information, as it allows to approximate signals

with features that change over time and signals that

have jumps and other non-smooth features. Another

important characteristic of WT is that this type of

transform can represent a non-stationary signal,

where, in contrast to FT, the frequency depends on

the variable t,.

In wavelet analysis, linear combinations of wavelet

functions are used to represent signals f(t). This repre-

sentation allows you to separate a signal into multi-

resolution components. The fine and coarse resolution

components capture the high-frequency and the low-

frequency parts of a signal, respectively. In the same

way, these representations are useful in a broad range

of applications, such as data compression, signal and

image processing, non-parametric statistical estima-

tion, numerical analysis, chemistry, astronomy and

oceanography.

Nowadays ANNs, understood as black box models,

are accepted by the scientific society and extensively

used to perform multicomponent analysis [16] and

pattern recognition [17]. ANNs have already been uti-

lized in combination with most analytical techniques,

and the number of applications in electroanalysis is

also increasing [18, 19]. There are many general

books about the application of this method in chem-

istry [20, 21].

Although the theory and principles of ANNs

have been dealt with in detail in the literature

[22, 23], a small summary about the issue will be

given here.

Similar to the biological structures of living organ-

isms, ANNs consist of a set of processing units called

neurones (cells or nodes) which are capable of sharing

information. In particular, there are neural models that

can be used as supervised models with a predictive

feature. These models have a disposition in several

layers: an input layer, one or more hidden layers,

and an output layer, all of them connected to each

other between adjacent layers which determine the

structure or the topology of the network. The number

of nodes in the input and output layer are defined by

the problem being solved. The input layer receives

the experimental information (such as experimental

parameters conveniently or not pre-processed which

constitute the training set) while the output layer deliv-

ers the response function. Regarding the hidden

layers, they encode and organize the information

received from the input layer and deliver it to the

output layer. A bias is used to calculate the net input

of a neuron from all the neurons connected to it. The

neuron calculates a weighed sum for each signal. The

objective is basically the adequate estimation of a set

of parameters called weights by an iterative process

named network training. These weights establish the

importance of the connections between the neurones

and are able to generate a neural network model with

a minimum error rate. The model obtained can be

validated using another set of samples called test

set.

The statistical validation of the training and the test

sets guarantees a satisfactory neural model when the

error function (RMS error: root mean square error) for

the training and the test samples is sufficiently small.

Moreover, this type of validation is of general char-

acter and allows you to compare with other supervised

models.

The process of calculating a predictive neural

model is based on a type-gradient algorithm of con-

vergence which tries to obtain the configuration of

weights that gives the minimum RMS error.

In this paper, a procedure for resolving hard over-

lapped electrochemical signals is proposed. This

procedure uses Fourier and wavelet transforms as

methods to reduce dimensions in connection with
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artificial neural networks, instead of multivariate cali-

bration techniques such as PLS and PCR. The well-

known Tlþ and Pb2þ mixture, which has already

been resolved (but with higher concentrations of the

ions) by the traditional methods PLS and PCR, is

employed as the proof system [24].

Although the new procedure is more complicated

from the mathematical viewpoint, its use should be

justified whether its ability of prediction was better

than that of PLS and PCR or it opened a new way

of treating this kind of signals statistically. Further-

more, it must be taken into account that PLS and

PCR can only be used in those cases where linearity

exists between the initial data and the values of the

response function; by contrast, the proposed proce-

dure is applicable to highly non-linear signal=

concentration relationships as well as to linear ones,

since these transforms lend a non-linear character to

the reduced data.

Moreover, the justification to use artificial neural

networks as a method to resolve hard overlapped sig-

nals versus PLS and PCR is based on the fact that

previous pre-processing of the initial information

(voltammograms) was done by applying Fourier and

wavelet transforms, both suitable to detect small

changes in the resultant signal frequency associated

with a hard overlapping. By contrast, there is no guar-

antee that the PLS approach theoretically extracts the

most reliable information [25], and the use of this

method depends in part on what is known about the

data, the nature of noise and signals and so on. This

can also be applied to PCR, since PLS is more power-

ful than PCR.

Both transforms applied as methods to reduce

dimensions will allow you to show all information

contained in the signal as a vector with a few coeffi-

cients. In this paper, the two types of transforms will

be compared in order to find out which has the best

ability to reduce and retain information. The pre-

processing of the signals by FT and WT allows you to

find simple and stable neural models with three layers

to resolve the problem of overlapped signals. The

problem of overfitting should be avoided using the

least number of coefficients possible to determine

the network parameters. Furthermore, a comparative

study of the results of these methods with those of

PCR and PLS will be carried out. The plots of the

RMS errors for each model will give an idea about

the best model from all those assayed. And finally, by

using box and whiskers plots, a comparison between

the error distributions will be carried out for all

models applied.

Experimental

The DPASV (Differential Pulse Anodic Stripping Voltammetry)

measurements were carried out with an Autolab+=PGSTAT20 sys-

tem coupled to a Metrohm VA 663 Stand. An electrochemical three

electrode cell, with a platinum auxiliary electrode, a silver=silver

chloride, 3 M potassium chloride reference electrode and an HMDE

(Hanging Mercury Drop Electrode, Metrohm) was employed.

Analytical reagent grade chemicals were used throughout the

experiments. Voltammograms were recorded at room temperature.

All solutions were de-aerated with nitrogen, when necessary, for at

least 10 min prior to carrying out the experiments.

A 2 M acetic acid=2 M ammonium acetate buffer solution was

utilized as supporting electrolyte (pH¼ 4.8–5.0). Lead and thallium

solutions were prepared from nitrate salt stock solutions of

250 mg l� 1.

The voltammetric parameters were as follows: deposition

potential¼ � 1.3 V; deposition time¼ 120 s; rest period¼ 20 s;

initial potential¼ � 1.3 V; end potential¼ 0 V; scan rate¼
8.5 mV s� 1; pulse amplitude¼ 0.10 V; pulse time¼ 0.07 s; pulse

repetition time¼ 0.6 s. The drop surface was approximately

0.52 mm2.

For signal processing and statistical treatment the following

software packages were used: MATLAB+ 5.1, Statistica+ 5.1,

Unscrambler+ 7.01 and EXCEL+ 97 Pro. Qnet+ 2000 neural net-

work software was utilized to obtain the neural models.

Results and Discussion

In this paper, a supervised neural model is used as a

direct pattern recognition method. In some studies, all

points the instrument gives for each signal (in the

present case, 80 points) are utilized as input vectors

[10, 11]. However, this means working with a large

number of dimensions, much redundant information, a

relatively high computation time and possibly over-

parametrization of the model. To avoid these prob-

lems, we applied the methods to reduce dimensions

(to compress information) as a previous step to the

estimation of the neural models.

We used a feedforward-type (connections must

connect to the next layer) and multilayered neural

network with an improved faster back propagation

(BP) algorithm. There are two adaptive parameters

(learning rate and momentum) for each weight in a

BP neural network. The improved BP algorithm will

make the learning process faster and avoid a local

minimum in the surface of the RMS error. These types

of networks operate in a supervised mode.

Backpropagation training is accomplished using the

following logic sequence: 1) data is supplied to the

input layer as a normalized vector and combined in

the next (hidden) layer(s). 2) Each node of a given
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hidden layer(s) processes the vector received multi-

plying it by a weight vector and adding bias value.

3) The resulting value is then processed through a

transfer function. This transfer function serves to

define the response of each neuron as a value that

ranges from 0 (absence of response) to 1 (maximum

intensity of the response). The transfer functions used

here are the sigmoid function, f(x)¼ 1=(1þ exp(� x)),

the Gaussian function, f(x)¼ exp(� x2) and the

hyperbolic tangent, f(x)¼ (tanh(x)þ 1)=2. 4) Each

node’s output value is combined in the current hidden

or output layer to form the layer’s output vector. This

output vector becomes the input vector for the next

layer. 5) Processing proceeds to the next layer until

arriving at the output layer where the final output

vector is obtained. 6) The final output vector is com-

bined with the training target vector to obtain the out-

put layer’s error vector. This is obtained for each

hidden layer implying that the error is backpropagated

through the network (thus the name for the paradigm).

7) Next, the weight vectors for each node must be

updated using learning rate and momentum factor.

The momentum term helps to keep the training pro-

cess stable by damping weight change oscillations. 8)

All input vectors (patterns) are processed through the

network to adjust the weights for a given iteration. 9)

The RMS error between the network response and the

training targets is computed after each iteration. The

RMS error is also equivalent to the standard deviation

of the error in the network’s response. 10) If a dispos-

itive to modify and control the learning rate param-

eter is active for the run, a new learning rate (eta) is

computed based on the change in the RMS error

value. 11) The entire process cycle starts again with

next training iteration.

One of the objectives of this paper was to obtain

topologies as simple as possible to resolve overlapped

signals of two species by a pattern recognition model.

The key to this is using methods (FTand WT) to reduce

dimensions of the original data that allow to simplify

the input information without losing the non-linear

character associated with the overlapping, so that the

posterior neural model is as simple as possible.

To apply the proposed procedure, forty different

samples were determined experimentally. These sam-

ples were distributed as follows: ten samples of pure

thallium, ten samples of pure lead and twenty mix-

tures of both ions. The range of concentration was

from 0.1 to 1.0 mg L� 1. The disposition and concen-

tration of the samples were as represented in Table 1.

We intended to choose two mixtures for both thal-

lium and lead concentration values. Apart from that,

another eight samples were measured later than the

others and used as an external test set (tst) to check the

predictive ability of the models.

The analysed mixtures showed very hard overlap-

ping between the signals of both ions as shown in

Fig. 1.

The samples produced a discrete data set composed

of the full voltammograms of the samples, each one

consisting of 80 points, the potential ranging from

� 0.3 to � 0.7 V.

Fig. 1. Superposition of voltammograms: (a) 0.7 mg L� 1 of Tlþ

(T7); (b) 0.7 mg L� 1 of Pb2þ (L7); (c) mixture of 0.7 mg L� 1 of

Tlþ and 0.7 mg L� 1 of Pb2þ (T7L7)

Table 1. Concentrations of samples used

Sample [Tlþ ]� [Pb2þ ]� Sample [Tlþ ]� [Pb2þ ]�

T1 0.1 0.0 T1L1 0.1 0.1

T2 0.2 0.0 T1L6 0.1 0.6

T3 0.3 0.0 T2L2 0.2 0.2

T4 0.4 0.0 T2L7 0.2 0.7

T5 0.5 0.0 T3L3 0.3 0.3

T6 0.6 0.0 T3L8 0.3 0.8

T7 0.7 0.0 T4L4 0.4 0.4

T8 0.8 0.0 T4L9 0.4 0.9

T9 0.9 0.0 T5L5 0.5 0.5

T10 1.0 0.0 T5L10 0.5 1.0

L1 0.0 0.1 T6L1 0.6 0.1

L2 0.0 0.2 T6L6 0.6 0.6

L3 0.0 0.3 T7L2 0.7 0.2

L4 0.0 0.4 T7L7 0.7 0.7

L5 0.0 0.5 T8L3 0.8 0.3

L6 0.0 0.6 T8L8 0.8 0.8

L7 0.0 0.7 T9L4 0.9 0.4

L8 0.0 0.8 T9L9 0.9 0.9

L9 0.0 0.9 T10L5 1.0 0.5

L10 0.0 1.0 T10L10 1.0 1.0

L¼ Pb2þ ; T¼Tlþ ; � in mg L� 1.
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A comparison of the neural models and other sta-

tistical methods was performed. A scheme of the

procedure applied using these chemometric tools is

shown in Fig. 2.

Reduction of Dimensions Using Transforms

Fourier Transform

A subroutine of MATLAB was designed to obtain the

FT of all voltammograms and reduce the number of

initial data (dimensions). In this way, the signals are

transformed from the time domain to the frequency

domain. Afterwards, a cut frequency is chosen and a

low-pass filter is applied. This filter removes high fre-

quencies (usually noise) and maintains exclusively low

frequencies (high amplitudes) which contain the infor-

mation related to the signals. Immediately after this,

the filtered signals are reconstructed at the time domain

using the inverse Fourier transform in order to estimate

the recomposition errors by the next equation:

" ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X

80

i¼1

ðei � ei
�Þ2

e2
i

v

u

u

t � 100 ð1Þ

where ei and e�i represent the points of the original

and reconstructed signals, respectively.

The final objective is to obtain a suitable cut fre-

quency that gives a number of Fourier coefficients as

small as possible and, at the same time, the smallest

recomposition error of the signals. Varying the param-

eter of the cut frequency, a chart was obtained with

the different recomposition errors for each signal, as

well as their respective Fourier coefficients. The

‘‘best’’ value for the cut frequency was selected estab-

lishing a strategy of commitment between the recom-

position error and the number of Fourier coefficients.

So, this cut frequency was !¼ 4 Hz for a voltammo-

gram of 128 frequencies. The minimum number of

dimensions (Fourier coefficients) corresponding to

this frequency was N¼ 7, i.e. the seven fundamental

amplitudes equivalent to the first three harmonics of

the Fourier series. In this manner, every signal with 80

points was reduced to only 7 components of fre-

quency, resulting in a recomposition error lower than

3% in all cases (calculated by expression (1)). To

summarize, a dimension reduction of 91.25% was

obtained for the original signals, maintaining at least

97% of the information.

Wavelet Transform

The objective is the same as with FT: obtaining a

number of wavelet coefficients as small as possible

with the smallest recomposition error of the signals.

Different kinds of wavelet basis were tested: Haar,

Daublet ‘n’ (n¼ 3, 4, 6, 8, 10, 12, 14, 16, 18 and 20),

Symmlet ‘m’ (m¼ 2–8) and Coiflet ‘g’ (g¼ 1–5).

These wavelets were applied to all the signals. The

differences between these types of wavelets are well

explained in the bibliography [26].

A MATLAB+ program was used to examine the

reductions of the dimensions. Five decomposition

levels and different thresholdings were applied. Con-

sidering the recomposition error of the signals as well

as the number of coefficients obtained, Symmlet 3 and

Symmlet 4 wavelets were selected (typical wavelets to

represent symmetric signals as in these cases).

After de-noising and compression of the signals,

the wavelet coefficients, which represented the

reduced signals, were obtained: 9 and 11 for Symmlet

3 and Symmlet 4, respectively. Likewise, in each case

the percentage of zero coefficients and the recomposi-

tion percentage of the signals after their reconstruc-

tion were obtained as well. Thus, the complete cycle

of WT application was as follows: decomposition, de-

noising, compression and signals reconstruction.

Table 2 presents the results obtained in the pro-

cesses of reduction with the two types of transforms.

This table shows that the reduction percentage of

coefficients obtained with FT is slightly greater. Like-

wise, the recomposition minimum (and the maximum)

error percentages in FT were less than in WT.

Fig. 2. Procedure used in the preprocessing and the statistical

treatment of the electrochemical signals carried out with different

chemometric tools
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Neural Network Analysis

Neural Networks Based on Fourier Coefficients

A set of network topologies with three layers (per-

ceptron) was designed to resolve the mixtures of

analytes by using the Fourier coefficients obtained

for each signal after having applied the process to

reduce dimensions. These models had 7 input nodes

(the seven Fourier coefficients for each signal) and 2

output nodes (the concentrations for each ion). A low

number of hidden neurons was used to avoid overfit-

ting and overparametrization of the system and to

obtain a model as simple as possible.

The characteristics of these models were as follows:

– Topology: 7-X-2, where X 2 {2, 3}.

– Activation functions: linear for input layer, and all

the possible combinations of gaussian, sigmoid and

hyperbolic tangent functions for the rest of the

layers.

– Training set (trn): 32 samples.

– Monitoring set (mon): selected randomly at first

and then fixed for the remaining methods, consisted

of 8 samples: T1, T8, T1L1, T2L2, T8L3, T4L9,

T6L1 and T1L6.

– External test set (tst): T1L9, T2L10, T3L5, T5L3,

T6L8, T8L6, T9L1 and T10L2.

– Starting weights values: as they were randomly

generated, three ANN runs were made and the

resulting RMS’s were averaged.

The root mean square (RMS) error of each set

(training, monitoring and test set) was obtained for

all cases. The RMS error was used as a decision param-

eter to find the best model. This parameter is defined

by the following equation:

RMS ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P

iðyi � yi
�Þ2

n

s

ð2Þ

where yi represents the measured concentration for the

ions; yi
� represents the predicted concentration for the

ions; and n is the number of samples.

The best neural models, i.e. with the least RMS

values for both the training and the test sets obtained,

were: 7-3-2 linear-tangential-gaussian (ltg) (7 nodes

in the input layer with linear activation functions, 3

nodes in the hidden layer with hyperbolic tangent

activation functions and 2 nodes in the output layer

with gaussian activation functions) and 7-2-2 linear-

tangential-gaussian (ltg) (7 nodes in the input layer

with linear activation functions, 2 nodes in the hidden

layer with hyperbolic tangent activation functions and

2 nodes in the output layer with gaussian activation

functions). The RMS values for each set are shown in

Table 3.

Both neural models were trained and validated

again by varying two adaptive parameters, the learn-

ing rate (�) and the momentum (�). Both parameters

optimize the rate at which a network learns. The

results obtained in this way did not improve the

RMS errors significantly. This indicates that the opti-

mal neural models can be considered the previous

ones.

Table 2. Comparison of efficacy of the methods to reduce dimensions: FT and WT

Dimension reduction Number of Decomposition level Percentage of Recomposition Recomposition

methods coefficients (!¼ Fourier) reduction of minimum minimum

coefficients error (%) error (%)

Symlet 3 (WT) 9 4 90.72 1.42 4.75

Symlet 4 (WT) 11 4 89.62 0.71 3.77

Fourier (spectrum 7 !¼ 4 Hz 91.25 0.27 2.62

of 128 frequencies)

Table 3. Comparison of RMS errors obtained with each model

Optimal model RMS(trn) RMS(mon) RMS(tst)

PCR full 0.0334 0.0373 0.0498

FTþ PCR 0.0382 0.0227 0.0511

WT(9)þ PCR 0.0504 0.0466 0.0608

WT(11)þ PCR 0.0481 0.0481 0.0592

PLS full 0.0328 0.0368 0.0496

FTþ PLS 0.0378 0.0226 0.0514

WT(9)þ PLS 0.0502 0.0464 0.0605

WT(11)þ PLS 0.0480 0.0468 0.0589

7-3-2 ltg 0.0235 0.0264 0.0447

7-2-2 ltg 0.0254 0.0269 0.0426

9-3-2 lss 0.0225 0.0297 0.0774

9-2-2 lgt 0.0299 0.0256 0.0475

11-3-2 lsg 0.0229 0.0169 0.0486

11-2-2 lsg 0.0230 0.0164 0.0474

RMS(trn)¼RMS error for training set; RMS(mon)¼RMS error for

monitoring set; RMS(tst)¼RMS error for external test set; l¼ lineal

activation function; g¼ gaussian activation function; s¼ sigmoid

activation function; t¼ hyperbolic tangent activation function.
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The predicted values for the concentrations of both

thallium and lead ions were obtained by utilizing

the best models, and the relative percentage errors

were below 6% on average.

Neural Networks Based on Wavelet Coefficients

In this case, the wavelet coefficients that were

obtained with the Symmlet 3 and Symmlet 4 wavelets

(9 and 11 coefficients, respectively) were employed as

input vectors in the neural networks.

Neural models with three layers were developed,

similarly to the neural networks based on Fourier

coefficients. Their topologies were as follows: 9-X-2

for Symmlet 3 (9 input nodes, one for each coeffi-

cient; 2 output nodes, one for each concentration of

the ions; X 2 {2, 3} hidden neurones) and 11-X-2 for

Symmlet 4 (11 input nodes, one for each coefficient; 2

output nodes, one for each concentration of the ions;

X 2 {2, 3} hidden neurones).

The same training parameters, and the same train-

ing, monitoring and test sets as used for the Fourier

models, were applied, and overfitting was avoided in

the same way.

A set of different neural models was tested for each

case: 9 and 11 wavelet coefficients from Symmlet 3 and

Symmlet 4, respectively. The best models using

Symmlet 3 coefficients, with the lowest RMS errors, had

the following topologies: 9-3-2 linear-sigmoid-sigmoid

(lss) and 9-2-2 linear-gaussian-tangential (lgt). The RMS

error values appear in Table 3. The relative percentage

errors were on average below 8% for the two models.

The best models using Symmlet 4 coefficients

produced these topologies: 11-3-2 linear-sigmoid-

gaussian (lsg) and 11-2-2 linear-sigmoid-gaussian

(lsg). The RMS errors are shown in Table 3 as well.

The RMS values were less than in the case of models

with 9 wavelet coefficients and quite similar to those

obtained with Fourier models. Here, the relative per-

centage errors were also on average below 6%.

As in the Fourier case, after trying to refine these

models using the same procedure, the results obtained

were not significantly better than the previous ones.

That is why the neural models, shown in Table 3, are

considered the best ones for this proof binary system.

Comparative Study of Both Kinds

of Neural Networks

To compare the ability of reducing and retaining

information, we obtained the improving percentages

of each neural model based on wavelet coefficients

compared to the models constructed using Fourier

coefficients. The comparison was established between

wavelet and Fourier models with the same number of

hidden neurons. The percentage of improvement was

remarkably better in the case of the RMS(mon) values,

17% on average; i.e. when using a wavelet procedure

of compression, the results for the monitoring set

improve by approximately 17% in comparison to a

Fourier procedure. For the RMS(trn) errors, the results

were very similar in all cases and, finally, as shown in

Table 3, the best RMS(tst) values were obtained with

Fourier transforms, which indicates that there is no

improvement in this case when using a wavelet model.

In general, the neural models with 11 coefficients

allow greater improvements than models with 9 coef-

ficients. There is reason to assume that neural models

using 11 wavelet coefficients are better than those

with 9 coefficients. Using more wavelet coefficients

to compress and reconstruct the signals, and conse-

quently maintaining more information, may affect this

situation. However, almost all mixtures were pre-

dicted with concentration errors lower than a hun-

dredth of mg L� 1, independently of the model used.

It has been proved that the prediction capability as

well as the recomposition percentage obtained in this

paper were slightly better with Fourier models,

despite the more advantageous characteristics of WT

as a pre-processing tool. The reason is the form of the

signal which is usually gaussian (their fitting errors

are lower than 2%). Since all gaussian functions can

decompose in a sum of sines and cosines functions, it

is not surprising that FT adapts better than WT in the

representation of this type of signals and in the pro-

cess of reducing dimensions. Furthermore, the use of

Fourier coefficients allows you to construct simpler

neural models than using wavelet coefficients.

Multivariate Calibration Methods

PCR Analysis

The PCR analysis was carried out with the aid of the

software package Unscrambler+ 7.01 and the vari-

ables chosen as follows: independent variables were

1) the 80 points of all voltammograms of the samples

(PCR full), and 2) the Fourier and wavelet coefficients

obtained after pre-processing the initial data with the

respective transforms (FTþ PCR and WTþ PCR);

dependent variables were the concentration values of

each ion for each sample. All data was centered, and
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Fig. 3. Box & whiskers plot of thallium (a) and lead (b) error distributions for all models: PCR (principal component analysis); PLS

(partial-least square); FULL (using all the initial data without reduction of dimensions); FT (using Fourier coefficients); WT (using wavelet

coefficients: (9) for Symmlet 3 and (11) for Symmlet 4); 7-3-2 and 7-2-2 (Fourier neural models topologies); 9-3-2, 9-2-2, 11-3-2 and 11-2-

2 (wavelet neural models topologies); ltg (linear-tangential-gaussian); lss (linear-sigmoid-sigmoid); lgt (linear-gaussian-tangential); lsg

(linear-sigmoid-gaussian)
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the model was validated using the same monitoring

set as for neural models. The rest of samples (32)

made up the training set (trn).

The best number of components, which explained

the greatest variance, was 3 in PCR full model and 2

in FTþ PCR and WTþ PCR models. This means that

a pre-processing step reduces the number of principal

components. The RMS errors obtained for both the

training and the monitoring set are shown in Table

3. The external test set was used to check the predic-

tive ability of the models as well. The RMS error

values can also be found in Table 3.

All models obtained make predictions in a similar

way, but RMS errors are lower in PCR full and

FTþ PCR models.

PLS Analysis

Using the same software and developing the analysis

as PCR (with the same variables, procedure, valida-

tion method and training, monitoring and external

sets), the best number of components was 3 in PLS

full model and 2 in FTþ PLS and WTþPLS models,

as in the previous analysis. The RMS errors for each

set of samples can be seen in Table 3. As shown, the

results are not much different than the PCR ones.

As in PCR analysis, RMS errors are lower in PLS

full and FTþ PLS models.

Comparison Between all Statistical Methods

The lowest RMS(trn) and RMS(mon) errors appear with

wavelet models using 11 coefficients, and Fourier

neural models show the lowest RMS(tst) errors (Table

3). In general, PCR and PLS models have a worse

predictive ability with the external test set. Neverthe-

less, PCR full, PLS full, FTþ PCR and FTþ PLS mod-

els have RMS(tst) values very similar to Fourier and

wavelet neural models. This means that the use of

Fourier transforms as a pre-processing procedure pro-

duces less RMS errors independently of the multivari-

ate calibration technique used to resolve the mixtures.

Besides, in the case of PCR and PLS full models

without pre-processing, their good performance can

be attributed to the linearity of the binary system of

mixtures resolved here. In general, the full methods

that give a better response to solve the two overlapped

peaks are neural models with FT and WT pre-

processing. They perform slightly better than PLS

and PCR, the traditional models which would be the

most suitable methods for resolving this kind of pro-

blem, even when the initial data presents linearity.

The box and whiskers plots of Fig. 3 were obtained

by using the thallium and lead error distributions

obtained for all different models with the same train-

ing, monitoring and test sets. As shown, Fourier and

wavelet neural models (Fourier and wavelet transform

as previous techniques applied to neural networks)

provide a more sensitive precision than linear models

PLS and PCR, except for model 9-3-2 lss. WTþ PLS

and WTþ PCR models offer the worst precision with

both ions.

Conclusions

The models combining transforms and neural net-

works presented here are able to predict the concen-

trations of the two ions in the mixtures slightly better

than the traditional techniques, PLS and PCR, even

when the initial data presents high linearity. This is

due to the ability of Fourier and wavelet transforms to

detect information of high frequency due to the hard

overlapping between the two signals of the ions,

which is what linear models (PLS and PCR) are not

able to do.

Both FT and WT have demonstrated to be tools of

similar performance with voltammetric signals, but

the topologies obtained with FT are simpler. For this

reason, the use of FT may be considered more ade-

quate for the signals studied in this paper: it is possi-

ble that the use of WT would be preferable for another

type of signals, more asymmetric or further than the

gaussian form.
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González, L. M. Polo-Dı́ez, Selection of Calibration Mixtures

and Wavelengths for Different Multivariate Calibration

Methods, Anal. Chim. Acta 1995, 313, 93.

[6] J. R. Morrey, On Determining Spectral Peak Positions From

Composite Spectra With a Digital Computer, Anal. Chem.

1968, 40, 905.

[7] W. Huang, T. L. E. Henderson, A. M. Bond, K. B. Oldham,

Curve Fitting to Resolve Overlapping Voltammetric Peaks:

Model and Examples, Anal. Chim. Acta 1995, 304, 1.

[8] I. Piz�eeta, Deconvolution of Non-Resolved Voltammetric Sig-

nals, Anal. Chim. Acta 1994, 285, 95.

[9] C. Cai, P. de B. Harrington, Wavelet Transform Preprocessing

for Temperature Constrained Cascade Correlation Neural

Networks, J. Chem. Inf. Comput. Sci. 1999, 39, 874.

[10] A. Cladera, J. Alpı́zar, J. M. Estela, V. Cerd�aa, M. Catas�uus, E.

Lastres, L. Garcı́a, Resolution of Highly Overlapping Differ-

ential Pulse Anodic Stripping Voltammetric Signals Using

Multicomponent Analysis and Neural Networks, Anal. Chim.

Acta 1997, 350, 163.

[11] C. Bessant, S. Saini, Simultaneous Determination of Ethanol,

Fructose and Glucose at an Unmodified Platinum Electrode

Using Artificial Neural Networks, Anal. Chem. 1999, 71,

2806.

[12] W. Hongmei, W. Lishi, X. Wanli, Z. Baogui, L. Chengjun,

F. Jianxing, An Application of Artificial Neural Networks.

Simultaneous Determination of the Concentration of Sulphur

Dioxide and Relative Humidity With a Single Coated Piezo-

electric Crystal, Anal. Chem. 1997, 69, 699.

[13] U. Depczynski, K. Jetter, K. Molt, A. Niem€ooller, The Fast

Wavelet Transform on Compact Intervals as a Tool in Chemo-

metrics. II. Boundary Effects, Denoising and Compression,

Chemom. Intell. Lab. Syst. 1999, 49, 151.

[14] E. Llobet, J. Brezmes, R. Ionescu, X. Vilanova, S. Al-Khalifa,
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