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Abstract

In this paper we develop the basic ideas of Janet by using the theory of Z-modules. For the
so-called completely integrable systems (Janet Systems), we show that the higher Ext groups
are null.
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1. Introduction

The aim of this paper is to give some contributions to the study of Completely
Integrable System(C.1.S.) by using the theory of Z-modules. By considering a C.L.S.
as a Z-module, we discuss its resolution and we prove that its Ext groups are null
except for the first one.

As pioneer projects in the theory of Z-modules we consider the works of Quillen [12]
and Sato et al. [16], who consider a system of homogeneous linear partial differential
equations as a module of finite presentation over the ring & of linear differential
operators. This work is based on the ideas developed by Janet in [7,8].

The structure of this paper is as follows. In Section 2, we introduce several no-
tations and, following Janet, we consider systems in canonical form (Definition 1),
called orthonomic systems by Riquier [13] and Ritt [14]. We also give the definitions
of: multiplicative variables (Definition 2) and of complete systems (Definition 7); we
also present some examples of these concepts. In Section 3, we study Janet systems
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(Definition 13) (i.e. completely integrable systems). These systems form a particu-
lar subclass of involutive systems. We have proved that, when the linear differential
equations have their coefficients in a field, under certain conditions, every completely
integrable system is a Grobner basis and conversely. This is particularly useful in the
case of rings of differential operators with constant coefficients. This fact was already
observed by Pommaret [11] and was also proved by Gerdt in [5]. Here we adapt Buch-
berger’s algorithm to give a criterion for deciding when a system of partial differential
equations in canonical form is a completely integrable system. Using this criterion, we
give an algorithm that, starting with a given system, constructs a completely integrable
one (or, equivalently, given a generating system of a left ideal / of &, constructs
a Janet basis of /). In Section 4 we demonstrate that the elementary relations of a
completely integrable system generate its module of relations; in particular, we get a
resolution of length at most n+1 by induction. Section 5 is devoted to extension of the
previous results to systems of linear differential equations with convergent coefficients.

Finally, in Section 6 we calculate the Ext groups of completely integrable system
and we give a new proof of the equality Ext7(M,©)=0, for m > 1. In [7] Janet proved
that each completely integrable system has an unique analytic solution, depending on
certain initial conditions. In [10], we present an algorithm, following the one of Riquier
[13] that compute a basis of the complex vector space Ext%(M, (), where O is the ring
of the convergent series in n variables, & is the ring of linear differential operators
with coefficients in ¢ and M is the finitely generated Z-module associated with a Janet
system.

2. Definitions and notations

Let k be a field. We denote by k(X) (resp. k((X))) the quotient field of the
polynomial ring k[X] = Kk[x},...,x,] (resp. of the formal power series ring k[[X]] =
K[[x1,...,x,]]). In this section we consider the following rings of linear differential
operators: k[d]=K[01,...,0,], Ou(k)=k(X)[01,...,0,] and O,(k)=k((X))[01,...,0,],
where 0; = 0/0x;. We denote by & any of these three rings and by % any of the cor-
responding fields k, k(X), k((X)). We will denote by .4" an arbitrary left Z-module.

Let us consider a system of homogeneous linear differential equations:

S:Py(u)=0,...,P.(u)=0, (1)

where P;€ 9, 1 <i <y, and the unknown u belongs to /.
Let < be a well ordering in N”, compatible with addition. Rewrite the equation
P;i(u) =0 as follows:

a0 (1) = Z aﬁéﬁ(u) (2)
p<ol

with a,,ap € # and a, # 0. Here ¢ stands for the monomial ¢’ = 97" ...d;" for each

Y=(1,---,7n) € N". The element _azfa“'(u) is called the leading derivative (see [9]) of
this equation. We will identify 0% (1) with * and with o',
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Definition 1. Let S be a system where each equation is written in the form (2) with
respect to <. We say that S is in canonical form (with respect to <) if the following
conditions hold:

(1) ay=1fori=1,...,r.
(2) o # o/ for i j.

2.1. Multiplicative variables. Classes

We will use the notion of multiplicative variable and of class of a monomial given
by Janet in [7, pp. 75-76]. These notions are different from those given by Gerdt in
[4, p. 80], [6, p. 522]; and by Zharkov in [18, p. 390].

Definition 2. Let .# be a finite set of monomials in the variables dy,...,0, and let
o*eF.

(1) We say that ¢, is a multiplicative variable for 0* in %, if f, < a, for each ¢/ € 7.
(2) We say that d;, 1 <j <n—1,is a multiplicative variable for ¢* in Z, if f; < o;
for each 0 € # such that 8, = Ops ooy Bt = Oj1.

We denote by mult(0*, #) the set of multiplicative variables for 0* in . The variables
0; & mult(0*, #) are called non-multiplicative variables for 0* in .

Example 3. Let 7 = {03,0,03,0%,0;} C k[0, 2], then

mult(05, F ) = {02}.
mult(ﬁla‘z‘,f") = {61,62}.
mult(03, 7 ) = 0.
mult(63, 7 ) = {01}.

Definition 4. Let 0* be a monomial in % . Following Janet, we call the class of 0 in
Z, denoted by %, o, the set of monomials 0**F such that each variable in 0f belongs
to mult(0*, F).

Example 5. We go back to Example 3,

(6(0,4)’&7 = {6‘2‘“’: b= 0}

(5(1,4),y = {6?63+b1 a>0,b> 0}
00,7 = {52}

(5(3,0),57 = {6]+a3 b > 0}

Remark 6. Classes corresponding to different monomials are disjoint (see [7,
pp- 76-771]).

Definition 7. We say that & is complete if for each 0*€ % and for each 0; ¢
mul(0*, 7 ) there exists 0’ € # such that 9;0* € Cp.7.
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Example 8. The set & = {815%6%,6?,8%62} C k[0, 02] is complete. However the set
F =1{04,0104,0%,8}} C K[01,0,] is not complete.

Let S={E),...,E,} be a system of equations in canonical form where
1
Ei =0 (u)= Z a};@ﬁ(u),
B<ol

E =0 (u)= Z agﬁﬂ(u).

p<or
Let & be the set of the leading derivatives of S, that is to say
F={0",. . 0"}

Definition 9. With the above notations, let E; be an equation of S.

o We will say that a variable is a multiplicative (resp. non-multiplicative) variable for
E; (in S) if it is so for ¢* (in ).

o The class of E; in S, denoted by %%,s, will be the class of its leading derivative in
F (1e (gE[,S = (5“:',/7,).

Remark 10. Classes corresponding to different equations are disjoint, that is to say
(gEi,S N (gEj,S = ®5 for i %J

Definition 11. The system S is complete if & is complete.

3. Completely integrable systems

In this section, we will study completely integrable systems and learn how to detect
when a given system is a Completely Integrable System.

Definition 12. Let £ = a,0%(u) = E/} “a apaﬁ(u) be a linear differential equation with
ay,ap € A and a, # 0. We call the set supp(E) = {y€N"|a, # 0} the support of E.
Let < be the well ordering introduced in Section 2. We call o the leading exponent
of E (with respect to <) and we denote it by exp_(£). We write exp(£) when no
confusion is possible.

Let S={E,...,E,} be a complete system of homogeneous linear partial differential
equations written in canonical form.
We suppose

E, =P(u)=0, Vi=1,...,r

If no confusion arises, we will identify the equation P;(u) =0 (that is E;) with the
linear differential operator P;.

We denote by 4(S ):Ule(exp(E,-)Jr N") and let / be the left ideal (in &) generated
by {Pl,...,Pr}.
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Definition 13. Let S be a complete system. We say that S is a completely integrable
system if for all P €7 — 0, supp(P) is not contained in N"\ A(S).

Definition 14. The system S is called a Janet basis (of /) if S is completely integrable.

The theory of Grobner bases developed by Buchberger for commutative polynomial
rings has been generalized to ideals in rings of differential operators and in particular
to ideals in & (see [1,2]).

Let < be a well ordering, compatible with the sum, in N”". Let P =" a,0* be an
element of & \ {0}. We call the element of N”, max . {Nw(P)} (where Nw(P) is the
Newton diagram of P) the privileged exponent of P. We denote it by exp_(P). We
write exp(P) when no confusion is possible. If  is a left ideal of & we denote the set
{exp(P): Pel} by Exp(I). A finite subset {Py,...,P,} C I is said to be a Grébner
basis of 1 if Exp(/) = U;:l(exp(Pj) + N™).

Then the following proposition is obvious.

Proposition 15. Let #={E,,...,E,} be a Grobner basis, with respect to <, of a left
ideal 1 of &. Suppose exp(E;) # exp(E;), for i # j, E; is monic for all i and # is
complete. Then A is a Janet basis of I.

The converse is also clear (see [3]).
Proposition 16. Let S={E\,E,,...,E,} be a homogeneous system of partial differen-

tial equations. Let us suppose that for all i and for all non-multiplicative variable 0y
for E; (in S) we have

hEr =Y ALE; 3)
j=1
where the only variables in each monomial (in the variables 0.,...,0,) of A{;l. are

multiplicative variables for E;, for j=1,2,...,r. Let I be the ideal (of &) generated
by Py,...,P,. Then for any He 2, H €l if and only if

H = Z O:E;
i—1

where the only variables of each monomial in Q; are multiplicative variables for E;
inS.

Proof. We can suppose exp(E,) < exp(E,—1) < --- < exp(Ey). The hypothesis implies
that S is complete, J;E; = Z;:lAZZ(.k’Z)EC(kJ) for an unique integer c(k,i) < i (see 2.1)
and exp(AiiE ) < exp(OrE;) for j # c(k,i).

If H € (E,E,,...,E,), then we have

H= zr: GiE,'.
i=1
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Each G;, i=1,2,...,r can be written as
G, =G" + H,

where Gfl) is the sum of the monomials of G; with only multiplicative variables for
E; in S. In particular H; = 0.
We have

H=> GE =Y GVE +> HE,.
i=1 i=1 i=2
Let us denote
0=1(51,02,...,0,) = max{exp(H,,E;), i=2,...,r}
and
io = max{i | exp(H;E;) = 0}.

We call (0,ip) the characteristic exponent of Z;zl HE;.
We will consider on N” x {1,...,7} the well ordering defined as follows:

o<
(5,i0) < (d',ig) & < or
6=20" and iy < ij.
Then we can write
H,E;, = adl'0% - -- 0" E;, + H Eiy,

where a € #, exp(adl' 0y --- 07 E;) =6 and exp(H; E;,) < 9.
Suppose 0y is a non-multiplicative variable for £;,, then by hypothesis we can write

HyEyy = ad? - 85" 0 (0uEr) + H,E:,

;
=ady' - ‘aZFl 0y ZAL‘OE/ + H,,E;,
=1

=Y adf - op " oAl B+ HyE,
j=1

where the only variables in each monomial of Aiio are multiplicative variables for Ej;.
Then write

r
> HiE;=HyE, + Y HE;
i=2 J#io

.
=Y adp - 0pT A B+ HyEy + Y HE; =Y HIE;,
j=1 J7io J=1
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where
' -1 w4 L
Hi=ad{'--- 00 -0y dy, +H; for j# i,
/ o o —1 0 Al T
I{io:aa1l"'akk "'5§“1A13[,+Hi0~
Now we will compute the characteristic exponent of this new expression:

(1) For ip + 1 <j <r we have exp(H]ij) = exp(ad}' ...a]a;/f—l --~5;°f”A£iOEj + HE))
< max{exp(adi' -~ 03" - 0% A, Ej),exp(HE))}.
We have first exp(/;E;) < J, because the definition of iy, and then

exp(adi! - o O A E;
=0, — 1,000 0) +exp(A~,’;l.0Ej) < (apy.ees0p — Lo, 00)
+exp(0xE;y) = 0.
So, exp(H/E;) <6 for ip+1<j<r.
(2) exp(H]E;,) = exp(ady' - 0" - 02 A% Ej, + H,,Ey,)
< max{exp(ad}' --- 9! ~~~6§”A}30E,-0), exp(H;, Eiy)}

and then exp(H; E;,) < 0.
(3) For 1 <j <iy—1 we have

exp(H/E;) = exp(ad} -~ 0f " - 0}, E; + HiE;)
< max{exp(ad]" - - 62‘”1 e 6Z”A'£iOEj ), exp(HE;)}.
The choice of j implies that exp(/;E;) < ¢ and, on the other hand, we have
exp(ady' --~8‘,fk_1 . -~5Z"A£i0E/ = (o1, 0 — 1, 00) + exp(AiioEj)
< exp(adf! -0y 00 Ay E) < 0.
So, the characteristic exponent (d',iy) of >, HJE; is less than (d,ip) w.r.t the
well ordering <, which implies the assertion of the proposition. [

The following theorem gives the criterion for complete integrability.

Theorem 17 (Criterion for complete integrability). With the notations above, the sys-
tem S is completely integrable if and only if relations (3) of Proposition 16 are
verified.

Proof. We must show that if the relations are verified then S is a completely integrable
system. To prove that S is a completely integrable system, by Proposition 15, it suffices
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to show that {E;}_, is a Grobner basis. Let H €1, then H=Y)_;_, O;E; where the only
variables in each monomial in Q; are multiplicative variables for E; in S. In particular,
the leading exponent of H is the leading exponent of an element of the class of an
unique E;. That is

exp(H) =exp(P), PeCgys.

On the other hand exp(P) € exp(E;) + N”.
The converse being nothing but a particular case of Proposition 16. [J

As a consequence of this theorem, we have a finite procedure that, starting with a
given system, constructs a Completely integrable system one (or equivalently, for any
given generating system of a left ideal / of &, constructs a Janet basis of /). This
algorithm should be compared to Buchberger’s algorithm for computing Grobner bases.
The algorithm is as follows:

Algorithm 1 (Finding a Completely Integrable System). Input: S={E\,...,E,} system
in canonical form and complete.
Output: The Completely Integrable System.

1. For each i =1,...,r and each k such that 0y is non-multiplicative variable for E;
in S, write

ki =Y ALE; + Ry
j=1
where _
(a) Each monomial in A, (in éi,...,0,) is formed only by multiplicative vari-
ables for E; in S.

(b) exp(4;;) < exp(OiE;) for j=1,...,r.

(¢) If R # 0 then support(Ry;) € N\ A(S).
2. If all the Ry are zero, then S is completely integrable.
3. If there exist Ry; # 0, then we consider the new system S; =SU{Ry;} and restart.

This procedure is finite. Indeed, let S;, i = 1,2,..., be the sequence of systems
obtained by applying the above procedure. Let F; = {exp(E)|E €S;} be a subset of
N”. Then we have

FirCF,C---.

This sequence is stationary, because N” is noetherian. So, the procedure is finite.
3.1. Non-homogeneous systems

In this subsection we will explain how to extend the above results to system of
non-homogeneous linear differential equations

S:P](u):fl,...,Pr(u):fr,
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where P, €9, 1 <i<s, f;€/ and the unknown u belongs to /. We denote by
S" the homogeneous system

Py(u)=0,...,P.(u)=0
associated to S.
Definition 18. Let S be a system of non-homogeneous linear differential equations. We
will say that

e S is complete if S” is complete.
e S is in canonical form if S is in canonical form.

We will denote by E; the equation P;(u) = f; (or Pi(u) — f; =0). We identify the
equation E; (i.e. P;(u) = f;) with the couple (P;, ;)€ & A" and we consider the
Z-sub-module M of 2 @ A" generated by {(P1, f1),...,(Pr, f+)}

Definition 19. Let S={E),...,E,} be a complete system in canonical form. Let M be
the &-sub-module of & @ A~ generated by S. The system S is said to be completely
integrable if the following holds:

(1) If (0, f)eM then f =0.
(2) If (P, f)€M and P # 0 then the support of P is not contained in N"\ A(S").

4. Chain of systems

Let S={E|,...,E,} be a completely integrable system. Hence we have
r
OkEi = ZA{&E/'
j=1

for all non-multiplicative variable d; of E; (in S).
Let us denote

_ O — Ay j=1,
Rlii = i
7A{a" J# i
and Rk[:(R,lci,...,R};i). Then Ry, is a syzygy of (E£y,...,E,), because Z;:I Rj;l.Ej:O.
Proposition 20. With the notations as above, the set {Ry;} generates the module of
syzygies of (Ei,...,E,).
Proof. Let us consider the order “to be lower than” (see [7, p. 100])
B < ||
Bl < p* < {or
‘ﬁ]| = ‘ﬁ2| and (ﬂ:na/j}) <16X(ﬁia.,.aﬁ%)'

Such an ordering is called “ranking” in [15].
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Let H=(H,,...,H,) be a syzygy of (E|,...,E,), that is to say, Z;ZIHZ-E,- =0,
where H; # 0 for some i. Let H; = h;0P) + H;, where h; # 0, exp(H;) < exp(H;) and
E; = 0D + E; with exp(E;) < exp(E;).

Let us consider

y=y(H) = max_{a(j) + p(j)|j€{l,....r}},

J=JH):={je{l,....r}|a(j) + B(j) = r(H)},
and
m(H) := max(J(H)).
If for each j € {1,...,r} all the variables of 0P are multiplicative for E; (in §), then
exp(HE;) # exp(H,E;) for i # j and Y ;_, H;E; # 0. Hence, J(H) # () and therefore
m(H) > 1.
Let us write i = m(H) and H = H — 5,0/ O~%R,; where & = exp(dy).
Let us calculate y(H'):

H = { Hy = hd" 0 @ — A, =1,
J AB(>i)— / . .
H; — h; 0P (=4, J A
e If j =i then

exp(HiE; — hio" =% (0hE; — ALE;)) < 7,

because exp(4}E;) < a(i) + &. Therefore y(H') < (H).
e If j #i we must consider two cases:

(1) If j€J, then we have exp(A'f;l.E /) < y where j <i and exp(H,E;) < y. Therefore
exp(hiﬁﬁ([)’”k(fA*ii)Ej) <7 and so m(H') < m(H).

(2) If j & J, let us suppose that the leading monomial of H; — h;0PD=% 4, is 0"/,
Then we can consider two cases:
(a) If in () there exists some non-multiplicative variable for «(j) in #, then

(/) +a(j) < 7.
(b) If each variable in (/) is multiplicative for o(;) in &, then
Y (H = nd" "4 E; = 0.
e

Therefore, in all cases we have obtained (y(H'),m(H")) <iex (y(H),m(H)). Since the
set (N x {1,...,7}, <iex) is a well ordered set, we can apply recurrence and we obtain
the assertions of the proposition. [

Let So ={E,...,E,} be a completely integrable system. Then, by Theorem 17, for
each equation E;, and each 0y & mult(E;,Sy), we get

ro
Hy = 0cE; — > AJE; =0, (4)
j=1
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where the only variables in each monomial (in the variables 0i,...,0,) of A{;l. are
multiplicative variables for E£;, for j =1,2,...,r.
Let S; be the system of linear partial differential equations in the unknowns E1,...,E,,

formed with relations (4). The following theorem is verified.

Theorem 21 (Janet [7, p. 113]). With the notations as above, S, is a completely in-
tegrable system of linear partial differential equations.

If we apply the same reasoning to the system S; we obtain a new system S, that
also is completely integrable and so on. This process is finite, more concretely.

Theorem 22. With the notations as above, there exist, at most, n+ 1 systems of type
S;, where n is the number of independent variables.

Remark 23. The system S| must be considered as the module of the relations between
the elements of Sy. Hence, the previous theorem is a precedent of the theorem of
Schreyer (see [17]) that assures that the relations (elementary syzygies) between the
elements of a Grobner basis of an ideal of polynomials is a Grobner basis of the
module of syzygies of such ideal.

5. Convergent coefficients. Rank of a connection

The previous results can be extended to the case of systems of linear differential
equations with convergent coefficients working at the “generic point”. More precisely,
if S is such a system (i.e. the coefficients are convergent series at the neighborhood
of a point in C") we will be able to transform it into a complete system in canonical
form, if we locate ourselves at a point in the corresponding convergence dominance,
where none of the coefficients in the first members of S; are null.

We denote by ¢ = C{xy,...,x,} = C{x} the ring of convergent power series in the
variables xi,...,x, and coefficients in C. We denote by & = ([0, ...,0,] the ring of
linear differential operators with coefficients in 0.

Recall the monomial order, < in N”, “to be lower than” (see Proposition 20):

B < 18]
pl < p = or
B = 15[ and (B,..... B1) <iex (- BD).
Let <, be the total ordering on N” x N”, compatible with sums, defined by
B < B
(', B <s (2,57 & or

B =p? and o <jex ol
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Let P = Z(a, 5 a%,;xaﬁﬁ be a non-zero element of & where a,3 € C. We denote by
AN"(P) the Newton diagram of P, namely

N (P) = {(e ) €N | azg # O},

Following the notation of F. Castro in [1], given a non-zero element P € &, we define
the leading exponent of P (with respect to <;) by exp_ (P) = max, A/ (P). Let I
be a left ideal of &, we denote by Exp_ (/) the set of leading exponents exp_ (P)
for P in /. A finite subset {Py,...,P,} C I is said to be a Grobner basis of [ if

Uii(exp_, (Pi) + N*") = Exp_ (I).
We will consider the projection map

7N x N — N
(o, ) — B.

Remark 24. Note that n(exp_ (P)) =exp_(P) for P€ Z.

We recall (see Definition 14) that {Pi,...,P,} is a Janet basis of I if the system
S={E,....,E.}, where E; = P;(u) =0, is a completely integrable system.

Theorem 25. Let I be a non-zero left ideal of 9 and let {Py,...,P,} be a Janet basis
of I, then {Py,...,P.} is a Grobner basis of I (with respect to <).

Proof. By definition, it suffices to prove that

Exp_, (1) = J(exp_, (P)) + N*").
i=1

Clearly, |J;_,(exp <, (P + N?") C Exp <, (I) since [ is left ideal.

On the other hand let (o, f) € Exp_ (/) then there exists P €/ such that exp_ (P)=
(o, f). By Remark 24, we have (o, ) = (o, exp_(P)). Since {Pi,...,P,} is a Janet
basis of / (with respect to <), we have f=a; 47 where o; =exp_(P;) and y € N". So

(% B) = (20 +7) = (,7) + (0,%).

As {Py,...,P,} is in canonical form (see Definition 1), we have exp_ (P;) = (0,0;)
and so («, ) € U_(exp_ (P;)) + N*"). [

Let {P1,...,P.} be a system of operators of Z and let (41,...,4,,4) (resp. (V4,...,
V,,V)) be the partition of N (resp. N?") associated with (expo(P1),...,exp_ (L))
(resp. (exp,(P1),...,exp_ (P;))) where

o Ay =exp_(P1)+N" (resp. Vi =exp_ (P1)+ N>).
. Ai:(exp<(Pi)+N")\U_'l.;i A; (resp. Vi:(exp<J(P,~)+N2”)\U}: V;) fori=2,...,r.
o A=N"\{J_, 4; (resp. V=N \_, Vo).
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Lemma 26. With the notations as above,

Vi=N'"x4; and V=N"xA.
Proof. Since exp_ (P;)=(0,exp_(P;)), we have V;=N"x 4; for all i=1,...,r. [

Theorem 27. Let the notations be as above. Let {Py,...,P.} be a Janet basis of I
and we consider M = 9/I. Then

dime(x)(M ®¢ C((x))) =4 (N" \ (U Ai)) :
i=1

Proof. We will prove that {0* + 1}, ; is a basis of M as an (-module.

Let P€ 2. We have P=)"; ap(x)0’ where ap(x) € C{x}, that is ap(x) =", axpx”
where a,; € C.

By the division theorem in & (see [1]), there exists an unique element (Qy,...,0,,R)
€ 2"*! such that

P:zr:Ql‘P[-f—R,

i=1
where either R=0 or ./ (R) C V. If we denote ./ 3(R) = n(A'(R)) then, either R =0
or
No(R) € (V) = 4,

that is, R=> s ; ap(x)oF with ag(x) € C{x}. On other hand, as P—R=>""_, Q;P; €1,
then V(P +1)eM we have P+1 =3, ; ap(x)oP +1.

Suppose Z/}ej ap(x)0F = 0(mod 1) with ap(x) € C{x} and az(x) # 0 for some f,
then 0 # >, 7 ap(x)d’ €1 so, (see Theorem 25)

exp_, | D ap)d’ | €Exp_, (1) = (Vi + N,
ped i=1

By Remark 24 and Lemma 26, we have

exp_ Za,;(x)@ﬁ =7 | expg, Zaﬁ(x)aﬁ e n(Exp_, (1))
pea ped

r

=Jn(Vi + Ny = (i + N

i=1 i=1

So

exp_ Zaﬁ(x)ﬁﬁ GU(AH—N”)

pea i=1

which is a contradiction. [
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6. The groups Ext7(M,, ()
In this section we calculate the Ext groups of a completely integrable system and

we prove that they are null except for the first one. In what follows & will denote the
rings of linear differential operators with coefficients in C{xy,...,x,}.

6.1. Ext) (Mo, )

Let Sy be the following completely integrable system in the unknown u

P](M)ZO

Pz(u):()
SO =

Pro(u):()a

where P; = 0“9 —ﬁi fori=1,...,ry and exp(ﬁi) < exp(P;), where < is the order “to
be lower than”.
We consider the following exact sequence with My=%/%1, where Z1=%(P;,...,P,)

"o
7" "G — My — 0 with $o(Qs.....0,) = > OP.
i=1

We denote by 7| the number of relations? that the system S, must verify to be com-
pletely integrable (see Theorem 17). These relations {R;,...,R,,} constitute a gener-
ating system for ker(¢g) (see Proposition 20). We consider the exact sequence

g Mg P g My — 0, (5)

Where d)l(Ql,"'aQr[): 2:1:1 QiRi~
We apply Homg(—,0) to (5),

0 — Homo(Z, 0) 2% Homo(27,0) 2 Homo (271, 0)
and we get
0 o% oo,

where
P

¢p)=| 1 | ), uel
P,

0

2We recall that this number depends only on the number of the non-multiplicative variables of each
equation E; in the system {Py,..., Py }.
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and

R, fi
Hr(f1en fr) =1 ; (f1aeeos fr) € Q.

er fro

We have Ext) (M, O)=ker(¢y). Therefore ExtS(M,, () is the set of convergent power
serie solutions of the system Sy.

Remark 28. Completely integrable systems have an unique analytic solution, depending
on certain initial conditions. These initial conditions are obtained from the first members
of the system. In [10], we give an algorithm that, under certain initial conditions, allows
us to calculate the serie solution of a given completely integrable system. So for a
completely integrable system S = {E,...,E,} where E; = P;(u) =0 and u € ./, there
exists a function ¥ € C{xy,...,x,} such that E;()=0 for all 1 <i <r.

6.2. Ext"(My,0), m > 1

In this subsection we will prove that Ext/(My, ©) =0 where m > 1. We recall that
_ ker(¢)
Im(¢g)
Let (f1,..., fr)€ker(¢7). Then ¢i(f1,..., fr)=0€ 0" and
R, 11 0

Extl,(My, O)

er fro 0

80, (f1,..., fr,) verifies the same relations as (Pi,...,P,,) and consequently (see Sec-
tion 3.1), the system

Pi(u)= f1

P}”O(u) = frO!

is completely integrable. Hence there exists yy € @ such that P;(y/)= f; for i=1,...,r,
that is ¢5(¥)=(f1,..., fr). Therefore (f1,..., [ )€ Im(¢;) and ker(¢p;)/Im(¢g)=0.

The identity Extl,(Mp, ©)=0 is also true for modules M, associated with completely
integrable systems with several unknowns.

Let us consider the set of relations {R;,...,R,,} as a system of homogeneous linear
partial differential equations in the unknowns E;. We associate with this system, the
2-module M, defined by the exact sequence

&
GG — My =0 with gi(Q1,.0,) = ORs
i=1



284 M. A. Moreno-Frias | Journal of Pure and Applied Algebra 182 (2003) 269286

This system is completely integrable (see Theorem 21). We denote by r, the number
of relations that we need to verify that the system is completely integrable. These
relations {Sy,...,S,,} (elementary syzygies) constitute a generating system for ker(¢;)
(see Proposition 20).

So we can consider the exact sequence

@rz ﬂ@rl ﬁ@so N M] — 0’
where ¢2(01,...,0,)=>.12, O:S;.
In this way we can build the following exact sequence, which is finite (see Theorem
22):
P2 o D1 PO
oGRS GN S90S D — My — 0. (6)

In order to calculate Ext2, (Mo, (), we apply Homg(—, ) to the reduced resolution of
the Z-module M), which has been calculated in (6) and we obtain

008 gnion B,

where
P
pgw)=1| : |[(u) foruec0
PSO
and
R, 1
G (SroeenSr) = ol e fr) €@ and i > 1L
R, ) \ /o,
We have

Ext}, (M, 0) = Ext:(My, ©)
and so Ext2,(Mo, 0) = 0.
Proposition 29. With the previous notations
Ext?(My, O) = ExtL,(M,,_,0), m >2.
Proof. By applying the above process we have
Ext"™(M;, 0) = Extl” (M 1,0), 0<i<m—2,

which completes the proof. [



M. A. Moreno-Frias|Journal of Pure and Applied Algebra 182 (2003) 269286 285
As an straightforward consequence we obtain

Corollary 30. With the previous notation

Ext?(Mo, 0)=0, VYm > 1.

We have proved that if S is a completely integrable system, then Ext,, (M, ) =0
for i = 1, where M is the finitely generated &-module associated with the system S.
The converse is not true as we can see in the example:

S = x0u = —u.

This system is not completely integrable since S is not in canonical form, but
Extl,(M,0) =0 with i > 1.
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