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ABSTRACT

We describe the Lie isomorphisms on associative H�-algebras with
zero annihilator.
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1. INTRODUCTION

Over the years, there has been considerable effort made and success
in studying the structure of Lie isomorphisms of rings (Banning and
Mathieu, 1997; Beidar et al., In press, 2001, Preprint, 1994; Beidar and
Chebotar, 2001; Brešar, 1993, 2000; Chebotar, 1996, 1999; Herstein,
1961), and Banach algebras (Berenguer and Villena, 1999; Harpe, 1972;
Mathieu, 2000; Miers, 1976). We are interested in investigating the Lie
isomorphisms of associative H�-algebras. Using functional identities
one can describe Lie isomorphisms at a rather high level of generality,
however, we use entirely different methods to characterize Lie isomorph-
isms of H�-algebras. In fact, we note that the introduction of techniques
of derivations and graded algebras in the treatment of problems of Lie
isomorphisms is perhaps the most interesting novelty in this paper.
We recall that an H�-algebra A over C is a, non-necessarily associative,
C-algebra whose underlying vector space is a complex Hilbert space,
endowed with a conjugate–linear map � :A!A (x 7! x�), such that
(x�)� ¼ x, (xy)� ¼ y�x� for any x, y2A and the following hold

ðxyjzÞ ¼ ðxjzy�Þ ¼ ðyjx�zÞ

for all x, y, z2A. The map � will be called the involution of the H�-
algebra. The continuity of the product of A is proved in Cuenca and
Rodrı́guez (1987). We call the H�-algebra A, topologically simple if
A2 6¼ 0 and A has no nontrivial closed ideals.H�-algebras were introduced
and studied by Ambrose (1945) in the associative case, and have been also
considered in the case of the most familiar classes of nonassociative con-
texts (Cabrera et al., 1992; Cuenca et al., 1990; Cuenca and Rodrı́guez,
1987; Devapakkian et al., 1975, 1976; Pérez de Guzmán, 1983; Schue,
1960) and even in the general nonassociative contexts (Cuenca and
Rodrı́guez, 1985, 1987). A Lie isomorphism from an associative H�-
algebra A onto an associative H�-algebra B is a linear bijective mapping
f from A onto B such that f ([x, y])¼ [ f (x), f (y)] for all x, y2A. Here and
subsequently, the bracket denotes the Lie product, [x, y]¼ xy� yx on A
and B. In Cuenca and Rodrı́guez (1987) it is proved that any H�-
algebra A with continuous involution splits into the orthogonal direct
sum A¼Ann(A)?LðA2Þ, where Ann(A) :¼fx2A : xA¼Ax¼ 0g is the
Annihilator of A, and L(A2) is the closure of the vector span of A2, which
turns out to be an H�-algebra with zero annihilator. Moreover, each H�-
algebra A with zero annihilator satisfies A¼?Ia where fIaga denotes the
family of minimal closed ideals of A, each of them being a topologically
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simple H�-algebra. We also recall that any isomorphism on arbitrary H�-
algebras with zero annihilator is continuous (Cuenca and Rodrı́guez,
1985). Let H be a complex Hilbert space and let HS(H) be the algebra
of all Hilbert–Schmidt operators onH. If ffigi2A is a complete orthonor-
mal system of H and f, g2HS(H), then the sum

P
( f (fi)jg(fi)) is inde-

pendent of the choice of ffigi2A. It can be proved that HS(H) becomes
an associative H�-algebra under the inner product

ð f jgÞ ¼
X

f ðfiÞ gðfiÞjð Þ:

and the involution f 7! f �, where f � is the adjoint operator of f, that is, the
unique element in HS(H) such that ( f (x)j y)¼ (xj f �( y)) for all x, y2H.
It is proved in Ambrose (1945) that any infinite dimensional topologically
simple associative H�-algebra is �-isometrically isomorphic (up to a posi-
tive multiple of the inner product) to HS(H) with H a complex Hilbert
space of infinite hilbertian dimension. Our purpose is to prove the follow-
ing theorems.

Theorem 1.1. Let A and A0 be infinite dimensional topologically simple
associative H�-algebras and let f be a Lie isomorphism from A onto A0.
Then f is either an isomorphism or the negative of an anti-isomorphism.

Theorem 1.2. Let A and A0 be associative H�-algebras with zero annihila-
tor and let f be a Lie isomorphism from A onto A0. Then there exist ideals P,
Q of A and a C-linear bijective mapping f 0 : A!A0 such that A¼P?Q
and if we denote by fIag the family of the minimal closed ideals of A then:

1. f 0 is an isomorphism from P onto f 0(P).
2. f 0 is the negative of an anti-isomorphism from Q onto f 0(Q).
3. If Ia is infinite dimensional then f 0jIa¼ f jIa.
4. If Ia is finite dimensional then da :¼ f 0jIa� f jIa is a linear mapping

from Ia onto the center of A0 sending commutators to zero.

In order to prove Theorem 1.1, we are firstly going to associate
Jordan H�-pairs JA and JA0 to A and A0 respectively, via a three-graded
Lie H�-algebras construction. Secondly, we are going to extend f to an
associative isomorphism F on certain Z2-graded associative envelopes
of JA and JA0. Finally, the theorem will be finished by arguing on F.
Theorem 1.2 will be obtained from Theorem 1.1, some considerations
on Lie isomorphisms on finite dimensional simple H�-algebras and the
structure theory of H�-algebras (Cuenca and Rodrı́guez, 1987).
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2. THE THEOREMS

Let K be a unitary commutative ring. A three-graded K-algebra A is a
K-algebra which splits into the direct sum A¼A�1�A0�A1 of nonzero
K-submodules satisfying A0AiþAiA0�Ai for all i2f�1, 0, 1g,

A�1A1 þ A1A�1 � A0

and A1A1¼A�1A�1¼ 0. A three-graded H�-algebra is an H�-algebra
which is a three-graded algebra such that A�1, A0, A1 are closed orthogo-
nal subspaces satisfying (Ai)

� ¼A�i for i2f�1, 0, 1g. We write
A¼A�1?A0?A1.

Proposition 2.1. Let A¼A�1?A0?A1 be a three-graded H�-algebra.
Then there exists a self-adjoint derivation D on A with minimal polynomial
x3� x, satisfying � �D¼�D � � and such that Ai¼Ker(D� iId), i2f�1,
0, 1g.

Proof. It is easy to prove that D :A!A defined by

Dða�1 þ a0 þ a1Þ ¼ �a�1 þ a1

for all a¼ a�1þ a0þ a12A is a self-adjoint derivation on A satisfying
� �D¼�D � �, Ai¼Ker(D� iId ), i2f�1, 0, 1g and D3�D¼ 0. As
D 6¼ 0 and D2 6¼� Id, D has minimal polynomial x3� x. &

Proposition 2.2. Let A be an H�-algebra with zero annihilator, and let D
be a self-adjoint derivation on A with minimal polynomial x3� x and satis-
fying � �D¼�D � �. Then A¼A�1?A0?A1 with Ai¼Ker(D� iId),
i2f�1, 0, 1g, is a three-graded H�-algebra.

Proof. The proof follows from the primary decomposition of D, the
conditions � �D¼�D � � and D is self-adjoint and the fact that D is con-
tinuous by Villena (1994). &

The definitions and preliminary results on Jordan H�-pairs can be
found in Calderón and Martı́n (1998).

Proposition 2.3. Let L¼L�1?L0?L1 be a three graded Lie H�-algebra.
Then JL :¼ (L�1, L1) is a Jordan H�-pair with the quadratic operators

QsðxÞðyÞ ¼ ½½x; y�; x�;
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for s2fþ, �g, x2Ls and y2L�s, and with the involution and inner pro-
ducts induced by the ones in L. (Note that the triple products of JL are
fx, y, zgs¼ [[x, y], z]).

Proof. It is proved in Neher (1989) that JL with the above quadratic
operators is a Jordan pair. Finally, the involution and inner product of
L clearly endow JL of a Jordan H�-pair structure. &

If A is an associative H�-algebra then A� will denote the Lie H�-
algebra whose underlying vector space, involution and inner product
agree with that of A, and whose product is given by [x, y]¼ xy� yx.

Proof of Theorem 1:1. From Sec. 1, there is no loss of generality in writ-
ing A¼HS(H) and A0 ¼HS(H0) being H, H0 complex Hilbert spaces
with infinite hilbertian dimension. Since A� and (A0)� are topologically
simple Lie H�-algebras (see Cuenca et al., 1990), f is an isomorphism
of topologically simple Lie H�-algebras and therefore f is a continuous
map by Cuenca and Rodrı́guez (1985). Let ffigi2A be a complete ortho-
gonal system of H. We can express

ffigi2A ¼ ffigi2B [ ffigi2C;

being B[C¼A, B\C¼;, B, C 6¼ ; and B a finite set. Consider the
mapping ad(x) :HS(H)!HS(H), given by ad(x)(a)¼ [x, a] being
x :H!H defined by x(fi)¼�fi if i2B and x(fi)¼ 0 if i2C. It is easy
to prove that ad(x) is a self-adjoint derivation on HS(H) with minimal
polynomial x3� x and satisfying

� � adðxÞ ¼ �adðxÞ � �:

By Proposition 2.2, A¼A�1?A0?A1 is a three-graded associative
H�-algebra, being A�1¼HS(HC, HB), A0¼HS(HB)�HS(HC) and

A1 ¼ HSðHB;HCÞ;

where HB, HC denote the Hilbert subspaces of H associated to ffigi2B
and ffigi2C respectively, and HS(HC, HB) is the set of elements
g2HS(H ) such that g(B )¼ 0 and g(C)�B (the same applies to

HSðHBÞ ¼ HSðHB;HBÞ; HSðHCÞ ¼ HSðHC;HCÞ
and HS(HB, HC)). We have that f provides (A0)� with a Lie H�-algebra
structure by defining the involution for any a0 2 (A0)� as (a0)� :¼ f (a�),
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a being the only element of A such that f (a)¼ a0, and the inner product as
(a0 j b0) :¼ (a j b), a, b being the only elements of A such that f (a)¼ a0 and
f (b)¼ b0. Consider (A0)� with this Lie H�-algebra structure, then
f :A�! (A0)� is an isometric �-isomorphism of Lie H�-algebras, this
character give us that

adð f ðxÞÞ : A0 ! A0

is also a self-adjoint derivation of A0 with minimal polynomial x3� x and
such that � � ad( f (x))¼�ad( f (x)) � �. By Proposition 2.2 we have that

A0 ¼ A0
�1 ?A0

0 ?A0
1

is an associativeH�-algebra and f is a three-graded isomorphism from A�

onto (A0)�, that is, f (Ai)¼Ai
0 for i2 {�1, 0, 1}. By Proposition 2.3,

f : JA ¼ ðA�1;A1Þ ! JA0 ¼ A0
�1;A

0
1

� �
is also an isometric isomorphism of Jordan H�-pairs commuting with �.
As ad( f (x)) is a derivation of the associative algebra A0, let us note that
(A0

�1, A
0
1) is also an associative H�-pair.

Since JA and JA0 come from symmetrizing the associative pairs

ðHSðHC;HBÞ;HSðHB;HCÞÞ
and

ðHSðH 0
C;H

0
BÞ;HSðH 0

B;H
0
CÞÞ

respectively, and (HS(HC, HB), HS(HB, HC)) is a topologically simple
associative H�-pair for the involution and the inner product defined as in
HS(H), see Castellón et al. (1992, Main theorem), we have that JA and
JA0 are topologically simple Jordan H�-pairs which come from symme-
trizing associative pairs. Applying D’Amour’s result (D’Amour, 1991,
Theorem B or Calderón and Martin, 1998, Theorem 1) as in the proof
of Calderón and Martin (1998, Theorem 2), f extends to an isomorphism
of two-graded associative algebras

F : A� Aop ! A0 � A0ð Þop;

being A¼HS(H) ’ HSðHBÞ HSðHCHBÞ
HSðHB; HCÞ HSðHCÞ

� �
and

A0 ¼ HSðH 0Þ ’ HSðH 0
B0 Þ HS H 0

C0 ; H 0
B0

� �
HS H 0

B0 ; H 0
C0

� �
HSðH 0

C0 Þ
� �

:
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We have two possibilities for F, either F(A� {0})¼A� {0} or

FðA� f0gÞ ¼ f0g � Aop:

In the first case F(a1a2)¼F(a1)F(a2) for any a1, a22A, being also

f ðaiÞ ¼ FðaiÞ
for ai2A�1[A1 because F extends f. We assert that f (a0)¼F(a0) for all
a02A0. Indeed, as A� is a topologically simple Lie H�-algebra, then
(A�Aop)�¼A�� (Aop)� clearly admits a Lie H�-algebra structure,
(A�Aop)� having zero annihilator. The same applies to (A0 � (A0)op)�

and then F is continuous (see Sec.1). Since A�1?½A�1;A1�?A1 is a non-
zero closed ideal of A� and this is a topologically simple Lie H�-algebra
by Cuenca et al. (1990), then

A0 ¼ ½A�1;A1�:
As f and F are continuous Lie isomorphisms and

f ðaiÞ ¼ FðaiÞ
for ai2A�1[A1, we conclude that f (a0)¼F(a0) for all a02A0. Therefore
f (a)¼F(a) for all a2A what implies f (xy)¼ f (x) f (y) for any x, y2A. In
the second case, that is, F(a1 a2)¼F(a2)F(a1) for any a1, a22A, arguing as
in the previous case and taking into account that in this case F is a Lie
anti-isomorphism, we have that

f ða0Þ ¼ �Fða0Þ
for any a02A0, being f (a1)¼F(a1) and f (a�1)¼F(a�1) for any a12A1

and a�12A�1. From here it is easy to verify that f (xy)¼�f (y) f (x) for
all x, y2A. &

Proof of Theorem 1:2: Denote by {Ia}a2L and by {Jb}b2O the family of
minimal closed ideals of A and A0 respectively. Let us consider
Jb0

2 {Jb}b2O.
If Jb0

is infinite dimensional, by the classifications of infinite dimen-
sional topologically simple associative (Sec.1) and Lie (Cuenca et al.,
1990) H�-algebras, there exists Ia02 {Ia}a2L such that

f ðIa0Þ ¼ Jb0 :

If we denote by f 0a0 the restriction of f to Ia0, Theorem 1.1 shows that f 0a0
is either an isomorphism or the negative of an anti-isomorphism.
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If Jb0
is finite dimensional with dim Jb0

> 1, as Jb0
is isomorphic to an

associative algebra of the type Mn(C), n> 1, then [Jb0
, Jb0

], the vector
span of {[x, y] : x, y2 Jb0

}, is a simple Lie algebra of type Al. Hence, there
exists Ia02 {Ia}a2L such that

f ð½Ia0 ; Ia0 �Þ ¼ ½Jb0 ; Jb0 �:

If we denote by fa0 the restriction of f to [Ia0, Ia0], by Jacobson (1962,
Theorem 5, p. 283) fa0 extends to either an isomorphism or the negative
of an anti-isomorphism f 0a0 : Ia0! Jb0

. If we call

da0 :¼ f 0a0 � f jIa0 : Ia0 ! A0;

we assert that da0(Ia0)�Z(A0) and that da0([Ia0, Ia0])¼ 0. Indeed, let us
write any element x2 Ia0 as x¼ cþ a with c2Z(Ia0)�Z(A) and a2 [Ia0,
Ia0], (note that this decomposition is unique). We have that the character
either of isomorphism or negative of anti-isomorphism of f 0a0 implies

f 0a0ðcÞ 2 ZðJb0Þ � ZðA0Þ:
As f is a Lie isomorphism then f jIa0(c)2Z(A0). Finally, as f 0a0 (a)¼ f jIa0 (a)
for any a2 [Ia0}, Ia0] we conclude that da0(Ia0)�Z(A0) and that

da0ð½Ia0 ; Ia0 �Þ ¼ 0:

Let Jb0
be such that dim Jb0

¼ 1. The facts that A and A0 are linearly
isomorphic and that we can define the family of linear isomorphisms
{ fa

0},

f 0a : Ia ! Jb

among the minimal closed ideals of dimension not 1 imply that there
exists a bijection s :L1!O1, being L1¼ {a2L : dim Ia¼ 1} and

O1 ¼ fb 2 O : dim Jb ¼ 1g:

Hence, if we consider the unique Ia02L1 such that s(a0)¼ b0 then the
unique linear isomorphism f 0a0 : Ia0! Jb0

such that f 0a0 (1)¼ 1 turns out to
be an isomorphism (of associative algebras) from Ia0 onto Jb0

.
Let us consider any Jb0

2 {Jb}b2O with the unique H�-structure that
makes f 0a either an isometric �-isomorphism or �f 0a0 an isometric �-
anti-isomorphism. As A¼?a2L Ia and A0 ¼?b2O Jb, the isometric char-
acter of any f 0a, a2L, allows us to extend { f 0a}a2L to an isometric linear
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mapping f 0 :A!A0 such that

A ¼ ð?a2LP
IaÞ?ð?a2LQ

IaÞ;

with LP[LQ¼L, LP\LQ¼;, and being f 0 restricted to P :¼?a2LP
Ia

an isomorphism and f 0 restricted to Q :¼?a2LQ
Ia the negative of an

anti-isomorphism. It is clear that P, Q and f 0 satisfy the conditions of
Theorem 1.2. &
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Brešar, M. (1993). Commuting traces of biadditive mappings, commuta-
tivity–preserving mappings and Lie mappings. Trans. Amer. Math.
Soc. 335:525–546.

Lie Isomorphisms on H*-Algebras 331
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