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Abstract

It is shown that an analytic map j of the unit disk into itself inducing a Hilbert–Schmidt

composition operator on the Dirichlet space has the property that the set Ej ¼
feiyA@D : jjðeiyÞj ¼ 1g has zero logarithmic capacity. We also show that this is no longer

true for compact composition operators on the Dirichlet space. Moreover, such a condition is

not even satisfied by Hilbert–Schmidt composition operators on the Hardy space.
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1. Introduction

Let D denote the open unit disk of the complex plane. The Dirichlet space D is the
space of analytic functions f on D such that the norm

jj f jj2D ¼ j f ð0Þj2 þ
Z
D

j f 0ðzÞj2 dAðzÞ
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is finite. Here A stands for the normalized Lebesgue area measure of the unit
disk. Observe that for a univalent function f ; the integral above is just the area
of f ðDÞ:
If j is an analytic function on D with jðDÞCD; then the equation

Cjf ¼ f 3j

defines a composition operator Cj on the space of all holomorphic functions on the

unit disk HðDÞ: Furthermore, Cj acts boundedly on HðDÞ endowed with the

topology of uniform convergence on compact subsets. On the Dirichlet space D; a
necessary condition for Cj to be bounded is that j belongs to D: This follows easily

from the fact that Cjz ¼ j: On the other hand, not all the Dirichlet functions induce
bounded composition operators on D: Such functions were characterized by Voas
[11] in his thesis. This and other related problems on composition operators on the
Dirichlet space have been extensively studied. For a comprehensive treatment of
such problems on spaces of analytic functions, like the Dirichlet space, see Cowen
and MacCluer’s book [3].
In this paper we are interested in the relationship between Hilbert–Schmidt

composition operators and the boundary behavior of their inducing symbols. In
particular, if @D denotes the unit circle, we focus on the size of the set

Ej ¼ feiyA@D : jjðeiyÞj ¼ 1g;

whenever j induces a Hilbert–Schmidt composition operator on the Dirichlet space.
To this end, recall that if E is a Borel set contained in the unit circle @D and LE

denotes the class of distributions of mass 1 on E; i.e., non-negative set functions m
with total mass 1 and support Sm contained in E; the logarithmic capacity3 of E is

defined by

e
infLE
fIðmÞg;

where IðmÞ denotes the logarithmic energy integral of m; that is

IðmÞ ¼
Z Z

log
1

jx
 Zj d mðxÞ d mðZÞ:

Beurling [1] proved that if j is a Dirichlet function, then the radial limits

jðeiyÞ ¼ lim
r-1


jðreiyÞ

exist except on a set of logarithmic capacity zero (see also [2, p. 55]). So, it
makes sense to ask about the logarithmic capacity of the set Ej when Cj is

Hilbert–Schmidt on D: It will be shown in Section 2 that such a set has logarithmic
capacity zero.

3Some authors define the logarithmic capacity of E by ðinfLE
fIðmÞgÞ
1: In our case, both definitions are

consistent because we deal with sets of logarithmic capacity zero. For more about capacities see [2] and [5].
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On the other hand, since Hilbert–Schmidt operators are compact operators, the
following question arises:

If Cj is a compact operator on D; is Ej a set of logarithmic capacity zero?

We will show that this question has a negative answer in Section 3. This will be
accomplished by constructing a simply connected domain O contained in D such
that the Riemann map c that takes D onto O induces a compact composition
operator Cc on D but Ec has positive logarithmic capacity.

The first results of this type were obtained by Schwartz [10] in 1969. He proved

that if Cj is compact on the Hardy space H2; the space of analytic functions on D

whose boundary values are in L2ð@DÞ; then

jjðeiyÞjo1

almost everywhere on @D; or equivalently the set Ej has Lebesgue measure zero. In

this case, Fatou’s radial limit theorem ensures that jðeiyÞ is defined except on a set of
Lebesgue measure zero (see for instance [4]).
Finally, using the construction in Section 3, we provide not only a compact but

also a Hilbert–Schmidt composition operator Cj on the Hardy space such that Ej is

a set of positive logarithmic capacity.

2. Hilbert–Schmidt composition operators on D

Recall that a linear operator T on a Hilbert spaceH is said to be Hilbert–Schmidt
if the series XN

n¼1
jjTenjj2 ð1Þ

converges for an orthonormal basis feng of H: If this is the case, condition (1) holds
for all orthonormal bases of H: Furthermore, it is not difficult to see that every
Hilbert–Schmidt operator is a bounded operator.
In the Dirichlet space, Hilbert–Schmidt composition operators are characterized

in terms of their inducing symbols by the following lemma.

Lemma 2.1. Cj is Hilbert–Schmidt on D if and only if the integral

Z
D

jj0ðzÞj2

ð1
 jjðzÞj2Þ2
dAðzÞ

is finite.

A standard argument using the fact that fzn=ðn þ 1Þ1=2gnX0 is an orthonormal

basis on the Dirichlet space and Stirling’s formula yields the statement of the lemma
(see [3, Chapter 3]).
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Now, suppose that j is a Dirichlet function. As mentioned in the introduction the
radial limits

lim
r-1


jðreiyÞ

exist except on a set of logarithmic capacity zero (see [1], and also [2, p. 55]). Thus,
the set

Ej ¼ feiyA@D : jjðeiyÞj ¼ 1g

is well defined. In addition, if j induces a Hilbert–Schmidt composition operator on
D; we have the following conclusion.

Theorem 2.1. Let j be a holomorphic self-map of the unit disk D: Assume that Cj

defines a Hilbert–Schmidt operator on the Dirichlet space D: Then Ej has zero

logarithmic capacity.

Proof. The key point of the proof is to translate the Hilbert–Schmidt condition on
the operator into one involving positive harmonic functions. Let us consider the
linear fractional transformation

tðzÞ ¼ 1þ z

1
 z

that maps the unit disk onto the right half plane. Let u denote the real part of
Cjt ¼ t3j; that is,

uðzÞ ¼ Re
1þ jðzÞ
1
 jðzÞ:

Clearly, u is a positive harmonic function and therefore the Poisson integral of a
positive measure on @D: If we write z ¼ x þ iy and ru ¼ ð@u=@x; @u=@yÞ; a simple
calculation shows that

2jj0ðzÞj
1
 jjðzÞj2

¼ jruðzÞj
uðzÞ :

Upon applying Lemma 2.1 we conclude that the integral

Z
D

jruðzÞj2

uðzÞ2
dAðzÞ

is finite, or equivalently, Z
D

jr log uðzÞj2 dAðzÞoN: ð2Þ

E.A. Gallardo-Guti!errez, M.J. Gonz !alez / Journal of Functional Analysis 199 (2003) 287–300290



This inequality will be the key to constructing a Dirichlet function to which we will
apply Beurling’s Theorem. Since log uðzÞ is not harmonic on D; we consider instead

the Poisson extension of the boundary function log uðeiyÞ:
Let PrðyÞ denote the Poisson kernel, that is

PrðyÞ ¼ Re
1þ reiy

1
 reiy

� �

for rA½0; 1Þ and yA½0; 2p; and v the harmonic function

vðzÞ ¼ vðreiyÞ ¼ 1

2p

Z p


p
log uðtÞPrðy
 tÞ dt:

In other words, v is the convolution log u � Pr; and therefore the harmonic extension

of log uðeiyÞ to the unit disk D: On the other hand, since harmonic functions
minimize the energy integral, it follows that

Z
D

jrvðzÞj2 dAðzÞp
Z
D

jrlog uðzÞj2 dAðzÞ; ð3Þ

and from (2) we get that the integral on the left-hand side above is finite.
Let f be the analytic function on the unit disk such that f ð0Þ ¼ 0 and Re f ¼ v:

From what we have just shown, it follows that f belongs to the Dirichlet space D:

Thus, the radial limits f ðeiyÞ ¼ limr-1
 f ðreiyÞ exist except on a set of logarithmic

capacity zero, and hence the function Re f ðeiyÞ ¼ log uðeiyÞ is finite except on a set of
logarithmic capacity zero. Since the sets

feiyA@D : log uðeiyÞoNg;

feiyA@D : uðeiyÞ40g

and

feiyA@D : jjðeiyÞjo1g

coincide, the logarithmic capacity of Ej is zero and the theorem is proved. &

Remark 2.1. The function jðzÞ ¼ ð1þ zÞ=2 induces a non-Hilbert–Schmidt compo-
sition operator on the Dirichlet space and the set Ej only has one element. Therefore

Theorem 2.1 is just only a necessary condition. This example was first provided by
Schwartz [10] to show that his result, which states that if Cj is compact on the Hardy

space, then Ej is a set of Lebesgue measure zero, is not a sufficient condition either.
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3. Compact composition operators on D

The characterization of compact composition operators on the Dirichlet space can
be found in [3] in terms of Carleson measures (see also [7] and [12]). In fact, if njðwÞ
denotes the multiplicity of j at w and Sðx; dÞ ¼ fzAD : jz 
 xjodg is the Carleson
disk centered in xA@D of radius d; with 0odo1; then Cj is compact on D if and

only if

lim
d-0

1

d2

Z
Sðx;dÞ

njðwÞ dAðwÞ ¼ 0: ð4Þ

In this section we are interested in a different aspect of the subject: the size of Ej:

In particular, we ask if the conclusion of Theorem 2.1 holds when Cj satisfies the

weaker condition of being compact on the Dirichlet space. The answer is negative.

Theorem 3.1. There exists a compact composition operator Cj on the Dirichlet space

such that the set

Ej ¼ feiyA@D : jjðeiyÞj ¼ 1g

has positive logarithmic capacity.

Proof. We will construct a simply connected domain O contained in the unit disk D:
The Riemann map j that maps D onto O will furnish an example of the required
behavior.

Fix p in ð0; 1Þ and consider the sequence fangnX0 ¼ f1
4

pn2gnX0: First, we consider

the Cantor set E ¼
T

nX0 EnC½0; p; where its n-th approximation En consist of 2n

open intervals In of length an: Let J
kÞ
n denote the intervals in the complement of En;

that is,

En
1\En ¼
[2n
1

k¼1
JkÞ

n :

Observe that each of intervals J
kÞ
n are closed.

Let R
kÞ
n be the closed rectangle (Fig. 1) supported on the interval J

kÞ
n of height an
2:

Set R ¼
S

n

S
k R

kÞ
n and let D be the set

D ¼ fzAD : jzjo1=2g,fz ¼ reiyAD : yAð0; pÞg:

Then the simply connected domain O we are looking for is D\R (see Fig. 2).
Let j be a Riemann map that takes D onto O and jð0Þ ¼ 0: Since jðDÞ has finite

area, it follows that j belongs to the Dirichlet space D: In addition, Cj is also

bounded on D since j is a univalent self-map of the disk.
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First, we prove that j induces a compact composition operator Cj on D: For that

purpose, we show that j satisfies the condition in (4).

Let x ¼ eiy be in @D: We may suppose that yAð0; pÞ; otherwise condition (4) is
trivially verified. Let Sðx; dÞ be the Carleson disk of center x and radius 0odo1=4:

Fig. 2. Domain O:

Fig. 1. Rectangles Rj
n:
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There exists n such that an
1pdoan
2: By construction, there exists k0 such that

Sðx; dÞ meets the rectangle R
k0Þ
n : Therefore, the area of Sðx; dÞ-jðDÞ is less than

2and (see Fig. 3).
Since j is univalent, it follows that

1

d2

Z
Sðx;dÞ

njðwÞ dAðwÞo2and

d2
p

2an

an
1
:

Now, the limit limn-N anþ1=an ¼ 0 because an ¼ 1
4

pn2 and 0opo1:

Finally, it only remains to estimate the logarithmic capacity of the set Ej ¼
feiyA@D : jjðeiyÞj ¼ 1g: Observe that Ej ¼ j
1ðEÞ; where E is the Cantor set

constructed at the beginning of the proof. Moreover, E has positive logarithmic
capacity because the series

XN
n¼1

2
n log
1

an

is convergent (see [2, p. 29]). The problem here is that logarithmic capacity is not
invariant under conformal mappings, that is, sets of logarithmic capacity zero can be
carried onto positive logarithmic capacity sets conformally. So, we need to relate the
logarithmic capacity of a set to a conformally invariant quantity: extremal length.

Fig. 3.
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Recall that the module of a family of curves G contained in a domain R is
defined by

MðG;RÞ ¼ inf
r

Z Z
R

r2ðzÞ dAðzÞ;

where the infimum is taking over the positive functions r such thatZ
g
rðzÞjdzjX1

for every curve g in the family G: Such functions r are called admissible for the
family G: The extremal length of the family G in R is defined by

lðGÞ ¼ 1

MðG;RÞ:

On the other hand, if F is a set contained in @D; 0orp1=3 is a given number and
GðrÞ is the family of curves in the annulus fzAD : rojzjo1g which connect the
circle jzj ¼ r to F ; then the logarithmic capacity of F and the extremal length of the
family GðrÞ are related by Pfluger’s Theorem in the following way:ffiffi

r
p

1þ r
capðFÞpe
plðGðrÞÞp

ffiffi
r

p

1
 r
capðFÞ;

where capðFÞ denotes the logarithmic capacity of F : For this and many other results
concerning extremal length, we refer to [5] and [8].
Therefore, we just need to get estimates on extremal length in the domain O to

apply Pfluger’s Theorem to the set Ej ¼ j
1ðEÞ:
So, fix r ¼ 1=4 and consider the family of curves G in the annulus

fzAD : 1=4ojzjo1g which join the circle fzAD : jzj ¼ 1=4g to Ej: Let *G be the

family of curves

*G ¼ fjðgÞ : gAGg:

Thus *G consist of all the curves contained in O that connect jðfz : jzj ¼ 1=4gÞ with
the Cantor set E: Now, the extremal length of *G is the same as the module of the
family F of disconnected curves in O that separate the sets jðfz : jzj ¼ 1=4gÞ and E

(see [8, p. 197]). Hence,

lðGÞ ¼ lð *GÞ ¼ MðF;OÞ:

By Pfluger’s Theorem, we just need to show that MðF;OÞ is finite. So, for

z ¼ reiyAO; set

rðzÞ ¼
1

2nþ2anþ2
if ano1
 roan
1;

1 if 1=4o1
 ro1=2:

8<
:

E.A. Gallardo-Guti!errez, M.J. Gonz !alez / Journal of Functional Analysis 199 (2003) 287–300 295



Note that r is admissible for the family F: In particular, we show that r is
admissible for the curves gr ¼ fzAO : jzj ¼ rg with 1=2oro1 which are, roughly
speaking, the curves in F of minimum length. It is easy to check that the length

of any other curve gAF increases enough so the integral
R
g rjdzj is also bigger

than 1.
Let gr ¼ fzAO : jzj ¼ rg and let n be such that ano1
 roan
1: The length

cðgrÞ of the curve gr is cðgrÞC2nþ1anþ1; that is, there exist C1;C2 universal constants
such that

C12
nþ1anþ1pcðgrÞpC2 2nþ1anþ1:

Thus, we have

Z
gr

rjdzjC2nþ1anþ1
2nþ2anþ2

41;

because an ¼ 1
4

pn2 and 0opo1:

On the other hand,

Z Z
O
r2ðzÞ dAðzÞ ¼

Z 1

0

Z
gr

r2ðzÞjdzj dr

¼
X
n41

Z an
1

an

1

ð2nþ2anþ2Þ2
cðgrÞ dr

p
X
n41

2nþ1anþ1an
1

ð2nþ2anþ2Þ2

¼ 1

ð2p2Þ3
X
n41

1

ð2p8Þn:

Now, if we choose ð1=2Þ1=8opo1; the series above is convergent. This shows that
the module of F is finite. So, the logarithmic capacity of Ej is positive, which

completes the proof. &

Remark 3.1. Compact composition operators on the Dirichlet space are also
compact on the Hardy space (see [7] and [12]). Therefore, Theorem 3.1 provides a
compact operator Cj on the Hardy space such that Ej has positive logarithmic

capacity.

4. A final remark

In this section we discuss whether the conclusion of Theorem 2.1 also holds

for Hilbert–Schmidt composition operators on the Hardy space H2: A character-
ization of such operators in term of their inducing symbols can be found in [9]
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(see also [3, p. 146]). In fact, j induces a Hilbert–Schmidt composition operator on

H2 if and only if Z
@D

1

1
 jjðxÞj2
dxoN: ð5Þ

Alternatively, because the usual norm on the Hardy space is equivalent to the norm

jj f jj2 ¼ j f ð0Þj2 þ
Z
D

j f 0ðzÞj2ð1
 jzj2Þ dAðzÞ ð fAH2Þ;

where A stands for the normalized Lebesgue measure of the unit disk, it follows that

Cj is Hilbert–Schmidt on H2 if and only if the integral

Z
D

jj0ðzÞj2

ð1
 jjðzÞj2Þ3
ð1
 jzj2Þ dAðzÞ

is finite (see [3, Chapter 3] for more references and results). This condition along with
the fact that a self-map j of the unit disk satisfies that

1
 jzj
1
 jjðzÞjp

1þ jjð0Þj
1
 jjð0Þj ðzADÞ

yields easily the following conclusion.

Proposition 4.1. Let j be a holomorphic self-map of the unit disk and assume that

Cj is Hilbert–Schmidt on the Dirichlet space. Then Cj is Hilbert–Schmidt on the

Hardy space.

Although there are Hilbert–Schmidt composition operators Cj on the Hardy

space such that Ej is a set of logarithmic capacity zero, we will prove that this is no

longer true for all Hilbert–Schmidt composition operators onH2: Actually, we have
the following

Theorem 4.1. There exists a Hilbert–Schmidt composition operator Cj on the Hardy

space such that Ej has positive logarithmic capacity.

Proof. Let us consider the domain O constructed in Theorem 3.1. We will prove that
the Riemann map j that sends the unit disk D onto O induces a Hilbert–Schmidt

composition operator on H2:
Let fang be the sequence used to construct the domain O and consider An the set

on @D defined by

An ¼ feiyA@D : anþ1o1
 jjðeiyÞjpang:
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First, observe that the integral in (5) is finite if the series

XN
n¼1

1

anþ1
jAnj

is convergent. Here jAnj denotes the Lebesgue measure of An: Now, the fact that the
harmonic measure oð0;An;DÞ of the set An in the unit disk D at the origin and the
Lebesgue measure of An are related by jAnj ¼ 2poð0;An;DÞ; plus the invariance of
harmonic measure under conformal mappings, implies that Cj is Hilbert–Schmidt

on H2 if the series

XN
n¼1

1

anþ1
oðjð0Þ;jðAnÞ;OÞ ð6Þ

is convergent. To estimate the harmonic measure of jðAnÞ in O at jð0Þ ¼ 0; consider
the simply connected domain (Fig. 4)

O0
n ¼ fwAO : 1
 jwj4ang

and the set on the boundary of O0
n

In ¼ fwA@O0
n: 1
 jwj ¼ ang:

By the maximum principle, we have

oð0;jðAnÞ;OÞpoð0; In;O0
nÞ: ð7Þ

Suppose temporarily that the following claim is already proved.

Fig. 4. Domain O0
n:
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Claim. Let d and h be positive numbers. Consider the rectangles R1 ¼ ½
1

d=2;
d=2 � ½0; h and R2 ¼ ½d=2; 1þ d=2 � ½0; h: Let R2

þ ¼ fðx; yÞ : y40g and

*OCR2
þ be the domain bounded by the rectangles R1 and R2: If I ¼ ð
d=2; d=2Þ and

z0 ¼ 2hi; then

oðz0; I ; *OÞpCe
ph=d ;

where C is a universal constant (see Fig. 5).

Thus, it follows that

oð0; In;O0
nÞpC2nþ1e
pðan
1
anÞ=anþ1 :

This along with (7) implies that the series in (6) converges if

XN
n¼1

2nþ1

anþ1
e
pðan
1
anÞ=anþ1oN:

This follows easily upon applying any criterion for convergence of positive series

since an ¼ 1
4

pn2 with ð1=2Þ1=8opo1: Therefore, we conclude that Cj is Hilbert–

Schmidt on the Hardy space.
It remains to prove the claim.

Proof of Claim. We will use an extremal length argument similar to the one in [6].

LetF be the family of curves in *O separating z0 from I and let r be admissible for
the family F:
For 0ptph; consider the line gt which joins both rectangles (see Fig. 5). Using

Hölder’s inequality and the fact that r is admissible if follows that

1p
Z
gt

r ds

 !2

p
Z
gt

r2 ds

 !
cðgtÞ;

where cðgtÞ denotes the length of gt: Therefore, we haveZ Z
*O
r2 ds dtX

h

d
:

Thus, the module MðFÞ of the family F is bounded below by h=d: This along with
Beurling’s Theorem which relates the harmonic measure and the module of the
family F by

oðz0; I ; *OÞpCe
pMðFÞ

(see [5, p. 100]), yields the claim. &
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