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Abstract

In this paper we develop the basic ideas of Janet by using the theory of D-modules. For the
so-called completely integrable systems (Janet Systems), we show that the higher Ext groups
are null.
c© 2003 Elsevier Science B.V. All rights reserved.
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1. Introduction

The aim of this paper is to give some contributions to the study of Completely
Integrable System(C.I.S.) by using the theory of D-modules. By considering a C.I.S.
as a D-module, we discuss its resolution and we prove that its Ext groups are null
except for the 9rst one.
As pioneer projects in the theory of D-modules we consider the works of Quillen [12]

and Sato et al. [16], who consider a system of homogeneous linear partial di>erential
equations as a module of 9nite presentation over the ring D of linear di>erential
operators. This work is based on the ideas developed by Janet in [7,8].
The structure of this paper is as follows. In Section 2, we introduce several no-

tations and, following Janet, we consider systems in canonical form (De9nition 1),
called orthonomic systems by Riquier [13] and Ritt [14]. We also give the de9nitions
of: multiplicative variables (De9nition 2) and of complete systems (De9nition 7); we
also present some examples of these concepts. In Section 3, we study Janet systems
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(De9nition 13) (i.e. completely integrable systems). These systems form a particu-
lar subclass of involutive systems. We have proved that, when the linear di>erential
equations have their coeKcients in a 9eld, under certain conditions, every completely
integrable system is a GrLobner basis and conversely. This is particularly useful in the
case of rings of di>erential operators with constant coeKcients. This fact was already
observed by Pommaret [11] and was also proved by Gerdt in [5]. Here we adapt Buch-
berger’s algorithm to give a criterion for deciding when a system of partial di>erential
equations in canonical form is a completely integrable system. Using this criterion, we
give an algorithm that, starting with a given system, constructs a completely integrable
one (or, equivalently, given a generating system of a left ideal I of D, constructs
a Janet basis of I). In Section 4 we demonstrate that the elementary relations of a
completely integrable system generate its module of relations; in particular, we get a
resolution of length at most n+1 by induction. Section 5 is devoted to extension of the
previous results to systems of linear di>erential equations with convergent coeKcients.
Finally, in Section 6 we calculate the Ext groups of completely integrable system

and we give a new proof of the equality ExtmD(M;O)=0, for m¿ 1. In [7] Janet proved
that each completely integrable system has an unique analytic solution, depending on
certain initial conditions. In [10], we present an algorithm, following the one of Riquier
[13] that compute a basis of the complex vector space Ext0D(M;O), where O is the ring
of the convergent series in n variables, D is the ring of linear di>erential operators
with coeKcients in O and M is the 9nitely generated D-module associated with a Janet
system.

2. De�nitions and notations

Let k be a 9eld. We denote by k(X ) (resp. k((X ))) the quotient 9eld of the
polynomial ring k[X ] = k[x1; : : : ; xn] (resp. of the formal power series ring k[[X ]] =
k[[x1; : : : ; xn]]). In this section we consider the following rings of linear di>erential
operators: k[@]=k[@1; : : : ; @n]; Qn(k)=k(X )[@1; : : : ; @n] and Q̂n(k)=k((X ))[@1; : : : ; @n],
where @i = @=@xi. We denote by D any of these three rings and by R any of the cor-
responding 9elds k; k(X ); k((X )). We will denote by N an arbitrary left D-module.
Let us consider a system of homogeneous linear di>erential equations:

S : P1(u) = 0; : : : ; Pr(u) = 0; (1)

where Pi ∈D; 16 i6 s, and the unknown u belongs to N.
Let ¡ be a well ordering in Nn, compatible with addition. Rewrite the equation

Pi(u) = 0 as follows:

a�i@�i
(u) =

∑
�¡�i

a�@�(u) (2)

with a�i ; a� ∈R and a�i �= 0. Here @� stands for the monomial @� = @�1
1 : : : @�n

n for each
�=(�1; : : : ; �n)∈Nn. The element a�i@�i

(u) is called the leading derivative (see [9]) of
this equation. We will identify @�i

(u) with @�i
and with �i.
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De�nition 1. Let S be a system where each equation is written in the form (2) with
respect to ¡. We say that S is in canonical form (with respect to ¡) if the following
conditions hold:

(1) a�i = 1 for i = 1; : : : ; r.
(2) �i �= �j for i �= j.

2.1. Multiplicative variables. Classes

We will use the notion of multiplicative variable and of class of a monomial given
by Janet in [7, pp. 75–76]. These notions are di>erent from those given by Gerdt in
[4, p. 80], [6, p. 522]; and by Zharkov in [18, p. 390].

De�nition 2. Let F be a 9nite set of monomials in the variables @1; : : : ; @n and let
@� ∈F.

(1) We say that @n is a multiplicative variable for @� in F, if �n6 �n for each @� ∈F.
(2) We say that @j; 16 j6 n− 1, is a multiplicative variable for @� in F, if �j6 �j

for each @� ∈F such that �n = �n; : : : ; �j+1 = �j+1.

We denote by mult(@�;F) the set of multiplicative variables for @� in F. The variables
@i �∈ mult(@�;F) are called non-multiplicative variables for @� in F.

Example 3. Let F= {@42; @1@42; @21; @31} ⊆ k[@1; @2], then

• mult(@42;F) = {@2}.
• mult(@1@42;F) = {@1; @2}.
• mult(@21;F) = ∅.
• mult(@31;F) = {@1}.
De�nition 4. Let @� be a monomial in F. Following Janet, we call the class of @� in
F, denoted by C�;F, the set of monomials @�+� such that each variable in @� belongs
to mult(@�;F).

Example 5. We go back to Example 3,

• C(0;4);F = {@4+b
2 : b¿ 0}.

• C(1;4);F = {@a
1@
4+b
2 : a¿ 0; b¿ 0}.

• C(2;0);F = {@21}.
• C(3;0);F = {@3+a

1 : b¿ 0}.

Remark 6. Classes corresponding to di>erent monomials are disjoint (see [7,
pp. 76–77]).

De�nition 7. We say that F is complete if for each @� ∈F and for each @i �∈
mul(@�;F) there exists @� ∈F such that @i@� ∈C�;F.
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Example 8. The set F= {@1@22; @21; @31; @21@2} ⊆ k[@1; @2] is complete. However the set
F= {@42; @1@42; @21; @31} ⊆ k[@1; @2] is not complete.
Let S = {E1; : : : ; Er} be a system of equations in canonical form where

E1 ≡ @�1 (u) =
∑
�¡�1

a1�@
�(u);

...

Er ≡ @�r
(u) =

∑
�¡�r

ar
�@

�(u):

Let F be the set of the leading derivatives of S, that is to say

F= {@�1 ; : : : ; @�r}:

De�nition 9. With the above notations, let Ei be an equation of S.

• We will say that a variable is a multiplicative (resp. non-multiplicative) variable for
Ei (in S) if it is so for @�i

(in F).
• The class of Ei in S, denoted by CEi;S , will be the class of its leading derivative in

F (i.e. CEi;S = C�i ;F).

Remark 10. Classes corresponding to di>erent equations are disjoint, that is to say
CEi;S ∩ CEj;S = ∅, for i �= j.

De�nition 11. The system S is complete if F is complete.

3. Completely integrable systems

In this section, we will study completely integrable systems and learn how to detect
when a given system is a Completely Integrable System.

De�nition 12. Let E ≡ a�@�(u) =
∑

�¡� a�@�(u) be a linear di>erential equation with
a�; a� ∈R and a� �= 0. We call the set supp(E) = {�∈Nn | a� �= 0} the support of E.
Let ¡ be the well ordering introduced in Section 2. We call � the leading exponent
of E (with respect to ¡) and we denote it by exp¡(E). We write exp(E) when no
confusion is possible.
Let S = {E1; : : : ; Er} be a complete system of homogeneous linear partial di>erential

equations written in canonical form.
We suppose

Ei ≡ Pi(u) = 0; ∀i = 1; : : : ; r:
If no confusion arises, we will identify the equation Pi(u) = 0 (that is Ei) with the
linear di>erential operator Pi.
We denote by �(S)=

⋃r
i=1(exp(Ei)+Nn) and let I be the left ideal (in D) generated

by {P1; : : : ; Pr}.
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De�nition 13. Let S be a complete system. We say that S is a completely integrable
system if for all P ∈ I − 0; supp(P) is not contained in Nn \ �(S).

De�nition 14. The system S is called a Janet basis (of I) if S is completely integrable.

The theory of GrLobner bases developed by Buchberger for commutative polynomial
rings has been generalized to ideals in rings of di>erential operators and in particular
to ideals in D (see [1,2]).
Let ¡ be a well ordering, compatible with the sum, in Nn. Let P =

∑
� a�@� be an

element of D \ {0}. We call the element of Nn; max¡{Nw(P)} (where Nw(P) is the
Newton diagram of P) the privileged exponent of P. We denote it by exp¡(P). We
write exp(P) when no confusion is possible. If I is a left ideal of D we denote the set
{exp(P): P ∈ I} by Exp(I). A 9nite subset {P1; : : : ; Pr} ⊂ I is said to be a GrLobner
basis of I if Exp(I) =

⋃r
j=1(exp(Pj) +Nn).

Then the following proposition is obvious.

Proposition 15. Let B={E1; : : : ; Er} be a Gr4obner basis, with respect to ¡, of a left
ideal I of D. Suppose exp(Ei) �= exp(Ej), for i �= j; Ei is monic for all i and B is
complete. Then B is a Janet basis of I .

The converse is also clear (see [3]).

Proposition 16. Let S= {E1; E2; : : : ; Er} be a homogeneous system of partial di9eren-
tial equations. Let us suppose that for all i and for all non-multiplicative variable @k

for Ei (in S) we have

@kEi =
r∑

j=1

Aj
kiEj (3)

where the only variables in each monomial (in the variables @1; : : : ; @n) of Aj
ki are

multiplicative variables for Ej, for j=1; 2; : : : ; r. Let I be the ideal (of D) generated
by P1; : : : ; Pr . Then for any H ∈D; H ∈ I if and only if

H =
r∑

i=1

QiEi

where the only variables of each monomial in Qi are multiplicative variables for Ei

in S.

Proof. We can suppose exp(Er)¡ exp(Er−1)¡ · · ·¡ exp(E1). The hypothesis implies
that S is complete, @kEi =

∑r
j=1 A

c(k; i)
ki Ec(k; i) for an unique integer c(k; i)¡i (see 2.1)

and exp(Aj
kiEj)¡ exp(@kEi) for j �= c(k; i).

If H ∈ 〈E1; E2; : : : ; Er〉, then we have

H =
r∑

i=1

GiEi:
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Each Gi; i = 1; 2; : : : ; r can be written as

Gi = G(1)i + Hi;

where G(1)i is the sum of the monomials of Gi with only multiplicative variables for
Ei in S. In particular H1 = 0.
We have

H =
r∑

i=1

GiEi =
r∑

i=1

G(1)i Ei +
r∑

i=2

HiEi:

Let us denote

#= (#1; #2; : : : ; #n) = max{exp(Hi; Ei); i = 2; : : : ; r}
and

i0 = max{i | exp(HiEi) = #}:
We call (#; i0) the characteristic exponent of

∑r
j=1 HjEj.

We will consider on Nn × {1; : : : ; r} the well ordering de9ned as follows:

(#; i0) / (#′; i′0) ⇔




#¡#′

or

#= #′ and i0¡i′0:

Then we can write

Hi0Ei0 = a@�1
1 @�2

2 · · · @�n
n Ei0 + Ĥ i0Ei0 ;

where a∈R; exp(a@�1
1 @�2

2 · · · @�n
n Ei0 ) = # and exp(Ĥ i0Ei0 )¡#.

Suppose @k is a non-multiplicative variable for Ei0 , then by hypothesis we can write

Hi0Ei0 = a@�1
1 · · · @�k−1

k · · · @�n
n (@kEi0) + Ĥ i0Ei0

= a@�1
1 · · · @�k−1

k · · · @�n
n


 r∑

j=1

Aj
ki0Ej


+ Ĥ i0Ei0

=
r∑

j=1

a@�1
1 · · · @�k−1

k · · · @�n
n Aj

ki0Ej + Ĥ i0Ei0 ;

where the only variables in each monomial of Aj
ki0 are multiplicative variables for Ej.

Then write
r∑

i=2

HiEi =Hi0Ei0 +
∑
j �=i0

HjEj

=
r∑

j=1

a@�1
1 · · · @�k−1

k · · · @�n
n Aj

ki0Ej + Ĥ i0Ei0 +
∑
j �=i0

HjEj =
r∑

j=1

H ′
j Ej;
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where

H ′
j = a@�1

1 · · · @�k−1
k · · · @�n

n Aj
ki0 + Hj for j �= i0;

H ′
i0 = a@�1

1 · · · @�k−1
k · · · @�n

n Ai0
ki0 + Ĥ i0 :

Now we will compute the characteristic exponent of this new expression:

(1) For i0 + 16 j6 r we have exp(H ′
j Ej) = exp(a@

�1
1 · · · @�k−1

k · · · @�n
n Aj

ki0Ej + HjEj)
6max{exp(a@�1

1 · · · @�k−1
k · · · @�n

n Aj
ki0Ej); exp(HjEj)}.

We have 9rst exp(HjEj)¡#, because the de9nition of i0, and then

exp(a@�1
1 · · · @�k−1

k · · · @�n
n Aj

ki0Ej

=(�1; : : : ; �k − 1; : : : ; �n) + exp(A
j
ki0Ej)¡ (�1; : : : ; �k − 1; : : : ; �n)

+ exp(@kEi0 ) = #:

So, exp(H ′
j Ej)¡# for i0 + 16 j6 r.

(2) exp(H ′
i0Ei0 ) = exp(a@

�1
1 · · · @�k−1

k · · · @�n
n Ai0

ki0Ei0 + Ĥ i0Ei0 )

6max{exp(a@�1
1 · · · @�k−1

k · · · @�n
n Ai0

ki0Ei0 ); exp(Ĥ i0Ei0 )};

and then exp(H ′
i0Ei0 )¡#.

(3) For 16 j6 i0 − 1 we have
exp(H ′

j Ej) = exp(a@
�1
1 · · · @�k−1

k · · · @�n
n Aj

ki0Ej + HjEj)

¡max{exp(a@�1
1 · · · @�k−1

k · · · @�n
n Aj

ki0Ej); exp(HjEj)}:
The choice of j implies that exp(HjEj)6 # and, on the other hand, we have

exp(a@�1
1 · · · @�k−1

k · · · @�n
n Aj

ki0Ej = (�1; : : : ; �k − 1; : : : ; �n) + exp(A
j
ki0Ej)

6 exp(a@�1
1 · · · @�k−1

k · · · @�n
n Aj

ki0Ej)6 #:

So, the characteristic exponent (#′; i′0) of
∑

j H
′
j Ej is less than (#; i0) w.r.t the

well ordering /, which implies the assertion of the proposition.

The following theorem gives the criterion for complete integrability.

Theorem 17 (Criterion for complete integrability). With the notations above, the sys-
tem S is completely integrable if and only if relations (3) of Proposition 16 are
veri<ed.

Proof. We must show that if the relations are veri9ed then S is a completely integrable
system. To prove that S is a completely integrable system, by Proposition 15, it suKces
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to show that {Ei}ri=1 is a GrLobner basis. Let H ∈ I , then H=
∑r

i=1 QiEi where the only
variables in each monomial in Qi are multiplicative variables for Ei in S. In particular,
the leading exponent of H is the leading exponent of an element of the class of an
unique Ei. That is

exp(H) = exp(P); P ∈CEi;S :

On the other hand exp(P)∈ exp(Ei) +Nn.
The converse being nothing but a particular case of Proposition 16.

As a consequence of this theorem, we have a 9nite procedure that, starting with a
given system, constructs a Completely integrable system one (or equivalently, for any
given generating system of a left ideal I of D, constructs a Janet basis of I). This
algorithm should be compared to Buchberger’s algorithm for computing GrLobner bases.
The algorithm is as follows:

Algorithm 1 (Finding a Completely Integrable System). Input: S={E1; : : : ; Er} system
in canonical form and complete.

Output: The Completely Integrable System.

1. For each i = 1; : : : ; r and each k such that @k is non-multiplicative variable for Ei

in S, write

@kEi =
r∑

j=1

Aj
kiEj + Rik

where
(a) Each monomial in Aj

ki (in @1; : : : ; @n) is formed only by multiplicative vari-
ables for Ei in S.

(b) exp(Aj
ki)6 exp(@kEi) for j = 1; : : : ; r.

(c) If Rki �= 0 then support(Rki) ⊆ Nn \ �(S).
2. If all the Rki are zero, then S is completely integrable.
3. If there exist Rki �= 0, then we consider the new system S1 = S ∪{Rki} and restart.

This procedure is 9nite. Indeed, let Si; i = 1; 2; : : : ; be the sequence of systems
obtained by applying the above procedure. Let Fi = {exp(E) |E ∈ Si} be a subset of
Nn. Then we have

F1 ⊂ F2 ⊂ · · · :
This sequence is stationary, because Nn is noetherian. So, the procedure is 9nite.

3.1. Non-homogeneous systems

In this subsection we will explain how to extend the above results to system of
non-homogeneous linear di>erential equations

S : P1(u) = f1; : : : ; Pr(u) = fr;
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where Pi ∈D; 16 i6 s; fi ∈N and the unknown u belongs to N. We denote by
Sh the homogeneous system

P1(u) = 0; : : : ; Pr(u) = 0

associated to S.

De�nition 18. Let S be a system of non-homogeneous linear di>erential equations. We
will say that

• S is complete if Sh is complete.
• S is in canonical form if Sh is in canonical form.

We will denote by Ei the equation Pi(u) = fi (or Pi(u)− fi = 0). We identify the
equation Ei (i.e. Pi(u) = fi) with the couple (Pi; fi)∈D ⊕ N and we consider the
D-sub-module M of D⊕N generated by {(P1; f1); : : : ; (Pr; fr)}.

De�nition 19. Let S= {E1; : : : ; Er} be a complete system in canonical form. Let M be
the D-sub-module of D ⊕N generated by S. The system S is said to be completely
integrable if the following holds:

(1) If (0; f)∈M then f = 0:
(2) If (P; f)∈M and P �= 0 then the support of P is not contained in Nn \ �(Sh).

4. Chain of systems

Let S = {E1; : : : ; Er} be a completely integrable system. Hence we have

@kEi =
r∑

j=1

Aj
kiEj

for all non-multiplicative variable @k of Ei (in S).
Let us denote

Rj
ki =

{
@k − Ai

ki; j = i;

−Aj
ki; j �= i;

and Rki=(R1ki; : : : ; R
r
ki). Then Rki, is a syzygy of (E1; : : : ; Er), because

∑r
j=1 R

j
kiEj=0.

Proposition 20. With the notations as above, the set {Rki} generates the module of
syzygies of (E1; : : : ; Er).

Proof. Let us consider the order “to be lower than” (see [7, p. 100])

�1 ≺ �2 ⇔




|�1|¡ |�2|
or

|�1|= |�2| and (�1n; : : : ; �11)¡lex (�2n; : : : ; �
2
1):

Such an ordering is called “ranking” in [15].
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Let H = (H1; : : : ; Hr) be a syzygy of (E1; : : : ; Er), that is to say,
∑r

i=1 HiEi = 0,
where Hi �= 0 for some i. Let Hi = hi@�(i) + Ĥ i, where hi �= 0, exp(Ĥ i) ≺ exp(Hi) and
Ei = @�(i) + Êi with exp(Êi) ≺ exp(Ei).
Let us consider

�= �(H) := max≺{�(j) + �(j) | j∈{1; : : : ; r}};
J = J (H) := {j∈{1; : : : ; r} | �(j) + �(j) = �(H)};

and

m(H) := max(J (H)):

If for each j∈{1; : : : ; r} all the variables of @�( j) are multiplicative for Ej (in S), then
exp(HiEi) �= exp(HjEj) for i �= j and

∑r
i=1 HiEi �= 0. Hence, J (H) �= ∅ and therefore

m(H)¿ 1.
Let us write i = m(H) and H′ =H − hi@�(i)−+kRki where +k = exp(@k).
Let us calculate �(H′):

H ′
j =

{
Hi − hi@�(i)−+k (@k − Ai

ki); j = i;

Hj − hi@�(i)−+k (−Aj
ki); j �= i:

• If j = i then

exp(HiEi − hi@�(i)−+k (@kEi − Ai
kiEi)) ≺ �;

because exp(Ai
kiEi) ≺ �(i) + +k . Therefore �(H′) ≺ (H).

• If j �= i we must consider two cases:

(1) If j∈ J , then we have exp(Aj
kiEj) 4 � where j¡ i and exp(HjEj) ≺ �. Therefore

exp(hi@�(i)−+k (−Aj
ki)Ej) 4 � and so m(H′)¡m(H).

(2) If j �∈ J , let us suppose that the leading monomial of Hj − hi@�(i)−+k Aj
ki is @r( j).

Then we can consider two cases:
(a) If in ,(j) there exists some non-multiplicative variable for �(j) in F, then

,(j) + �(j) ≺ �.
(b) If each variable in ,(j) is multiplicative for �(j) in F, then∑

j �∈J

(Hj − hi@�(i)−+k Aj
ki)Ej = 0:

Therefore, in all cases we have obtained (�(H′); m(H′))¡lex (�(H); m(H)). Since the
set (Nn×{1; : : : ; r};¡lex) is a well ordered set, we can apply recurrence and we obtain
the assertions of the proposition.

Let S0 = {E1; : : : ; Er0} be a completely integrable system. Then, by Theorem 17, for
each equation Ei, and each @k �∈ mult(Ei; S0), we get

Hki ≡ @kEi −
r0∑
j=1

Aj
kiEj = 0; (4)
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where the only variables in each monomial (in the variables @1; : : : ; @n) of Aj
ki are

multiplicative variables for Ej, for j = 1; 2; : : : ; r0.
Let S1 be the system of linear partial di>erential equations in the unknowns E1; : : : ; Er0

formed with relations (4). The following theorem is veri9ed.

Theorem 21 (Janet [7, p. 113]). With the notations as above, S1 is a completely in-
tegrable system of linear partial di9erential equations.

If we apply the same reasoning to the system S1 we obtain a new system S2 that
also is completely integrable and so on. This process is 9nite, more concretely.

Theorem 22. With the notations as above, there exist, at most, n+1 systems of type
Si, where n is the number of independent variables.

Remark 23. The system S1 must be considered as the module of the relations between
the elements of S0. Hence, the previous theorem is a precedent of the theorem of
Schreyer (see [17]) that assures that the relations (elementary syzygies) between the
elements of a GrLobner basis of an ideal of polynomials is a GrLobner basis of the
module of syzygies of such ideal.

5. Convergent coe-cients. Rank of a connection

The previous results can be extended to the case of systems of linear di>erential
equations with convergent coeKcients working at the “generic point”. More precisely,
if S is such a system (i.e. the coeKcients are convergent series at the neighborhood
of a point in Cn) we will be able to transform it into a complete system in canonical
form, if we locate ourselves at a point in the corresponding convergence dominance,
where none of the coeKcients in the 9rst members of S1 are null.
We denote by O= C{x1; : : : ; xn}= C{x} the ring of convergent power series in the

variables x1; : : : ; xn and coeKcients in C. We denote by D = O[@1; : : : ; @n] the ring of
linear di>erential operators with coeKcients in O.
Recall the monomial order, ≺ in Nn, “to be lower than” (see Proposition 20):

�1 ≺ �2 ⇔




|�1|¡ |�2|
or

|�1|= |�2| and (�1n; : : : ; �11)¡lex (�2n; : : : ; �
2
1):

Let ≺J be the total ordering on Nn ×Nn, compatible with sums, de9ned by

(�1; �1) ≺J (�2; �2) ⇔




�1 ≺ �2

or

�1 = �2 and �2¡lex �1:
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Let P =
∑
(�;�) a��x�@� be a non-zero element of D where a�� ∈C. We denote by

N(P) the Newton diagram of P, namely

N(P) = {(�; �)∈N2n | a�� �= 0}:
Following the notation of F. Castro in [1], given a non-zero element P ∈D, we de9ne
the leading exponent of P (with respect to ≺J ) by exp≺J

(P) = max≺JN(P). Let I
be a left ideal of D, we denote by Exp≺J

(I) the set of leading exponents exp≺J
(P)

for P in I . A 9nite subset {P1; : : : ; Pr} ⊆ I is said to be a GrLobner basis of I if⋃r
i=1(exp≺J

(Pi) +N2n) = Exp≺J
(I).

We will consider the projection map

- : Nn ×Nn →Nn

(�; �)→ �:

Remark 24. Note that -(exp≺J
(P)) = exp≺(P) for P ∈D.

We recall (see De9nition 14) that {P1; : : : ; Pr} is a Janet basis of I if the system
S = {E1; : : : ; Er}, where Ei ≡ Pi(u) = 0; is a completely integrable system.

Theorem 25. Let I be a non-zero left ideal of D and let {P1; : : : ; Pr} be a Janet basis
of I , then {P1; : : : ; Pr} is a Gr4obner basis of I (with respect to ≺J ).

Proof. By de9nition, it suKces to prove that

Exp≺J
(I) =

r⋃
i=1

(exp≺J
(Pi) +N2n):

Clearly,
⋃r

i=1(exp≺J
(Pi) +N2n) ⊆ Exp≺J

(I) since I is left ideal.
On the other hand let (�; �)∈Exp≺J

(I) then there exists P ∈ I such that exp≺J
(P)=

(�; �). By Remark 24, we have (�; �) = (�; exp≺(P)). Since {P1; : : : ; Pr} is a Janet
basis of I (with respect to ≺), we have �=�i+ � where �i=exp≺(Pi) and �∈Nn. So

(�; �) = (�; �i + �) = (�; �) + (0; �i):

As {P1; : : : ; Pr} is in canonical form (see De9nition 1), we have exp≺J
(Pi) = (0; �i)

and so (�; �)∈⋃r
i=1(exp≺J

(Pi) +N2n).

Let {P1; : : : ; Pr} be a system of operators of D and let (�1; : : : ; �r; U�) (resp. (∇1; : : : ;
∇r ; U∇)) be the partition of Nn (resp. N2n) associated with (exp≺(P1); : : : ; exp≺(Pr))
(resp. (exp≺J

(P1); : : : ; exp≺J
(Pr))) where

• �1 = exp≺(P1) +Nn (resp. ∇1 = exp≺J
(P1) +N2n).

• �i=(exp≺(Pi)+Nn)\⋃i−1
j=1 �j (resp. ∇i=(exp≺J

(Pi)+N2n)\
⋃i−1

j=1 ∇j) for i=2; : : : ; r.
• U�=Nn \⋃r

i=1 �i (resp. U∇=N2n \
⋃r

i=1∇i).
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Lemma 26. With the notations as above,

∇i =Nn × �i and U∇=Nn × U�:

Proof. Since exp≺J
(Pi)= (0; exp≺(Pi)), we have ∇i =Nn ×�i for all i=1; : : : ; r.

Theorem 27. Let the notations be as above. Let {P1; : : : ; Pr} be a Janet basis of I
and we consider M =D=I . Then

dimC((x))(M ⊗O C((x))) = ]

(
Nn \

(
r⋃

i=1

�i

))
:

Proof. We will prove that {@� + I}�∈ U� is a basis of M as an O-module.
Let P ∈D. We have P=

∑
� a�(x)@� where a�(x)∈C{x}, that is a�(x)=

∑
� a��x�

where a�� ∈C.
By the division theorem in D (see [1]), there exists an unique element (Q1; : : : ; Qr; R)

∈Dr+1 such that

P =
r∑

i=1

QiPi + R;

where either R=0 or N(R) ⊆ U∇. If we denote N@(R) = -(N(R)) then, either R=0
or

N@(R) ⊆ -( U∇) = U�;

that is, R=
∑

�∈ U� a�(x)@� with a�(x)∈C{x}. On other hand, as P−R=
∑r

i=1 QiPi ∈ I ,
then ∀(P + I)∈M we have P + I ≡∑�∈ U� a�(x)@� + I .
Suppose

∑
�∈ U� a�(x)@� ≡ 0 (mod I) with a�(x)∈C{x} and a�(x) �= 0 for some �,

then 0 �=∑�∈ U� a�(x)@� ∈ I so, (see Theorem 25)

exp≺J


∑

�∈ U�
a�(x)@�


∈Exp≺J

(I) =
r⋃

i=1

(∇i +N2n):

By Remark 24 and Lemma 26, we have

exp≺


∑

�∈ U�
a�(x)@�


= -


exp≺J


∑

�∈ U�
a�(x)@�




∈ -(Exp≺J

(I))

=
r⋃

i=1

-(∇i +N2n) =
r⋃

i=1

(�i +Nn):

So

exp≺


∑

�∈ U�
a�(x)@�


∈

r⋃
i=1

(�i +Nn)

which is a contradiction.
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6. The groups ExtmD(M0;O)

In this section we calculate the Ext groups of a completely integrable system and
we prove that they are null except for the 9rst one. In what follows D will denote the
rings of linear di>erential operators with coeKcients in C{x1; : : : ; xn}.

6.1. Ext0D(M0;O)

Let S0 be the following completely integrable system in the unknown u

S0 ≡




P1(u) = 0

P2(u) = 0

...

Pr0 (u) = 0;

where Pi = @�(i) − P̂i for i= 1; : : : ; r0 and exp(P̂i) ≺ exp(Pi), where ≺ is the order “to
be lower than”.
We consider the following exact sequence with M0=D=DI , where DI=D(P1; : : : ; Pr0 )

Dr0 00→D → M0 → 0 with 00(Q1; : : : ; Qr0 ) =
r0∑
i=1

QiPi:

We denote by r1 the number of relations 2 that the system S0 must verify to be com-
pletely integrable (see Theorem 17). These relations {R1; : : : ;Rr1} constitute a gener-
ating system for ker(00) (see Proposition 20). We consider the exact sequence

Dr1 01→Dr0 00→D → M0 → 0; (5)

where 01(Q1; : : : ; Qr1 ) =
∑r1

i=1 QiRi.
We apply HomD(−;O) to (5),

0→ HomD(D;O)
0∗
0→HomD(Dr0 ;O)

0∗
1→HomD(Dr1 ;O)

and we get

0→ O
0∗
0→Or0 0∗

1→Or1 ;

where

0∗
0 (u) =




P1

...

Pr0


 (u); u∈O

2 We recall that this number depends only on the number of the non-multiplicative variables of each
equation Ei in the system {P1; : : : ; Pr0}.
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and

0∗
1 (f1; : : : ; fr0 ) =




R1

...

Rr1






f1

...

fr0


 (f1; : : : ; fr0 )∈Or0 :

We have Ext0D(M0;O)=ker(0∗
0). Therefore Ext0D(M0;O) is the set of convergent power

serie solutions of the system S0.

Remark 28. Completely integrable systems have an unique analytic solution, depending
on certain initial conditions. These initial conditions are obtained from the 9rst members
of the system. In [10], we give an algorithm that, under certain initial conditions, allows
us to calculate the serie solution of a given completely integrable system. So for a
completely integrable system S = {E1; : : : ; Er} where Ei ≡ Pi(u) = 0 and u∈N, there
exists a function  ∈C{x1; : : : ; xn} such that Ei( ) = 0 for all 16 i6 r.

6.2. ExtmD(M0;O); m¿ 1

In this subsection we will prove that ExtmD(M0;O) = 0 where m¿ 1. We recall that

Ext1D(M0;O) =
ker(0∗

1)
Im(0∗

0)
:

Let (f1; : : : ; fr0 )∈ ker(0∗
1). Then 0∗

1 (f1; : : : ; fr0 ) = 0∈Or1 and


R1

...

Rr1






f1

...

fr0


=



0

...

0


 ;

so, (f1; : : : ; fr0 ) veri9es the same relations as (P1; : : : ; Pr0 ) and consequently (see Sec-
tion 3.1), the system

P1(u) = f1

...

Pr0 (u) = fr0 ;

is completely integrable. Hence there exists  ∈O such that Pi( )=fi for i=1; : : : ; r0,
that is 0∗

0 ( )=(f1; : : : ; fr0 ). Therefore (f1; : : : ; fr0 )∈ Im(0∗
0) and ker(0

∗
1)=Im(0

∗
0)=0.

The identity Ext1D(M0;O)=0 is also true for modules M0 associated with completely
integrable systems with several unknowns.
Let us consider the set of relations {R1; : : : ;Rr1} as a system of homogeneous linear

partial di>erential equations in the unknowns Ei. We associate with this system, the
D-module M1 de9ned by the exact sequence

Dr1 01→Dr0 → M1 → 0 with 01(Q1; : : : ; Qr1 ) =
r1∑
i=1

QiRi :
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This system is completely integrable (see Theorem 21). We denote by r2 the number
of relations that we need to verify that the system is completely integrable. These
relations {S1; : : : ;Sr2} (elementary syzygies) constitute a generating system for ker(01)
(see Proposition 20).
So we can consider the exact sequence

Dr2 02→Dr1 01→Ds0 → M1 → 0;

where 02(Q1; : : : ; Qr2 ) =
∑r2

i=1 QiSi.
In this way we can build the following exact sequence, which is 9nite (see Theorem

22):

· · · → Dr2 02→Dr1 01→Dr0 00→D → M0 → 0: (6)

In order to calculate Ext2D(M0;O), we apply HomD(−;O) to the reduced resolution of
the D-module M0, which has been calculated in (6) and we obtain

0→ O
0∗
0→Dr0 0∗

1→Or1 0∗
2→Or2 → · · · ;

where

0∗
0 (u) =




P1

...

Ps0


 (u) for u∈O

and

0∗
i (f1; : : : ; fri−1 ) =




R1

...

Rri






f1

...

fri−1


 ; (f1; : : : ; fri−1 )∈Ori−1 and i¿ 1:

We have

Ext1D(M1;O) = Ext2D(M0;O)

and so Ext2D(M0;O) = 0.

Proposition 29. With the previous notations

ExtmD(M0;O) = Ext1D(Mm−1;O); m¿ 2:

Proof. By applying the above process we have

Extm−i
D (Mi;O) = Extm−(i+1)D (Mi+1;O); 06 i6m− 2;

which completes the proof.
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As an straightforward consequence we obtain

Corollary 30. With the previous notation

ExtmD(M0;O) = 0; ∀m¿ 1:

We have proved that if S is a completely integrable system, then ExtiD(M;O) = 0
for i¿ 1, where M is the 9nitely generated D-module associated with the system S.
The converse is not true as we can see in the example:

S ≡ x@xu=−u:

This system is not completely integrable since S is not in canonical form, but
ExtiD(M;O) = 0 with i¿ 1.
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