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Abstract

A multivariate dispersion ordering based on quantiles more widely separated is defined.
This new multivariate dispersion ordering is a generalization of the classic univariate version.
If we vary the ordering of the components in the multivariate random variable then the
comparison could not be possible. We provide a characterization using a multivariate
expansion function. The relationship among various multivariate orderings is also considered.
Finally, several examples illustrate the method of this paper.
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1. Introduction

Lewis and Thompson [§8] introduced a concept of dispersion based on quantiles
more widely separated for univariate random variables. That is, X is said to be less
dispersed than Y in the Lewis-Thompson (LT) sense, denoted as X <pisp Y, if any
pair of quantiles of Y are at least more widely separated as corresponding quantiles
of X. Let u be a real value in (0, 1), we use the definition of univariate quantile as
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follows:
Ox(u) = Fy(u) =1inf{x: Fx(x)>u}.

Then X < pjsp Y is defined as Qx (v) — Ox(u) < Qy(v) — Qy(u) for all O<u<v<l.

Shaked [10] characterized the univariate dispersive ordering using an expansion
function for absolutely continuous distributions (see [10, Theorem 2.3]). Let F and G
be two strictly increasing and absolutely continuous distribution functions, then
X < pisp Y or F<pisp G, if and only if there exists a function ¢ : Sy —Sg (where Sp
and S¢ are the support of F and G, respectively) such that ¥ =y ¢(X) and ¢'(x)>1
for all x in Sr. Note that ¢ verifies that ¢(x) — ¢(x')=x — ¥/, for all x> x’. Hence,
the dispersion ordering in the LT sense is based on the existence of a function which
depends on the corresponding distribution functions. Furthermore, in this case
¢(x) = Qy(Fx(x)) for all x in Sr.

Giovagnoli and Wynn [5] extended the concept of dispersion ordering for
multivariate distributions in a weak and strong version. Let X and Y be random
vectors in R" with distribution functions F and G, respectively. From now on, we
denote < as the classical stochastic ordering for univariate and multivariate
distributions and we denote as F =y G when F(x) = G(x) for all x in R”. The weak
dispersion ordering, denoted as X<pY, is equivalent to ||X — X'||, <«|[Y = Y'||,,
where || - ||, corresponds to the Euclidean norm and X’ and Y’ are two independent
values for each one, X and Y, respectively. For instance, this weak dispersion
ordering implies that Tr(Xx) < Tr(Xy), where Xx and Xy are the covariance matrices
for X and Y, respectively.

Giovagnoli and Wynn [5] defined the strong ordering if and only if exists a
function k(-) such that X =y k(Y) and k() is a contraction function of R”, namely

lk(y) = k)l <ly = x[[, vx,yeR"

A contraction function is characterized through the Loewner ordering for its
Jacobian matrix (see [5, Theorem 2]). That is, let k(-) be a continuously differentiable
function. Then k(-) is a contraction function if and only if

Je(x) ' Je(x) <L, VxeR",

where J; = g—l;} is the Jacobian matrix of k(-), I, is the identity matrix of order n

and < is the Loewner ordering of matrices such that 4 < B if and only if B — A4 is
nonnegative definite.

Giovagnoli and Wynn [5] concluded that the most direct generalization of the one-
dimensional case is by taking k() a 1-1 function. Thus, the function g = k~! can be
termed as “expansion”. Then it holds that ||g(y) — g(x)||, =[]y — x||, for all x,y in R"
and the above characterization is replaced by

L<1J,(x)'J,(x) VxeR" (1)
To summarize, the strong dispersion ordering generalizes the LT ordering for

univariate random variables but it is not so easy, in general, to find out the
expression of k(-) and in addition this function has not to be unique.
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In Section 2, we introduce a multivariate dispersion ordering based on the strong
dispersion ordering which has an interpretation through the quantiles more widely
separated. In Section 3, we characterize it using an expansion function for
continuous distributions verifying special regularity conditions. We also study the
relationship with several classical orderings in dispersion. Finally, we apply this
concept to compare various multivariate distributions.

Now, we give some notation and definitions that we will be used later on. Let x be
a vector in R" and let I = {7}, ..., ix} ={I, ..., n}; then we denote x; = (x;, ..., X;,).
For a random vector X that takes on values in R", the interpretation of X; is similar.
From now on, we denote x4, .. x,)y when x;4yy; for i =1,...,n where k; is in

{0, 1}, Aodéf < and 4, def >. For example, (x1,x2)40,1)(y1,2) means that x; <y,

and x,>=y,. Also, we denote IT, as the set of all permutations of the elements in
{1, ...,n}. Thatis, m;, ;= (i1, ...,0,) is in IT,,.

2. Definition and properties

Let X be a random vector in R” and u = (uy, ..., u,) in [0, 1]". The multivariate u-
quantile for X, denoted as x(u), is defined as follows:

X1 (ur) = Ox, (u1),

n—1 .
M) %=

This known construction is widely used in simulation theory, and it is named the
standard construction. The following result, whose proof can be seen in [11], will be
used later on:

K(U) =¢ X, (2)

Xn(Un) = QX,,\ (tn).

where U is a random vector with n independent uniform components in [0, 1].
Obviously, this standard construction depends on the choice of the ordering of the
marginal distributions. Firstly, we obtain the marginal distribution X; and we
construct X (u;) and conditioned on every such possible realization X;(u;) we next
construct X;. We thus have constructed so far (X, X,). Therefore, conditioned on
every such possible realization (X;(u;), X2(u2)) we next construct x3. Continuing this
procedure, we finally arrive at random vector X(u). We can also consider any other
permutation of the components of X. For each permutation n = m; _; in I, we
can use the well-known orthogonal matrix 4, in M,,, defined by a; =1 for j =
1, ...,n and zero for the rest of components. Consequently, it is trivial to show that
X! = (X, ..., X;,) = A:X. In general, it does not hold X, =y X. Thus, we have to
define X,(u) as the standard construction for X;. Obviously, in light of result (2),
X:(U) =4 Xi. Hence, if X(u, 7) = A’ X, (u) then X(U, ) =y X. Note that X(u, 7) and
X(u) have different interpretations, they provide different points in R”. Hereafter, we
will only use the permutation n# = m;,__, but similar results for X, can be established.
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The definition of the multivariate u-quantile for X, lead us to define the

o *
multivariate x-rate vector, denoted x(x), as

X*](Xl) = P(X]S)Cl),

x*,(x,) = P(Xn<x,,|ﬂ

-1 Xi=x;

From now on, we establish the regularity conditions such as the distribution function
is a continuous function and the corresponding conditional distributions in each
component are continuous and strictly increasing functions.

It is easy to show that if the regularity conditions are satisfied then

(o X)) =x; Vi=1,....n. (3)
Theorem 2.1. Let X be a random vector in R" verifying the regularity conditions and U

is a random vector with n independent uniform [0, 1] components. Then ;(((X) =q U.

Proof. Let U = (U, ..., U,) be the multivariate X-rate vector, that is,
* *
Ul:xl(Xl)7"°7(]l‘l:xn(Xn)-

According to result (3), the density function for the U random variable is

f?{(X)(ul’ e tty) = fx (X1 (1), .., X (un)) % |Det(J)],
where the determinant of the Jacobian matrix is
0xX1
=0 ... 0
81/{1
0X; OXy n Ox;(u;
Det(J)=|—"2= = ... 0 |=
et(J) ou ,11
0xX,  OxXy 0x,
duy - Ouy Ou,

Now, in light of the well-known inverse function theorem we have that

H OxXi(u;) 1 1 o x 1
au, TG ) Fely e (20m) )
li=1
= ! >0,

fX()el (ul)a -~~7fn(uﬂ))

thus

S+

g (10w ) = S (R (00), 60 () [ Det ()] = 1,

where X(u) is in the support of X and each value u; is given by a transformation of a
distribution function for conditioned variables. Hence u; is in (0,1) fori=1,...,n.
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* o
Consequently, x(X) is in (0,1)" and the components of the ;(((X) vector are

. * . . .
independent. Thus, X (X) =g U, where U is a random vector with n independent

uniform (0, 1) components. [

If the distribution function is strictly increasing and continuous then there exists
only one real value for each u in (0, 1), denoted as Qx(u), such that F(Qyx(u)) = u.
Obviously, it is also verified that F(Qy(u)) = 1 — u where F = 1 — F. Therefore, each
univariate quantile under the above conditions is also characterized by the survival
function. This property is not so trivial to generalize for multivariate distributions.
Note that, for example, if X = (x;,x;) is a point in R? then it will divide the plane in
four orthants. It is trivial that for the bidimensional random variables, there does not
exist only one point in R? such that F(x;,x;) = u with «in (0, 1). The solution to the
equation F(xj,x;) =u can be expressed as a function, that is x, = h(x;). From
a stochastic point of view, the (xj,/(x;)) points could be different. Suppose
that F(x1,x;) =u and F(z;,z2) =u. However it may be possible that
P(X1=x1,Xa=2x:)#P(X| =z, X2>2,). Therefore, we are interested in points in
R? such that they have the same probabilities in each orthant. This idea lead us to
define the corrected orthant concept at points in R".

Let X be a random vector in R"” with distribution function F and z = (zy, ...,z,) a
k) -corrected orthant in z, denoted as Rx(z, A,,.. k), 1S

.....

defined as

Rx(z, Ak, k) ={x€R" 1 x1 45, Ox,

n— (
mjzll Xj=x;

It is easy to show that if X is a random vector with independent components then
the A, ... x,)-corrected orthant in z is the corresponding classic orthant in z for each
(kiy ooy k).

1(21)), veey
n(Zn))}-

b ok

Xn Ak, Ox,|

Proposition 2.1. Let X be a random vector in R" with distribution function F verifying
the regularity conditions, then

P{XeRx(R(w), Agk,.... )} = [] ()™ (1 = u)*]. (4)
i=1

Proof. The proof is by mathematical induction. The theorem is clearly true for
n=1.

Suppose now that, i = k — 1 (where 2<k<n), equality holds and to complete the
induction argument, we must show that (4) holds for i = n. For this purpose, we
denote I = {1, ...,n— 1} and

X= (le ~~aXn—17Xn) = (leXn)
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and
X(u) = (X1 (1), ooy Xt (n—1), X (un)) = (X7 (ur), X (14))-

Also, let B(n—1) = {XIEIR”’l DXy is in Ry, (X(up), Age,, g
R"'. Thus, by supposition,

))} be a subset in

/zl

P{XeRx(X(u), A(k,.... 1))} = / / dFy,y, ., (%n)
B(n—1) [*n Ak QX,,\X[,XI (un)]

n—1
{ ((u) l k ”i)ki)}[wn)lk”(l - ”n)kn]

dFX, (X[).

The A,,... x,)-corrected orthants in the corresponding multivariate u-quantile
accumulate the same probability for two random vectors with distribution functions
under the regularity conditions. These considerations lead us to define a new
dispersive ordering based on conditional quantiles more widely separated.

Definition 2.1. Let X and Y be two random vectors in R”. We say that X is less than
Y in dispersion sense, denoted as X < pjsp Y, if

[1X(v) = x()[,<[[3(v) = §(w)]],,
for all w and v in (0, 1)".

It is easy to prove that this ordering is a generalization of dispersive ordering in the
LT sense for any two random variables.

Note that this new ordering depends on the chosen permutation. If X < pjs, Y, then
it could not be held that 4,X<pispA,Y for any n =mn;, ., in II,. We provide a
counter-example in Section 4 in this sense (see Remark 4.1). Thus we define that X is
less than Y in dispersion sense, under a permutation n=m; _; in II,, if
Az X< pispA- Y. All considerations for the rate vector and for the corrected orthants
are possible for the dispersion ordering under a permutation no more to take a
permutation of the components.

We finish this section introducing two lemmas which we will be used in the next
results.

Lemma 2.1. Let Ae M., be a lower triangular matrix, such that A'A — Id,,,
is nonnegative definite. Then the diagonal elements verify that az>1, for i =1, ...,n.

Proof. By hypothesis x’4’Ax>x'x for all x. Let u; be the normalized eigenvector

associated to the eigenvalue a;; for A. Then, ulA’'Au; >ulu;. Consequently, it holds
2

az;=1. 0O
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Lemma 2.2. Let X and Y be any two random vectors in R". If X <Y then X;<qY;
for each I<{l1, ... n}.

Proof. See [11, Theorem 4.B.10(c)]. O

3. The main theorem

Theorem 3.1. Let F and G be distribution functions under the regularity conditions.
Assume that the supports Sp and S¢ are intervals in R". Let X and Y be random

variables distributed, respectively, according to F and G. Then X<pisp Y, if and only if
there exists a function @ : Sp— S¢ such that

O(X) = Y with [0(x)];, = @i(x1,...,x;) (i=1,...,n) (5)
and the Jacobian matrix of & satisfies
I,<1Js(x)'Jp(x) for all xeR" (6)
and
8@,‘()61, ceny X,')
Tl >,
ox. 0 (7)

Moreover, if this is the case then

Bi(x1, oy xi) = (o X0)(x1) (i=1,...,m). (8)

Proof. Firstly, we will show that the only one function which verifies conditions (5)—
(7) is the function given by (8). The proof is by mathematical induction. If Y =
&(X), according to Lemma 2.2 then Y; =4 @;(X}). On the other hand, in light of
conditions (6), (7) and Lemma 2.1, then &, /0x, > 1. Thus, it follows from Theorem

2.3 in [10] that @;(x;) = (ﬁ1°§1)(x1). Now, assume that (8) is verified for i =

I,...,n—1. Now, we must show that condition (8) holds for i = n. Using Lemma
2.2, we obtain that Y, =y @,(X1, ..., X,) and (®,(X1), ..., Pp_1 (X1, ..., Xu1)) =st
Y;. Consequently, for a given vector y; = (y1, ..., V,—1) it holds

Yuly,—y, =st Pu(X1s ooos Xl (0, (x0) 2, s (X))
By the induction hypothesis, we know that the system

D (x1) =1,
Dy (x1,x2) = ¥,

45,,,1()617 --~>xn71) = Vn-1
has a only one solution in a vector x; = (x1, ..., x,—1) for each y,. Therefore,

@, (X1, '”’Xn)|(¢](Xl):y1;»--s¢n—](Xla-»-;Xn—l):yn—l> st ¢”(X1’X”‘X1=X1)'
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Thus we have that there exists a transformation which maps X|y,_, to Yuly,_, .

Using (6), (7) and Lemma 2.1, it holds that gf: > 1. Hence, according to Theorem 2.3
in [10] for a fixed vector x; we obtain

. K
D, (X1, Xn) = QY,IIYH,, (FXn\x,:x, (xn)) = (Fue Xn)(Xn)-

We conclude the induction argument with this last result. Now, we will show that
X< pispY is a necessary condition for (5)—(7). In light of expression of @ in (8), it is
easy to show that this function maps conditional quantiles for X to conditional
quantiles for Y. Making use of condition (6) it holds that @ is an expansion function,
(see condition (1)). Consequently,

[1X(v) = X(u)[l, < [[2(X(v)) = 2(X(w))[],
=[13(v) = 3wl

for all w,v in (0,1)", then X< pjs, Y.
Now, we will show that X < pjs, Y is a sufficient condition for (5)—(7). According to

Theorem 2.1 and result (2) we find that ¢(X) = (J- ;(()(X) = Y.

We have only to prove (6) and (7). Since condition (1), we must show that & is an
expansion function. From the definition of dispersive ordering it holds

o

J(x1) = (3o X) (%)l

¢
)(x1) = R X)(X)[l, = [[x1 = %2l VX1, x2€R"

[P(x1) — @(x2)[5 = [[(

>

Thus, @ is an expansion function and making use of condition (1) we obtain (5).
Finally, 0®;/0x; can be regarded as the ordinary derivative of the function of one
variable obtained from @;(xi,...,x;) by fixing (xi,...,x;—1) at x;. If b>a then

Xi(b)= Xi(a). Thus,

¢i(x1a -~~7xi71ab) - (pi(xh ~"7xi717a) = (J;io

because the quantile function is an increasing function. Therefore, we have that (7)
holds. O

Note that the jacobian matrix of @ is a lower triangular matrix. If we are interested
to study the dispersion ordering under the permutation n;, _; in II, then we have to
compare in dispersion A4,X versus A,Y. If A;X<pispA4.Y then there exists an
expansion function which maps 4,X to 4,Y. That is &(4,X) =g 4,Y. Considering
the function Y'= AL -PoA, we observe that 11X) =y Y. Since 4, is orthogonal, it is
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easy to show that Y'is also an expansion function. Obviously, the J5Jp — I, and
JiWJy— I, matrices have the same eigenvalues. To summarize, if X and Y are
ordered in dispersion under a permutation m; _; in II,, then there exists
an unique expansion function based on the permutation which maps

XtoY.

e sl

Corollary 3.1. Let X and Y be two random vectors in R". If X< pisp Y, then

lex,:p},(u,) < Disp Yj|Y11§1(“1)’ 9)

where I = (1,....j—1),uy = (u1, ...,u;—1) in (0, l)jf1 andj=2,...,n.

Proof. Suppose that X <pjisp Y. Then according to Theorem 3.1 we find that
D;(X1(ur), Xjlx, =, u)) =st Yily,—s,(a):
with 0@;/0x;>1. Consequently there exists an expansion function which maps

Xilx, =%, (un) t0 Yily,—5,u): forj =2, ..., n. It follows from Theorem 2.3 in [10] that the
result holds. [

The multivariate dispersive ordering implies the univariate dispersive ordering
for conditional distributions. However, it is not always true in the other
direction. Further on, we will show a counter-example in Section 4,
(see Remark 4.3).

Theorem 3.1 has the following implication.

Corollary 3.2. Let X and Y be two random vectors in R". Let fx and fy their
density functions, respectively. If X<pispY, then

Sx(X(w))=fy(y(u)) Vue(0,1)".

In the special case of independent components, we obtain the following
corollaries

Corollary 3.3. Let X and Y be two random vectors with independent components.
Then

X<pispY if and only if X;<pispY: fori=1,...,n.

Corollary 3.4. Let X; and Y, be two random vectors in R" and let X, and Y, in R™,
where Xi,Xy are independent and Yi,Y> are too independent. If X1 <pipY1 and
X5 < pisp Y2 then

(Xltv th)t<DiSP( Yltv th)[-
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3.1. The ordering < pisp compared to other multivariate orderings

It is easy to show that the dispersive ordering implies the strong dispersion
ordering (see [5]). We can say that the multivariate dispersion ordering is a
case of the strong ordering where the expression of the expansion function is
known and it has an interpretation under the corrected orthants more widely
separated. Oja [9] interpreted the Jacobian matrix of the expansion in terms of
local volume elements.

Definition 3.1. Let X and Y two random vectors in R”. We say that Y is more
scattered than X, denoted < 4, if there is a function ¢ : R"+— R” such that g(X) ~4Y
and for all {x, ..., x,;1} =R" it holds that

A(g(x1), - g(Xn1)) Z A(X1, ooy Xng1),

where A(xy, ..., x,41) is the volume of the “‘simplex” with vertices at xj, ..., x,41.

From Lemma 3 in [5] we obtain that if X<pji;p Y then X< 4Y.

Block and Sampson [3] introduced the concept of conditionally more dispersed.
Fixed 1<i<n, denote I(i)={l,...,i—1,i+1,...,n}. Let denote the number of
sign changes of a function @ as S~ (a(x)).

Definition 3.2. Let X and Y be two random vectors in R” with distribution functions
F and G, respectively. Fixed 1<i<n, and suppose the following conditions are
satisfied:

L. Fx,, (t) = Gy, (t) for all t.
2. E(Xi|x,(,-):t) = E(Yf|Y,<,-):t) for all t.
3. For all t, both conditional distributions are degenerated, or

(@) S(F(xi|X,(,~>:t) - G(xi|y,(,):t)) =1, and
(i1) the sign sequence is —, +.

Then X is said to be conditionally less i-dispersed than Y, denoted as Y %)X.

Condition 3 in Definition 3.2 is known as the criterion of Karlin—Novikoff
for univariate variables. Conditions given in Definition 3.2 are interpreted as
the conditional distribution "Yi‘X,(,-):t is less in residual life than Yl"Y,(,-):t for all t
(see [12]).

Let X and Y be two random vectors in R". Assume conditions 1 and 2 in
Definition 3.2, if X< pjsp Y then

Xn|x,(”):t < Disp Yn|y,(n):p
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for all t. Condition 1 in Definition 3.3 implies that X;,, and Y, have the same
distribution. Therefore it is easy to show that X;(,) = ¥;(,)- Moreover, the ordering in
LT sense implies the convex ordering, (see [10,12]). Therefore, according to
Corollary 3.1, we have that

Xalx, =t <eYuly,, =t

where we denote < as the convex ordering. It is not always true that <. implies the
criterion of Karlin—Novikoff. Under symmetry conditions, both orderings are
equivalent (see [2]).

On the other hand, Block and Sampson [3] interpreted the conditionally dispersive
ordering under the convexity in the one relevant component for all other values of
the remaining component. The concept of conditionally more dispersed ordering has
not sense when there are more than one relevant components.

4. Examples

Example 4.1. Let X~ N, (u;,2;) and Y-»N,(u,,%>) be two multivariate normal
distributions. In this case, it is easy to show by mathematical induction that the
function @ defined in (8) satisfies Jo = 4B where A and B are two lower triangular
matrices with 44" = ¥, and B'B = Zl_l. Furthermore, according to Theorem 14.5.11
in [6], we have that

A'=D/’U, B=D,*(V')" and X, =V'DaV,

with U be the unique unit upper triangular matrix and D4 = {d;} be the unique
diagonal matrix such that

5, =UD,4U and DY?={d}.

Similarly for the B matrix. The U and V matrices can be calculated using the
Cholesky decomposition (see [6]). Consequently, in light of Theorem 3.1, X < pjsp Y if
and only if I, < (AB) AB.

Now, we show an example in the bidimensional case. We will attend to the well-
known expression for the density function in [7]. Let Z-» N(uz,X7z) be a normal
distribution in R?. The density function is given by

2
falzn,22) =m0 —p%>>1exp{ — [( 1z

2(1 - pz o1z

2
- 2p, (Zl ﬂlZ) <22 sz) n (22 sz) ’
o1Z 027 027
where py is the linear correlation coefficient between Z; and Z,.

It is widely known that the conditional distributions for multivariate normal
distribution are also normal distributions. Then, the distribution of Z, conditioned
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to Z; is given by

0127 /
Zz|Z|:z1 ““’N<H2Z + (21 — tyz) P oaz/ (1 — P%))

12

Let X N(ux,2y) and Y - N(uy, Xy) be normal distributions. The expression of @
is given by

x J—
?D1(x1) = o1y (14“1’() + Wy,
o1X

X2 = [pox + (x1 — 11x) 28]
1X

®y(x1,X2) = 02yy/ (1 — p3)

oxy/ (1= p%)
x| — g
4 M2Y+< 1 #1X> 12\(7
(25,4 (0%

where @ (x1) = Qy, (Fx,(x1)) and ®y(x1,x2) = Oy, , . (Fio/x=x, (32)).
The Jacobian matrix of @ is given by:

o1y 0
o1X
Jo =1 5y (1=p3) | oavy/(1—p3)
P Py — Px > >
X (I-px) oaxy/ (1 = px)

As a particular case, if px = py, o1y =01x and g2y > 02x then X<pjsp Y.

Remark 4.1. Let X and Y be as the above example. If X < p;sp Y then it could not be
held AnX<Di5pAnY for any = in II,,. Let o1y = 8, ooy = 2, Py = 0,01x=1,0x =3
and pg( = 0,75, then it holds X< pis, Y. However, since o2x > 02y, it does not hold
the ordering (X2, X1) <pisp( Y2, ¥1). In addition, it does not hold either the ordering
given by Eaton and Pearlmon [4] which expresses concentration in the following way
21122,

Remark 4.2. The expansion function @ is not always a linear function. For example,
let (X1,X>) be a bidimensional random variable with normal distribution and
independent components and let (Uj, U,) be a bidimensional random variable with
uniform distribution and independent components in (0, 1)2. It is easy to show that
Ui<pispX; for i=1,2. Then, according to Corollary 3.3, we have that
(U1, U2) < pisp(X1, X2). Consequently, %(U) =y X with X is an expansion function
and obviously it is not a linear function.

Example 4.2. Let S| W,(v, %) and S, W, (v, X,) be two Wishart distributions
defined through v normal distributions N(0,2;) and N(0,X;), respectively. Let
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consider ®(S;) = ABS;(AB)" where AA' =%, and B'B=X[' as the previous
example. Anderson [1] showed that @(S;) =4 S,.
Furthermore, according to Theorem 16.2.1 in [6], we have that

®(vec(Sy)) = [(AB) ® (AB)]vec(S).
Consequently, W, (v, 1) < pip Wa(v, 25) if and only if
1> <L[(AB)® (4B)|'[(4AB) ® (4B)],
that is (in light of [6, Theorem 16.1.2])
12 <1[(4B) (4B)|®[(4B)'(4B)).

Therefore, if  N(0,2)<pipN(0,%2),  (since  I,<(4B)(4B))  then
W,,(U, Z:1) < Disp W,,(U, 22)~

Example 4.3. We introduce an extension of the exponential multivariate of Freund
(see [7]). Suppose that a system has m identical components, and times to failure
X1, ..., X;n. All components come from an exponential distribution

fx(x) =0, exp(—x/0), x>0, 05>0.

If & components have failed and they have not been replaced, then the conditional
joint distribution of the lifetimes of the remaining (m — k) components is easily
obtained. The joint density of the ordered variables X|<--- <X is

m

m—1

S0 cees) =ml [ 167 exp{=(m =)0 (51 = )}, (10)
Jj=0

where xo = 0 and x; <xy < --- <X,

Let X and Y two random vectors with density function according to (10), with
parameter vectors 0= (0, ...,0,—1) and 0 = (6;,...,0, ) respectively. The
dispersive ordering let us choose a permutation. Because of the nature of this
exponential distribution, it is especially interesting m; . ,. Then

6/
@ =20
1(x1) B, <
9/
/i1
B0, -0 %5) = = (5 = X-1) + Pra (31, -0 X51)
i

forj=1,...,m.

Let A(0) be a lower triangular matrix such that a; = 0;_,/vm —j+1, i<j and
zero for the rest of components. Similarly for A(0'). It is easy to show that
A(0)A'(0) = Xx, A(0)A'(0') = Zy. From this one, the Jacobian matrix of @ is
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expressible as
Oy
0o
% 0 0 0 0
J(p(xl, ...,)Cm) = 90 91 01 ’

O 0 0 0 0 0 = Ohy

0o 01 0, 0, 0, 05 O

where Jg = A(0))A71(0).
If0./0; =a>1, for i=0,...,m— 1 then X<pisY.

Remark 4.3. We provide a counter-example for the result obtained in Corollary 3.1.
Assume that m = 2, 0;/0p = 1.1 and 6,/0; = 1.9 in Example 4.3. It is easy to show
that one eigenvalue of the J;Jp matrix is lower than 1. Thus, X A pisp Y- However, it
holds that

Xi<pip Y1 and  Xo|y, _¢ ) <Disp Y2l v, =, (1)
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