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Abstract

This work presents a very simple statistical analysis of errors in the ab initio determination of molecular geometries. This

analysis has allowed us to separate the errors in systematic and random components and to realize that differences between

experimental data and theoretical calculations are larger than we have initially supposed. It does not seem easy to reduce those

differences beyond certain limit, but our analysis has brought us to some procedures to improve the ab initio methods to

calculate bond lengths, by reducing the systematic error correlating the calculated data to the experimental ones, and by

reducing the random error by mixing the results of different standard procedures.

q 2003 Elsevier Science B.V. All rights reserved.
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1. Introduction

The molecular geometry is one of the molecular

properties that has been calculated earlier by

quantum mechanics methods [1] and wide data

bases with molecular geometries calculated by this

route exist, from long time ago [2] to more recent

studies [8,10]. The comparison with experimental

data of the first calculations accomplished with

Hartree–Fock methods and minimal bases prove, as

it is well known, that errors were several 1022 Å for

bond distances and several degrees for bond angles.

It would be supposed that, today, using huge bases

and introducing electronic correlation into calcu-

lations, the situation should be different. We have

encountered that; on the contrary, though the results

go better, the improvement does not seem compar-

able to the sophistication of the modern calculations.

The situation can bring us even to doubt if the

theoretical and experimental distances are actually

the same parameters, or if they are related but not

identical magnitudes, as is underlined in Refs. [3,4].

The aim of this work, that continues our preliminary

paper [5] lies on the hypothesis that a statistical

point of view, raising the problem in quantitative
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terms could bring us to some conclusions, and

procedures to improve the theoretical calculation of

molecular geometries.

2. A very simple statistical analysis

We have compared the experimental Re values

and calculated equilibrium bond lengths of 45

molecules: H2, C2, N2, O2, LiH, BeH, BH, CH,

NH, OH, FH, LiF, BeO, BeF, BO, BF, CO, CF, NO,

NF, CF2, CN2, CO2, C3, H2O, OF2, O3, SiF2, SO2,

SeO2, Cl2, ClO, ClF, NS, PN, PO, P2, SF, SO, S2,

H2S, HSi, SiO, CS, HCl. The theoretical calcu-

lations has been performed with GAUSSIAN98 [11]

and the molecules chosen among those ones with

well known experimental values [6–9]. In order to

avoid biased results, the sample includes very

different types of bonds.

We have employed two statistical parameters to

analyze the differences between results obtained by

different calculation procedures. The first one is the

mean deviation (MD):

MDð�dÞ ¼

Xn

i¼1

ð yi 2 ~yiÞ

n
ð1Þ

where {yi} and {~yi} are internuclear

distance distributions corresponding to the selected

molecules. The first distribution is the experimental

distances ðReÞ and the second ð{~yi}Þ is the

calculated ones. This parameter goes to zero

when all errors are random. Its difference

from zero estimates the systematic error of each

method.

The second parameter that we have used has been

the mean square deviation (MSD):

MSDðsÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i¼1

ðyi 2 ~yiÞ
2

n

vuuuut
ð2Þ

This parameter gives a measure of the difference

between the sets {yi} and {~yi}; with independence of

the sign of the individual differences. In fact the MSD

estimates the total error of the method (as sum of

systematic and random error). Consequently, the

comparison of the MD with the MSD should permit

to estimate what part of the error is systematic and

what part is random.

3. Results

We have tested all the combinations of procedures

Hartree – Fock, Moeller – Plesset (MP2), and

several density functionals (B3LYP, B3PW91,

B3P86) [12–14], with the basis: STO-3G, STO-

6G, 3-21G, 6-31G, 6-311G, 6-311G(d,p),

6-311G(2d,p), 6-311 þ G(2d,p), 6-311G(3df,3pd),

6-311þþG(3df,3pd) [15,16].

Our work has required almost 2500 independent

minimizations of molecular geometries, and it is not

a simple task to show our results in words.

However, they can be easily explained by means

of some graphics. We will represent the errors

(MSD or MD) against the procedures and basis sets,

ordered from minor to longer calculation effort. This

way we get an unexpected result: As we can see in

Figs. 1 and 2, the calculated distances do not

improve significantly beyond the base 6-311G(d,p),

and this fact is almost independent from

the procedure used to carry out the calculations

(HF, MP2 or DFT).

We can observe in Fig. 2 (MD) that, as it is

well known from long time ago, when we approach

to the HF limit the calculated distances are shorter

than the experimental ones, they have a systema-

tical error of 0.02 Å for any basis of quality

6-311G(d,p) or better. In addition, it shows that

when MP2 calculations approach to ‘MP2 limit’,

the resulting distances are longer than the exper-

imental ones(opposite behavior to the observed for

Hartree–Fock). From Fig. 2 it can be seen too that

for any of the checked procedures, the basis

sets corresponding to a larger systematic

error in distance calculations are 3-21G, 6-31G

and 6-311G.

In order to check the independence of results on

the selected set of molecules, we have verified that

the first half part of the data lead to

equivalent results as the second one. Results are

shown in Figs. 3–6, and prove that the dependence

is not relevant.
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4. Improvement of ab initio bond lengths

calculation by reduction of its systematic error

The study of the correlation between theoretical

distances and experimental ones, permits to realize

that for almost every procedures—and especially in

some of them—the results can be improved by using

an adequate correlation function Re < f ð ~ReÞ; where ~Re

is the calculated value and Re is the experimental one.

That is not surprisingly, because this way we can

eliminate a substantial part of the systematic error in

the determination of the distances.

The meaning of the correlation function Re < f ð ~ReÞ

can be justified by the following argument. The

position of the minimum of an energy function can

be estimated by substituting the exact function by

a parabolic approximation:

EðRÞ ¼ a0 þ a1·R þ a2·R2 ð3Þ

Fig. 2. Mean deviation (Å) of calculated bond length. A positive deviation indicates a calculated distance minor than the experimental one.

Figure shows that the systematic errors increase slowly beyond the 6-311G basis set for HF, and decrease for post-HF methods.

Fig. 1. Mean square deviation (Å) of calculated bond lengths (data abscissas from minor to longer calculation effort). The behaviour of all the

procedures is similar. The importance of including polarization in the basis functions is clear, but the addition of more basis functions to

6-311G(d,p) does not improve the results.
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When we apply this approximation to the energy

calculated with some theoretical method:

~EðRÞ ¼ ~a0 þ ~a1·R þ ~a2·R2 ð4Þ

and compare the conditions of minimum:

›E

›R

� �
Re

¼ a1 þ 2·a2·Re ¼ 0 ð5Þ

and

› ~E

›R

 !
~Re

¼ ~a1 þ 2·~a2· ~Re ¼ 0 ð6Þ

we obtain:

a1 2 ~a1 þ 2·ða2Re 2 ~a2
~ReÞ ¼ 0 ð7Þ

Fig. 4. Mean square deviation (Å). For the molecules: H2, C2, N2, O2, LiH, BeH, BH, LiF, CF2, CN2, CO2, C3, H2O, OF2, Cl2, ClO, NS, PN, PO,

P2, SO.

Fig. 3. Mean square deviation (Å). For the molecules: CH, NH, OH, FH, BeO, BeF, BO, BF, CO, CF, NO, NF, SO2, SeO2, S2, H2S, HSi, SiO,

CS, HCl.

J. Sánchez Márquez, M. Fernández Núñez / Journal of Molecular Structure (Theochem) 624 (2003) 239–249242



and:

Re ¼
~a1 2 a1

2·a2

þ
~a2

a2

~Re ð8Þ

The parameters ð~a1 2 a1Þ=2·a2 and ð~a2=a2Þ are

dependent on the molecule that is considered, but the

calculated coefficients ~a1 and ~a2 can be expressed in a

way:

~aiðlÞ ¼ ai þ ~bðlÞ þ ~ciðlÞ
i ¼ 1; 2…ðmoleculeÞ

l ¼ 1; 2…ðmethodÞ

(

where ~bðlÞ represents the systematic correction (that

depends, exclusively, of the method employed to

calculate the energy), and ~ciðlÞ represents the part of

the error depending of the molecule under consider-

ation. This allow us to express Eq. (8) as:

Ri
e ¼

~b1 þ ~ci
1

2·a2

" #
þ 1 þ

~b2 þ ~ci
2

a2

" #
~Ri

e ð9Þ

If we multiply to both sides by ai
2 we have:

ai
2·Ri

e ¼
~b1 þ ~ci

1

2

" #
þ ½ai

2 þ ~b2 þ ~ci
2� ~R

i
e ð10Þ

the coefficient ai
2 represent the experimental force

constant ðkiÞ of the ith molecule. Centering our point of

Fig. 6. Mean deviation (Å). For the molecules: H2, C2, N2, O2, LiH, BeH, BH, LiF, CF2, CN2, CO2, C3, H2O, OF2, Cl2, ClO, NS, PN, PO, P2, SO.

Fig. 5. Mean deviation (Å). For the molecules: CH, NH, OH, FH, BeO, BeF, BO, BF, CO, CF, NO, NF, SO2, SeO2, S2, H2S, HSi, SiO, CS, HCl.
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view in a concrete set of molecules, we can set:

ki ¼ �k þ 1i ð11Þ

where �k represents the mean force constant for the set

of molecules and 1i is the variation of each constant

with respect to the average. Using Eq. (11) we can

rewrite Eq. (10) as:

ð�kþ1iÞ·Ri
e¼

~b1þ ~ci
1

2

" #
þ½ð�kþ1iÞþ ~b2þ ~ci

2�· ~R
i
e ð12Þ

or:

Ri
e¼

~b1

2·�k
þ 1þ

~b2

�k

 !
· ~Ri

e

" #

þ
~ci

1

2·�k
þ

~ci
2

�k
· ~Ri

eþ
1i

�k
ð ~Ri

e2Ri
eÞ

" #
ð13Þ

The parameters appearing in the first bracket of Eq. (13)

are independent of the considered molecule. As far as

the second bracket was little enough we can approxi-

mately represent the bond lengths by a linear relation:

~Ri
e<aþb· ~Ri

e ð14Þ

Of course, the second bracket—that resume the

influence of random errors—could not be little. But

this assumption can be tested by fitting calculated data

to the experimental ones, for an adequate sample

of molecules. Therefore, we define an improved

calculated bond length:

~Rimproved
e ¼

~b1

2·�k
þ 1þ

~b2

�k

" #
· ~Ri

e¼aþb· ~Ri
e ð15Þ

We have obtained the parameters a and b for the

correlation function (15), using the same sample of 45

molecules employed in the first part of the work. The

results are quoted in Table 1. As we can see in Table 2

the use of Eq. (15) improves the calculated bond

lengths for all procedures except for Hartree–Fock

with STO-nG basis sets. Nevertheless the improve-

ments are important only for the small basis sets, and

become negligible for the most complete basis sets.

The interpretation of these results is easy. As can be

seen in Fig. 2. The small basis sets STO-3G, STO-6G,

3-21G, 6-31G, 6-311G, correspond to the methods

with the greater systematic error. For the 6-311G(d,p),

6-311G(2d,p), 6-311 þ G(2d,p), 6-311G(3df,3pd),

6-311þþG(3df,3pd) basis set, the main part of the

error is random.

5. Improvement of ab initio bond lengths

calculation by reduction of its random error

The improvement discussed in Section 4, decreases

the systematic error for the bond lengths calculations,

but it does not shorten the random error and, as we

have already seen, when good basis sets are used the

main part of error is random. Here we develop a

method, which decreases this component of the error

Table 1

Coefficient a and b of the relation: ~R
improved
e ¼ a þ b· ~Ri

e for 45 molecules

Hartree–Fock Moeller–Plesset B3LYP B3PW91 B3P86

a b a b a b a b a b

STO-3G 0.0346 0.9662 0.0611 0.9239 0.0453 0.9338 0.0203 0.9521 0.0380 0.9417

STO-6G 0.0403 0.9638 0.0492 0.9350 0.0244 0.9493 0.0178 0.9558 0.0175 0.9571

3-21G 0.1336 0.8775 0.1701 0.8284 0.1271 0.8661 0.1174 0.8743 0.1163 0.8760

6-31G 0.1514 0.8636 0.1690 0.8278 0.1407 0.8545 0.1318 0.8626 0.1305 0.8645

6-311G 0.1607 0.8617 0.1750 0.8279 0.1569 0.8465 0.1432 0.8581 0.1423 0.8598

6-311G(d,p) 0.0482 0.9755 0.0421 0.9601 0.0452 0.9590 0.0323 0.9707 0.0326 0.9716

6-311G(2d,p) 0.0408 0.9835 0.0419 0.9608 0.0308 0.9729 0.0145 0.9872 0.0173 0.9860

· · ·þG(2d,p) 0.0406 0.9834 0.0417 0.9600 0.0314 0.9719 0.0199 0.9825 0.0183 0.9848

· · ·G(3df,3pd) 0.0264 0.9976 0.0185 0.9839 0.0155 0.9879 0.0042 0.9981 0.0028 1.0002

· · ·þþG(3df,3pd) 0.0261 0.9977 0.0177 0.9840 0.0152 0.9876 0.0045 0.9976 0.0031 0.9997
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by mixing the results of different procedures of

calculation (method þ basis set).

As is well known [18] for a linear combination of

two independent estimations M1 and M2 of a

magnitude:

M ¼ a1M1 þ a2M2 ð16Þ

the quadratic error is:

s2 ¼ a2
1s

2
1 þ a2

2s
2
2 ð17Þ

For example, when M is a simple mean of two bond

length with the same quadratic error s0, the quadratic

error of the mean M ¼ ðM1 þ M2Þ=2 will be:

s ¼
s0ffiffi

2
p ð18Þ

In our case, we introduce an adequate weight factor

ðaiÞ for each component Mi of M, related to the

confidence of each value Mi: We have tested a

relationship between ai and si of potential form:

ai ¼
kðnÞ

s n
i

ð19Þ

where n is a parameter and kðnÞ is a normalization

constant. From Eqs. (17) and (19) we have:

s2 ¼ k2 s 2
1

s 2n
1

þ
s 2

2

s 2n
2

 !
¼

s 2
1s

2n
2 þ s 2n

1 s 2
2

ðs n
1 þ s n

2Þ
2

ð20Þ

The values of si for all the examined methods of

theoretical calculation of bond lengths are known

(Table 1), and we can choose the parameter n by

minimization of Eq. (20). We find that the optimum

value of n is 2, independently of the values of s1 and

s2.

Another important subject is that there is not

adequate to combine any couple of calculation

methods. They must be chosen carefully,

because the accuracy of Eq. (17) depends on two

restrictive conditions: the errors of M1 and M2

must be random, and M1 and M2 must be

independent.

In order to accomplish the first condition is

necessary, at least, that the systematic errors of M1

and M2 are negligible. In Fig. 2 we can see that the

combination of Hartree–Fock method with STO-nG

basis set, or Moeller – Plesset method with

6-311G(d,p) or superior basis sets fulfill this require-

ment but, for example, the combination of MP2 with

6-31G is clearly inadequate.

In order to test the fulfillment of the second

condition We can use the Pearson’s correlation

coefficient. We have calculated this parameter for

the distributions of error of each couple of methods

(Table 3). As is well known, the correlation

coefficient goes to unity as diðlÞ goes to djðlÞ: In

other words, this coefficient goes to 1 when

the results of methods i and j are not independent

(see Fig. 7). Consequently, we should choose

methods with a low correlation coefficient in

Table 3.

We have found that, in order to fulfilling conditions

of random error and independence, a good choice is

the B3LYP/6-311G(3df,3pd) and MP2/6-

311G(3df,3pd) methods (s1 ¼ 0.0080

Table 2

Mean square deviation in Å for the calculation of improved bond lengths

Hartree–Fock Moeller–Plesset B3LYP B3PW91 B3P86

STO-3G 0.061(63) 0.057(76) 0.054(74) 0.055(73) 0.052(70)

STO-6G 0.063(65) 0.057(73) 0.058(76) 0.056(72) 0.056(71)

3-21G 0.044(67) 0.043(101) 0.038(83) 0.035(79) 0.035(78)

6-31G 0.040(68) 0.036(100) 0.033(85) 0.030(81) 0.030(79)

6-311G 0.045(68) 0.033(93) 0.037(84) 0.034(79) 0.034(77)

6-311G(d,p) 0.023(28) 0.012(20) 0.014(21) 0.012(16) 0.012(15)

6-311G(2d,p) 0.021(28) 0.011(19) 0.011(14) 0.009(09) 0.009(10)

· · ·þG(2d,p) 0.021(28) 0.011(20) 0.010(14) 0.009(11) 0.009(10)

· · ·G(3df,3pd) 0.020(31) 0.010(12) 0.007(08) 0.008(08) 0.008(08)

· · ·þþG(3df,3pd) 0.020(31) 0.011(12) 0.008(08) 0.008(08) 0.008(09)

Significative figures of errors before improvement are quoted between parenthesis. All procedures with improvements higher than 25% have

their figures in bold.
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Table 3

Correlation coefficients between deviations ðR
exp
i 2 Rcalc

i Þ for representative couples of methods

HF MP2 B3LYP

STO-6G 6-311G · · · þ G(2d,p) · · ·þþG(3dp,3pd) STO-6G 6-311G · · · þ G(2d,p) · · ·þþG(3df,3pd) STO-6G 6-311G · · ·G(3df,3pd)

HF STO-3G 0.999 0.354 0.094 0.181 0.632 0.062 0.145 0.427 0.917 0.379 0.239

6-31G 0.966 0.269 0.026 0.238 0.737 0.551 0.098 0.327 0.902 0.644

6-311G(d,p) 0.975 0.913 0.316 0.118 0.089 0.039 0.178 0.062 0.674

· · ·G(2d,p) 0.993 0.943 0.345 0.179 0.171 0.128 0.215 0.030 0.602

· · ·þG(2d,p) 0.951 0.378 0.183 0.133 0.068 0.251 0.035 0.602

· · ·G(3df,3pd) 0.999 0.462 0.426 0.335 0.083 0.364 0.299 0.426

MP2 STO-3G 0.994 0.483 0.399 0.141 0.846 0.506 0.140

3-21G 0.914 0.769 0.292 0.395 0.784 0.242

6-31G 0.962 0.832 0.379 0.329 0.868 0.335

6-311G 0.817 0.316 0.310 0.875 0.390

6-311G(d,p) 0.920 0.712 0.247 0.645 0.379

6-311G(2d,p) 0.966 0.678 0.212 0.653 0.283

· · ·G(3df,3pd) 0.987 0.199 0.082 0.033

B3LYP STO-3G 0.902 0.573 0.337

STO-6G 0.538 0.277

3-21G 0.921 0.452

6-31G 0.987 0.571

6-311G(d,p) 0.877

· · ·þG(2d,p) 0.907

In Figs. 7a and b we can see the distributions corresponding to the maximum and minimum values of this coefficient.
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and s2 ¼ 0.0116). In this case we should use:

M ¼ 0:676286·MB3LYP=6-311Gð3df;3pdÞ

þ 0:323714·MMP2=6-311Gð3df;3pdÞ ð21Þ

whose MSD turns to be s ¼ 0.0066. This value is not

much better than s1 ¼ 0.0080 but later we will see

that, in practice, the results of applying relation (21)

seems to be considerably better than this foresight.

Moreover, the calculation of bond length by two

theoretical procedures so independent as B3LYP/6-

311G(3df,3pd) and MP2/6-311G(3df,3pd) (Pearson’s

coefficient of 0.0033) is advisable because it gives a

high level of confidence in case of agreement between

both results.

6. Some applications

Formula (21) has been got by using the data

corresponding to 45 diatomic and triatomic mol-

ecules. Of course it should be useful for any other

Fig. 7. Distributions of deviations ðR
exp
i 2 Rcalc

i Þ for HF/6-311G(3df,3pd)–HF/6-311þþG(3df,3pd) in (A), and B3LYP/6-311G(3df,3pd)–

MP2/6-311G(3df,3pd) in (B). These are the corresponding to the maximum (0.999) and minimum (0.033) values of the correlation coefficients

quoted in Table 3.

Table 4

Experimental, calculated and improved bond lengths of the 1,2,3-thiadiazole, 1,2,4-thiadiazole, 1,2,5-thiadiazole, 1,3,4-thiadiazole molecules

[17]

1,2,3-Thiadiazole Re(N1–N2) Re(N1–S5) Re(N2–C3) Re(C3–C4) Re(C3–H6) Re(C4–S5) Re(C4–H7) MSD

MP2/6-311G(3DF,3PD) 1.3171 1.6690 1.3475 1.3842 1.0785 1.6742 1.0768 0.0171

B3LYP/6-311G(3DF,3PD) 1.2755 1.7094 1.3632 1.3667 1.0780 1.6905 1.0763 0.0087

Improved 1.2890 1.6963 1.3581 1.3724 1.0782 1.6852 1.0765 0.0040

Experimental 1.2900 1.6920 1.3660 1.3690 1.0780 1.6890 1.0780 –

1,2,4-Thiadiazole Re(C1–N2) Re(C1–S5) Re(C1–H6) Re(N2–C3) Re(C3–N4) Re(C3–H7) Re(N4–S5) MSD

MP2/6-311G(3DF,3PD) 1.3203 1.6963 1.0789 1.3542 1.3298 1.0794 1.6331 0.0102

B3LYP/6-311G(3DF,3PD) 1.3048 1.7140 1.0795 1.3646 1.3105 1.0805 1.6532 0.0051

Improved 1.3098 1.7083 1.0793 1.3612 1.3167 1.0801 1.6467 0.0025

Experimental 1.3130 1.7070 1.0790 1.3660 1.3170 1.0780 1.6490 –

1,2,5-Thiadiazole Re(C1–N2) Re(C1–S5) Re(C1–H6) Re(N2–C3) MSD

MP2/6-311G(3DF,3PD) 1.3450 1.6170 1.3999 1.0794 0.0140

B3LYP/6-311G(3DF,3PD) 1.3189 1.6333 1.4194 1.0805 0.0045

Improved 1.3273 1.6280 1.4131 1.0801 0.0022

Experimental 1.327 1.63 1.417 1.081 –

1,3,4-Thiadiazole Re(C1–N2) Re(C1–S5) Re(C1–H6) Re(N2–C3) MSD

MP2/6-311G(3DF,3PD) 1.3153 1.705 1.0779 1.3555 0.0114

B3LYP/6-311G(3DF,3PD) 1.2948 1.7274 1.0785 1.3652 0.0133

Improved 1.3014 1.7201 1.0783 1.3621 0.0103

Experimental 1.3200 1.721 1.079 1.371 –

The last column includes the mean square deviation for all bonds of the molecule.
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molecule, not necessarily diatomic or triatomic.

In order to verify this usefulness we have applied

Eq. (21) to some representative polayatomic mol-

ecules. First, we have recalculated the bond lengths of

the molecules recently studied by Glossman-Mitnik

[17]. In Table 4 we can see that the attained

improvement is fairly good.

Finally, by applying formula (21) to calculate the

bond lengths in the methylthiocianate molecule we

have been able to detect some problems with its

standard experimental geometry. In Table 5 we

compare the results of calculated bond lengths by

B3LYP/6-311G(3df,3pd), MP2/6-311G(3df,3pd) and

by using Eq. (21), with the experimental data

recommended in Kuchitsu’s book [6]. It can be

seen that S1 –C2, S1 –C6 and C2–H4(yC2–H5)

experimental and calculated bond lengths are fairly

coincident. On the contrary, the experimental and

calculated values of the C2–H3 and C6–N7 bond

lengths are too different. In the C2–H3 case the

coincidence between the results of B3LYP and

MP2 calculations (that, as we have proved in

Section 6 are independent) points clearly to a

problem with the experimental data. In the case of

C6–N7 bond, the situation is not so clear as in the

C2 – H3 case, because experimental data lies

between the B3LYP and the MP2 calculations,

and this fact makes the possibility of a experimental

mistake less evident.

7. Conclusions

1. The improvement of calculating bond lengths by

Hartree–Fock, Moeller–Plesset, or DFT methods

with basis sets beyond 6-311G(d,p), results unex-

pectedly poor (Figs. 1 and 2). The best choice

to calculate bond lengths could be 6-311G(d,p) or

6-311G(2d,p), specially if we use B3P86 or

B3PW91 procedures.

2. The error in calculated bond lengths can be divided

in two independent components that we have

named ‘systematic error’ and ‘random error’.

Further analysis has enabled us to reduce both

kinds of errors.

3. It is possible to reduce systematic errors, through

a least square fitting between calculated an

experimental results for a sample of molecules.

The most significant improvements correspond to

the following cases:

Method MSD MSD

(after

improvement)

Differences

HF/6-31G 0.0677 0.0396 0.0281

MP2/6-31G 0.1001 0.0356 0.0645

B3LYP/6-31G 0.0853 0.0327 0.0526

B3PW91/6-31G 0.0807 0.0302 0.0505

B3P86/6-31G 0.0792 0.0304 0.0488

HF/6-311G(2d,p) 0.0284 0.0209 0.0075

MP2/6-311G(d,p) 0.0202 0.0119 0.0083

B3LYP/

6-311G(d,p)

0.0205 0.0137 0.0068

B3PW91/6-311G(d,p) 0.0160 0.0117 0.0043

B3P86/6-311G(d,p) 0.0153 0.0118 0.0035

4. The random error of the calculated bond lengths

can be reduced by mixing the results of certain

pairs of procedures of calculation. A good choice is

to combine the results of B3LYP/6-311G(3df,3pd)

and MP2/6-311G(3df,3pd) by using the formula

M ¼ 0:676286·MB3LYP=· · · þ 0:323714·MMP2=· · ·

5. Our work strongly suggest that one of the C–H

bond lengths of the standard geometry

for methylthiocianate molecule should be

considerably shorter than the value quoted in

Kuchitsu’s (Landolt-Börstein) book.

Table 5

Experimental, calculated and improved bond lengths of the methylthiocianate molecule

Methylthiocianate Re(S1–C2) Re(S1–C6) Re(C2–H3) Re(C2–H4) Re(C6–N7) MSD

MP2/6-311G(3DF,3PD) 1.8089 1.6846 1.0870 1.0849 1.1752 0.0088

B3LYP/6-311G(3DF,3PD) 1.8285 1.6888 1.0875 1.0852 1.1554 0.0089

Improved 1.8222 1.6874 1.0873 1.0851 1.1618 0.0070

Experimental 1.8237 1.6842 1.0725 1.0854 1.1697 –

The last column includes the mean square deviation for all bonds of the molecule.
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