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Abstract

It is shown that an analytic map ¢ of the unit disk into itself inducing a Hilbert-Schmidt
composition operator on the Dirichlet space has the property that the set E, =
{e?€dD : |p(e”)| = 1} has zero logarithmic capacity. We also show that this is no longer
true for compact composition operators on the Dirichlet space. Moreover, such a condition is
not even satisfied by Hilbert—-Schmidt composition operators on the Hardy space.
© 2002 Elsevier Science (USA). All rights reserved.
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1. Introduction

Let D denote the open unit disk of the complex plane. The Dirichlet space Z is the
space of analytic functions f on D such that the norm

/115 = |f(0)|2+/ | (2)[ dA(z)
D
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is finite. Here A4 stands for the normalized Lebesgue area measure of the unit
disk. Observe that for a univalent function f, the integral above is just the area
of (D).

If ¢ is an analytic function on D with ¢ (D)< D, then the equation

Cgof =fop

defines a composition operator C, on the space of all holomorphic functions on the
unit disk (D). Furthermore, C, acts boundedly on (D) endowed with the
topology of uniform convergence on compact subsets. On the Dirichlet space &, a
necessary condition for C, to be bounded is that ¢ belongs to &. This follows easily
from the fact that C,z = ¢. On the other hand, not all the Dirichlet functions induce
bounded composition operators on &. Such functions were characterized by Voas
[11] in his thesis. This and other related problems on composition operators on the
Dirichlet space have been extensively studied. For a comprehensive treatment of
such problems on spaces of analytic functions, like the Dirichlet space, see Cowen
and MacCluer’s book [3].

In this paper we are interested in the relationship between Hilbert—Schmidt
composition operators and the boundary behavior of their inducing symbols. In
particular, if 9D denotes the unit circle, we focus on the size of the set

E, ={"edD : |p(")| = 1},

whenever ¢ induces a Hilbert—Schmidt composition operator on the Dirichlet space.
To this end, recall that if £ is a Borel set contained in the unit circle 0D and Ag
denotes the class of distributions of mass 1 on E, i.e., non-negative set functions u
with total mass 1 and support S, contained in E, the logarithmic capacity® of E is
defined by

e infag {11}

)

where I(u) denotes the logarithmic energy integral of y, that is

1) = [ [ 1oz éimdu(é)du(n)-

Beurling [1] proved that if ¢ is a Dirichlet function, then the radial limits

o(e") = lim g(re”)
exist except on a set of logarithmic capacity zero (see also [2, p. 55]). So, it
makes sense to ask about the logarithmic capacity of the set E, when C, is
Hilbert—Schmidt on 2. It will be shown in Section 2 that such a set has logarithmic
capacity zero.

?Some authors define the logarithmic capacity of E by (inf 4, {I()})™". In our case, both definitions are
consistent because we deal with sets of logarithmic capacity zero. For more about capacities see [2] and [5].
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On the other hand, since Hilbert—Schmidt operators are compact operators, the
following question arises:

If C, is a compact operator on &, is E, a set of logarithmic capacity zero?

We will show that this question has a negative answer in Section 3. This will be
accomplished by constructing a simply connected domain Q contained in D such
that the Riemann map y that takes D onto Q2 induces a compact composition
operator C;, on & but Ej has positive logarithmic capacity.

The first results of this type were obtained by Schwartz [10] in 1969. He proved
that if C, is compact on the Hardy space A%, the space of analytic functions on D
whose boundary values are in L?(0D), then

lp(e”) <1

almost everywhere on 0D, or equivalently the set E, has Lebesgue measure zero. In
this case, Fatou’s radial limit theorem ensures that ¢(e) is defined except on a set of
Lebesgue measure zero (see for instance [4]).

Finally, using the construction in Section 3, we provide not only a compact but
also a Hilbert—Schmidt composition operator C, on the Hardy space such that E, is
a set of positive logarithmic capacity.

2. Hilbert—Schmidt composition operators on &

Recall that a linear operator T on a Hilbert space J# is said to be Hilbert—Schmidt

if the series
o0

> ITel? (1)

n=1

converges for an orthonormal basis {e,} of #. If this is the case, condition (1) holds
for all orthonormal bases of #. Furthermore, it is not difficult to see that every
Hilbert—Schmidt operator is a bounded operator.

In the Dirichlet space, Hilbert—Schmidt composition operators are characterized
in terms of their inducing symbols by the following lemma.

Lemma 2.1. C, is Hilbert—Schmidt on & if and only if the integral

9O
/ (= fory

is finite.

A standard argument using the fact that {z"/(n + 1)" 2}@0 is an orthonormal
basis on the Dirichlet space and Stirling’s formula yields the statement of the lemma
(see [3, Chapter 3]).
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Now, suppose that ¢ is a Dirichlet function. As mentioned in the introduction the
radial limits

lim @(re)

r—>1-

exist except on a set of logarithmic capacity zero (see [1], and also [2, p. 55]). Thus,
the set

E,={e"edD : o(e")| = 1}

is well defined. In addition, if ¢ induces a Hilbert—Schmidt composition operator on
2, we have the following conclusion.

Theorem 2.1. Let ¢ be a holomorphic self-map of the unit disk D. Assume that C,
defines a Hilbert—Schmidt operator on the Dirichlet space %. Then E, has zero
logarithmic capacity.

Proof. The key point of the proof is to translate the Hilbert—Schmidt condition on
the operator into one involving positive harmonic functions. Let us consider the
linear fractional transformation

1+
T l-z

7(2)

that maps the unit disk onto the right half plane. Let u# denote the real part of
C,T = 0@, that is,

1+ ¢(2)
L—o(z)
Clearly, u is a positive harmonic function and therefore the Poisson integral of a

positive measure on 9D. If we write z = x + iy and Vu = (Ju/0x, du/dy), a simple
calculation shows that

u(z) = Re

A _ [Vu)|
= lo@P 4G

Upon applying Lemma 2.1 we conclude that the integral

Vu@)P
/[D u(z)? 44(2)

is finite, or equivalently,

/D IV log u(z)|* dA(z) < . (2)
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This inequality will be the key to constructing a Dirichlet function to which we will
apply Beurling’s Theorem. Since log u(z) is not harmonic on D, we consider instead
the Poisson extension of the boundary function log u(e™).
Let P,(0) denote the Poisson kernel, that is
1+ re'?
P.(0) = Re|——
) ¢ [l - re’o]

for re[0,1) and 0€(0,2x], and v the harmonic function
i0 /"
v(z) =v(re”) = 7 logu(t)P,(0 — 1) dt.
T -7

In other words, v is the convolution log u * P,, and therefore the harmonic extension
of logu(e”) to the unit disk D. On the other hand, since harmonic functions
minimize the energy integral, it follows that

/ V() dA(z) < / Viogu(z)? dA(2), 3)
D D

and from (2) we get that the integral on the left-hand side above is finite.

Let /" be the analytic function on the unit disk such that f(0) = 0 and Re f = v.
From what we have just shown, it follows that f* belongs to the Dirichlet space 2.
Thus, the radial limits f(e) = lim,_, ;- f(re”) exist except on a set of logarithmic
capacity zero, and hence the function Re f(e’”) = log u(e') is finite except on a set of
logarithmic capacity zero. Since the sets

{e"€dD : logu(e’)< w0},

{e?edD : u(e”)>0}
and

i0 ) i0
{e"€dD : |p(e”)| <1}

coincide, the logarithmic capacity of E, is zero and the theorem is proved. [
Remark 2.1. The function ¢(z) = (1 + z)/2 induces a non-Hilbert-Schmidt compo-
sition operator on the Dirichlet space and the set £, only has one element. Therefore
Theorem 2.1 is just only a necessary condition. This example was first provided by

Schwartz [10] to show that his result, which states that if C, is compact on the Hardy
space, then E, is a set of Lebesgue measure zero, is not a sufficient condition either.
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3. Compact composition operators on &

The characterization of compact composition operators on the Dirichlet space can
be found in [3] in terms of Carleson measures (see also [7] and [12]). In fact, if n,(w)
denotes the multiplicity of ¢ at w and S(&,0) = {zeD : |z — £| <} is the Carleson
disk centered in (e 0D of radius ¢, with 0<é<1, then C, is compact on & if and
only if

1

lim — dA =0. 4
tim 55 [ mon)da0) @)

In this section we are interested in a different aspect of the subject: the size of E,.
In particular, we ask if the conclusion of Theorem 2.1 holds when C,, satisfies the
weaker condition of being compact on the Dirichlet space. The answer is negative.

Theorem 3.1. There exists a compact composition operator C, on the Dirichlet space
such that the set

E,={"€dD : |p(")| = 1}
has positive logarithmic capacity.

Proof. We will construct a simply connected domain Q contained in the unit disk D.
The Riemann map ¢ that maps D onto Q will furnish an example of the required
behavior.

Fix p in (0,1) and consider the sequence {a,},>o = {} P }nso- First, we consider
the Cantor set E = (1, E,<[0,n], where its n-th approximation E, consist of 2"

open intervals I, of length a,. Let Jx ) denote the intervals in the complement of E,,
that is,

Zn—l
E\E, =] JP.
k=1

)

Observe that each of intervals J,]f are closed.

Let Rf§> be the closed rectangle (Fig. 1) supported on the interval J,lf )

Set 2=, U RS and let 4 be the set

of height a,_».

A={zeD : |z|<1/2}u{z=re’eD : 0e(0,n)}.

Then the simply connected domain 2 we are looking for is A\Z (see Fig. 2).

Let ¢ be a Riemann map that takes D onto Q and ¢(0) = 0. Since ¢(D) has finite
area, it follows that ¢ belongs to the Dirichlet space &. In addition, C, is also
bounded on & since ¢ is a univalent self-map of the disk.
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Fig. 1. Rectangles R/,

Fig. 2. Domain Q.

First, we prove that ¢ induces a compact composition operator C, on &. For that
purpose, we show that ¢ satisfies the condition in (4).

Let ¢ = ¢ be in D. We may suppose that 0e (0, ), otherwise condition (4) is
trivially verified. Let S(&,d) be the Carleson disk of center ¢ and radius 0<d<1/4.
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Fig. 3.

There exists n such that a, | <d<a, . By construction, there exists ky such that
S(&,0) meets the rectangle R Therefore, the area of S(&,0)np(D) is less than
2a,0 (see Fig. 3).

Since ¢ is univalent, it follows that

1 / 2a,0  2a,
— ne(w) dA(w) <—— <
52 S(E9) (ﬂ( ) ( ) 52

Ap—1

Now, the limit lim,_, o, @,+1/a, = 0 because a, = ip”z and O<p<1.

Finally, it only remains to estimate the logarithmic capacity of the set E, =
{e?€dD : |p(e?)| = 1}. Observe that E, = ¢ '(E), where E is the Cantor set
constructed at the beginning of the proof. Moreover, E has positive logarithmic
capacity because the series

= 1
Z 27" log —
P Ay

is convergent (see [2, p. 29]). The problem here is that logarithmic capacity is not
invariant under conformal mappings, that is, sets of logarithmic capacity zero can be
carried onto positive logarithmic capacity sets conformally. So, we need to relate the
logarithmic capacity of a set to a conformally invariant quantity: extremal length.
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Recall that the module of a family of curves I' contained in a domain Z is
defined by

M, R) = inf// p*(z) dA(2),
P R
where the infimum is taking over the positive functions p such that

JRCIZE

Y

for every curve y in the family I'. Such functions p are called admissible for the
family I'. The extremal length of the family I" in £ is defined by

1
D) =

On the other hand, if F is a set contained in 0D, 0<r<1/3 is a given number and
I(r) is the family of curves in the annulus {zeD : r<|z|<1} which connect the
circle |z| = r to F, then the logarithmic capacity of F and the extremal length of the
family I'(r) are related by Pfluger’s Theorem in the following way:

\/’ *7[;‘-(1 (’ ))

where cap(F) denotes the logarithmic capacity of F. For this and many other results
concerning extremal length, we refer to [5] and [8].

Therefore, we just need to get estimates on extremal length in the domain Q to
apply Pfluger’s Theorem to the set E, = ¢! (E).

So, fix r=1/4 and consider the family of curves I' in the annulus
{zeD : 1/4<|z|<1} which join the circle {zeD : |z| = 1/4} to E,. Let I" be the
family of curves

r'={op(y) :yerl}.

Thus I consist of all the curves contained in Q that connect ¢({z : |z| = 1/4}) with
the Cantor set E. Now, the extremal length of I is the same as the module of the
family & of disconnected curves in Q that separate the sets ¢({z : |z| = 1/4}) and E
(see [8, p. 197]). Hence,

M) = M) = M(F,Q).
By Pfluger’s Theorem, we just need to show that M(Z,Q) is finite. So, for
z=reeQ, set

1
p(z) = { 2" 2a,s
1 if 1/4<1—r<1/2.

if a, <1 —r<a,_,
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Note that p is admissible for the family . In particular, we show that p is
admissible for the curves y, = {zeQ : |z| = r} with 1/2<r<1 which are, roughly
speaking, the curves in % of minimum length. It is easy to check that the length
of any other curve ye% increases enough so the integral f/p|dz| is also bigger
than 1.

Let 7, ={zeQ : |zl =r} and let n be such that a,<1 —r<a,_;. The length
/(y,) of the curve y, is £(y,) ~2""a,,, that is, there exist C;, C, universal constants
such that

C12"ay <4(9,) < Cy 2" ay.

Thus, we have

2n+l a
JECE et

2n+2an+2

Vr

because a, = %p”z and 0<p<1.
On the other hand,

/AM@M@—A{Aﬂ@mm

ap—1 1
= ——{(y,) dr
Z /an (2"2a,,,) Gr)

n>1
1
2"y @y,

= (22ay0)

1 1
:(2p2)3 ’; (2p8)n.

Now, if we choose (1/2)1/8 <p<1, the series above is convergent. This shows that
the module of # is finite. So, the logarithmic capacity of E, is positive, which
completes the proof. [

Remark 3.1. Compact composition operators on the Dirichlet space are also
compact on the Hardy space (see [7] and [12]). Therefore, Theorem 3.1 provides a
compact operator C, on the Hardy space such that E, has positive logarithmic
capacity.

4. A final remark

In this section we discuss whether the conclusion of Theorem 2.1 also holds
for Hilbert—-Schmidt composition operators on the Hardy space #>. A character-
ization of such operators in term of their inducing symbols can be found in [9]
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(see also [3, p. 146]). In fact, ¢ induces a Hilbert—Schmidt composition operator on
A if and only if

1
/am [ lp@p = ®

Alternatively, because the usual norm on the Hardy space is equivalent to the norm
1117 = 1£0)]° + /D P (=2 da(z) (fer),

where A4 stands for the normalized Lebesgue measure of the unit disk, it follows that
C, is Hilbert-Schmidt on A% if and only if the integral

PP e
/ A-lppy |

is finite (see [3, Chapter 3] for more references and results). This condition along with
the fact that a self-map ¢ of the unit disk satisfies that

L=zl _1+o(0)
= oG] ST~ [o(0)

yields easily the following conclusion.

(zeD)

Proposition 4.1. Let ¢ be a holomorphic self-map of the unit disk and assume that
C, is Hilbert—Schmidt on the Dirichlet space. Then C, is Hilbert—Schmidt on the
Hardy space.

Although there are Hilbert-Schmidt composition operators C, on the Hardy
space such that E, is a set of logarithmic capacity zero, we will prove that this is no
longer true for all Hilbert-Schmidt composition operators on #2. Actually, we have
the following

Theorem 4.1. There exists a Hilbert—Schmidt composition operator C, on the Hardy
space such that E, has positive logarithmic capacity.

Proof. Let us consider the domain € constructed in Theorem 3.1. We will prove that
the Riemann map ¢ that sends the unit disk D onto @ induces a Hilbert—Schmidt
composition operator on 4.

Let {a,} be the sequence used to construct the domain € and consider 4, the set
on JD defined by

A, ={e%e€dD : a1 <1 — ()| <a,}.
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First, observe that the integral in (5) is finite if the series

= 1

| 4]
Apt1

n=1
is convergent. Here |4, denotes the Lebesgue measure of 4,. Now, the fact that the
harmonic measure w(0, 4,, D) of the set 4, in the unit disk D at the origin and the
Lebesgue measure of 4, are related by |4,| = 2nw(0, 4,, D), plus the invariance of
harmonic measure under conformal mappings, implies that C, is Hilbert-Schmidt

on A2 if the series

S L w(p(0),0(4,). @) ©)
n=1

is convergent. To estimate the harmonic measure of ¢(4,) in Q at ¢(0) = 0, consider
the simply connected domain (Fig. 4)

Q ={weQ:1—|w>a,}
and the set on the boundary of Q/
I, ={wedQ: 1 —|w| = a,}.
By the maximum principle, we have
(0, ¢(A4n), Q) < (0, I, 2,). (7)

Suppose temporarily that the following claim is already proved.

o,

An—1

Fig. 4. Domain €.
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Claim. Let d and h be positive numbers. Consider the rectangles %, = [—1 —
d/2,—d/2] x [0,h] and R, =[d/2,1+d/2] x [0,h]. Let R2 ={(x,y) : y>0} and
Qc R% be the domain bounded by the rectangles #\ and . If I = (—d/2,d/2) and
zo = 2hi, then

w(zo,1,Q) < Ce ™/
where C is a universal constant (see Fig. 5).
Thus, it follows that
(0, I, Q) < C2"H M an-1=an) i1

This along with (7) implies that the series in (6) converges if

Z

2n+ 1

an 1 aVI)/an+l < 00.
an+l

This follows easily upon applying any criterion for convergence of positive series

since a, =1 p" * with (1/2)"<p<1. Therefore, we conclude that C, is Hilbert—
Schmidt on the Hardy space.
It remains to prove the claim.

Proof of Claim. We will use an extremal length argument similar to the one in [6].

Let Z be the family of curves in Q separating z from I and let p be admissible for
the family #.

For 0<¢<h, consider the line y, which joins both rectangles (see Fig. 5). Using
Holder’s inequality and the fact that p is admissible if follows that

2
1<</ pds) <</p2ds>/(y,),

where /(y,) denotes the length of y,. Therefore, we have

h
2ds dt>—.
//Qp iz

Thus, the module M (%) of the family & is bounded below by //d. This along with
Beurling’s Theorem which relates the harmonic measure and the module of the
family & by

w(z0,1,9Q) < Ce ™7

(see [5, p. 100]), yields the claim. [
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Fig. 5.
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