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Abstract

Successful applications of multivariate calibration in the field of electrochemistry have been recently reported, using

various approaches such as multilinear regression (MLR), continuum regression, partial least squares regression (PLS)

and artificial neural networks (ANN). Despite the good performance of these methods, it is nowadays accepted that

they can benefit from data transformations aiming at removing baseline effects, reducing noise and compressing the

data. In this context the wavelet transform seems a very promising tool. Here, we propose a methodology, based on the

fast wavelet transform, for feature selection prior to calibration. As a benchmark, a data set consisting of lead and

thallium mixtures measured by differential pulse anodic stripping voltammetry and giving seriously overlapped

responses has been used. Three regression techniques are compared: MLR, PLS and ANN. Good predictive and

effective models are obtained. Through inspection of the reconstructed signals, identification and interpretation of

significant regions in the voltammograms are possible.
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1. Introduction

One of the main limitations to the application of

electroanalytical techniques in the field of quanti-

tative analysis is often due to lack of selectivity. In

fact, it often happens that different species un-

dergo oxidation or reduction at potential values

that are very close to each other. In the case of

differential pulse and square wave voltammetries,

serious overlapping occurs when the difference in

the peak potentials is less than 100 mV divided by

the number of electrons involved in the electrode

charge transfer. This situation is rather common in

practice, since 100 mV represent an appreciable

fraction of the accessible potential region. Besides

experimental manipulations like changes of pH, of
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the supporting electrolyte, or the use of modified
electrodes, chemometrics offers efficient alterna-

tives to solve the problem of overlapping signals.

The main approaches employed are deconvolution

or semidifferential techniques coupled to curve

fitting [1�/5], multivariate curve resolution [6,7],

and multivariate calibration [8�/10]. Many success-

ful applications of multivariate calibration in the

field of electrochemistry have been recently re-
ported [11�/19], using different regression methods,

i.e., multilinear regression (MLR) [15], principal

component regression [14,16,19], continuum re-

gression [12], partial least squares regression (PLS)

[11,13,16,19] and artificial neural networks (ANN)

[17,18].

The main advantage of using regression meth-

ods based on latent variables, such as PCR, PLS,
etc., lies in their flexibility, which allows modelling

of complex signals also in the presence of back-

ground noise. Despite the generally good perfor-

mances of these methods, it is nowadays accepted

that they can benefit from data transformations

aiming at removing baseline effects, reducing

noise, compressing the data [10,20]. The wavelet

transform (WT) [21] is very efficient for all these
purposes, since it offers the advantage of perform-

ing data reduction and denoising at the same time.

The fast wavelet transform (FWT) has been

applied as a pre-processing tool in multivariate

calibration of NIR spectra [22�/25], of fluorescence

data [26], of X-ray powder diffraction spectra [27],

while example of multivariate calibration of elec-

troanalytical signals through FWT have not been
reported so far.

The optimal wavelet filters, apart from few

exceptions [22], are usually chosen empirically

looking at the decomposition of the mean spec-

trum or at the shape of the signals. In the quoted

papers, the level of decomposition is chosen either

considering the features of the mean spectrum or

simply as the maximum possible level of decom-
position. As regards feature selection, mainly two

approaches are proposed: (1) the wavelet coeffi-

cients are thresholded by using criteria based on

the evaluation of PLS weights [24] or PLS regres-

sion coefficients [22]; (2) the wavelet coefficients

are previously sorted by variance [23,26,27] or by

correlation [25], and the subset giving stable or

best performing regression models, is then se-

lected.

In particular, Niemoller et al. [25] considered a

fixed number, M , of the ranked (according to

correlation with the y properties) coefficients,

from which a starting population is derived and

fed into a genetic algorithm (GA), which seeks the

best combination of the M wavelet coefficients.

The fitness function to be optimised contains the

standard prediction errors for both calibration and

internal validation sets, relative to MLR models.

This approach seems particularly appealing be-

cause many different combinations of coefficients

are tested. However, the use of GA is computa-

tionally heavy and the application of GA on a

limited preselected number of coefficients further

limits the search.

In the present work, we adopted a simplified

approach where, instead of using GA, the selection

of the wavelet coefficients to be used as the

predictor variables is done by the recursive appli-

cation of MLR models. Once the optimal wavelet

coefficients are selected, different regression tech-

niques can be employed for the calculation of the

final calibration model. Furthermore all possible

decomposition levels are considered. The proposed

methodology goes through the following steps:

�/ the signals are decomposed into the wavelet
domain by using the FWT at the maximum

level of decomposition;

�/ for each level of decomposition the wavelet

coefficients are sorted either according to their

variance or to their squared correlation coeffi-

cient calculated with respect to the analyte

concentrations;

�/ for each level of decomposition, the number of
wavelet coefficients to be retained can be fixed

or can be iteratively determined searching for

the minimum of the standard deviation of error

of predictions (SDEPLOO, estimated by the

Leave One Out procedure) by means of MLR;

�/ finally, the optimal decomposition level is

considered the one giving the highest squared

correlation coefficients.

The selected coefficients constitute a set of

independent variables, which can be fed to differ-
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ent regression techniques. For interpretative pur-
poses, both the selected coefficients and the

calculated regression coefficients can be recon-

structed into the original domain by using the

inverse FWT.

Further critical steps are the choice of the most

suitable wavelet function and of the padding

criterion [28�/30]. In this work, 15 different wavelet

functions and three kinds of padding were tested.
The various sets of selected coefficients, corre-

sponding to the different combinations of these

options, were used as input to three regression

techniques: MLR, PLS and ANN. The perfor-

mance of the different regression models has been

tested evaluating their predictive abilities on an

external validation set.

The outlined WT-based feature selection proce-
dure has been applied to a set of seriously over-

lapped voltammetric signals recorded on mixtures

of thallium and lead in the concentration range

0.1�/1 mg l�1, which were recently collected by

some of us; in a preliminary paper [31] this data set

was analysed by ANN regression, coupled to

Fourier Transform or WT compression. The

results obtained were promising, even if WT was
employed only for denoising purpose.

The systematic analysis conducted in the present

work showed that quite satisfactory regression

models can be obtained in the correspondence to

different parameter combinations, suggesting that

no general rules for the selection of optimal

regression parameters (e.g. wavelet function, pad-

ding criterion, regression technique) can be drawn.

2. Methods

2.1. Wavelet analysis and feature selection

The WT is a powerful signal processing techni-

que, whose peculiarity lies in the ability to map the

frequency content of a signal as a function of the
original domain, offering the possibility of (dual)

time�/frequency localisation. For a detailed de-

scription of the WT and of its properties reference

is given to dedicated literature [21,28,32,33]; only a

brief description is provided here. The discrete WT

has been implemented through the Mallat’s pyr-

amidal algorithm also called FWT. It operates on

an individual discrete signal of length 2l by

splitting it into 2l�1 long orthogonal subspaces,

called approximations and details respectively.

The decomposition is performed applying two

filters (each wavelet being uniquely defined by a

set of wavelet filter coefficients) to the original

signal: a low-pass filter only retaining the low

frequency content of the signal, i.e. the approx-

imations, and a high-pass filter, collecting the high

frequency content, i.e. the details. The procedure

can be recursively applied (wavelet tree) by apply-

ing the same two filters to the approximation

vector, until the length of the resulting vectors

equals 1, as shown in Fig. 1. In this way, sharp and

coarse properties of the signal are captured and

disjointed into different sub-spaces, i.e. vectors or

sets of wavelet coefficients, obtaining the so called

‘signal multiresolution’. For each level of decom-

position, j, it is possible to obtain a perfect

reconstruction of the original signal by inverse

FWT, using the approximations at level j and all

the details from j to l level. In other words, the

signal is represented in terms of a unique ortho-

normal basis [cAj cDj cDj�/1. . .cDl]. On the

contrary, when the goal is to remove noise or to

perform data compression or feature selection,

only a representative, i.e. informative for the given

purposes, set of wavelet coefficients is retained by

applying a suitable thresholding procedure.

Fig. 1. Mallat pyramid algorithm. Approximation and details

vectors are indicated by cA and cD respectively.
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In the present work FWT is applied in order to

accomplish feature selection prior to regression

analysis. The procedure is outlined in Scheme 1.

First, the signal matrix is padded to the next power

of two, then each signal is decomposed in the

wavelet domain until reaching the maximum

decomposition level, obtaining a three-dimen-

sional matrix with dimension jlevel�/pwavelet

coefficients�/msignals. In the subsequent step this

three-dimensional matrix can be reduced to a

two-dimensional matrix by calculating, alterna-

tively: (i) the variance of the wavelet coefficients

along the dimension of the signals (variance

sorting), or (ii) the squared correlation coefficients

with the y variables (correlation sorting). In the

latter case, as many matrices as y variables are

obtained. The elements of each row, i.e. each level

of decomposition, of the variance matrix or of the

correlation coefficient matrices respectively, are

sorted in ascending order. Each slice of the wavelet

Scheme 1.

M. Cocchi et al. / Talanta 59 (2003) 735�/749738



coefficients matrix (pwavelet coefficients�/msignals at a

given level of decomposition) is ordered accord-

ingly.

Then, for each level of decomposition, the

coefficients are thresholded according to two

different criteria:
(1) A fixed number, k , of coefficients, defined by

the user, is selected. In the case of variance sorting,

the first k sorted coefficients are retained; in the

case of correlation sorting, for each y variable a

different number of coefficients may be chosen: k1

for y1, k2 for y2, and so on. These coefficients

correspond to the first k1, k2, etc. sorted elements

of the relevant correlation matrices. The coeffi-

cients to be selected for further analyses include all

those chosen for each single y variable, without

repetition, which means that if the same coefficient

has been selected for more than one y variable, it is

only considered once.
(2) An automatic selection criterion is imple-

mented as follows. A first screening prunes the

sorted wavelet coefficients by excluding those

coefficients that show a pairwise correlation higher

than 0.90 with at least one of the preceding

coefficients. For each y variable, the number of

retained coefficients is progressively increased

from one to the rank of the wavelet coefficients

matrix of the considered level (pcoefficients�/

msignals) and the corresponding MLR models are

calculated. In order to obtain more stable regres-

sion models the pseudo-inverse matrix is used in

the regression equation. For each y variable, the

coefficients corresponding to the regression model

attaining the minimum SDEPLOO are selected. The

coefficients to be selected for further analyses

include all those chosen for each single y variable,

without any repetition.

In this way, a set of optimal wavelet coefficients

is selected for each level of decomposition; the

average squared correlation coefficient of each of

these coefficients over the y variables is calculated.

The optimal decomposition level is considered as

that showing the highest mean squared correlation

coefficient value.

The selected wavelet coefficients of the optimal

decomposition level are then used as input vari-

ables for different regression methods.

The algorithm for performing selection proce-
dure was written in MATLAB

† 6.1 language by

employing the Wavelet Toolbox ver. 2.1 [34].

2.2. Filters and values of the parameters

The decomposition into the FWT domain is

essentially based on a simple scheme: convolution

and downsampling. As usual, when a convolution

is performed on finite-length signals, border dis-

tortions arise. Generally, to deal with this problem

the signal is extended on the boundaries (signal
padding) by computing few extra coefficients at

each stage of the decomposition process, in order

to get a perfect reconstruction.

The evaluation of the effects of different pad-

ding criteria on the resulting calibration models

can be extremely important when the independent

variables are wavelet coefficients deriving by the

application of the FWT to a set of signals. In fact,
the values of the wavelet coefficients that are

calculated vary depending on the criterion that is

adopted for signal extension. For this reason, three

different padding criteria [29,30,34], that are

available in the Wavelet Toolbox† for MATLAB,

have been systematically compared in this work:

1) sym*/symmetric padding: signals are recov-

ered outside their original support by sym-

metric boundary value replication;
2) zpd*/zero padding: signals are extended add-

ing zeros outside the original support;

3) spd*/smooth padding (order 1): signals are

recovered outside their original support by a

first-order derivative extrapolation: this is

done using a linear extension fit to the first

two and last two values.

Fifteen wavelets belonging to different families

have been considered in the present study: 7
orthonormal wavelets from the Daubechies family

(dbl, db2, db3, db4, db5, db10 and db20), 3 coiflets

(coif1, coif2 and coif5) and 5 symlets (sym4, sym5,

sym6, sym7 and sym8).

Both variance and correlation sorting of the

coefficients were used. Both automatic and fixed,

with four coefficients (two for each y variable in
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the case of correlation sorting), selection criteria
were employed.

All the combinations resulting from the above

cited values of the parameters have been tested:

this led to 3�/15�/2�/2�/180 cycles of calcula-

tions.

2.3. Partial least squares regression

The wavelet coefficients have always been mean-

centred. The optimal number of PLS components

has been chosen by cross validation. In order to

determine the number of significant components,

r*, the value of the predicted residual error sum of

squares, PRESSLOO (estimated by the Leave One

Out procedure), obtained by adding a further

component, is compared with the PRESSLOO

value corresponding to the previous one. When

the resulting ratio [PRESSLOO(r*�/1)/PRESS-

LOO(r*)] is higher than 1, r* is reached.

The performance of each PLS model has been

tested by the standard deviation of error of

predictions, SDEPTEST, estimated on a test set of

9 mixtures. For each combination of parameters

(wavelet filter, padding, sorting and selection
criteria) the best performing PLS models were

selected and their predictive ability was further

checked by an external validation set (SDEPEXT)

consisting of 8 mixtures.

For the calculations the PLS Toolbox ver. 2.1.1

[35] was employed and a MATLAB routine was

written in order to calculate all the 180 PLS

models automatically.

2.4. Multilinear regression

The wavelet coefficients have always been mean-

centred. The pseudo-inverse has been used in

the MLR equation with zero intercept. The

performance of each MLR model has been tested

by the standard deviation of error of predictions,

SDEPTEST, estimated on a test set of 9 mixtures.
For each combination of parameters (wavelet

filter, padding, sorting and selection criteria) the

best performing MLR models were selected and

their predictive ability was further checked by an

external validation set (SDEPEXT) consisting of 8

mixtures.

For the calculations of the MLR models a
MATLAB routine was written in order to calculate

all the 180 MLR models automatically.

2.5. Artificial neural network regression

Since the training set consists of 31 objects and

the number of selected wavelet coefficients ranged

from 3 to 12, only the ni-2-2 topology, where ni is

the number of input coefficients, was considered in

order to avoid overfitting [36,37].
The number of adjustable parameters (N ) can

be calculated by the formula [37]:

N�(input nodes�hidden nodes)

�(hidden nodes�output nodes)

� hidden nodes�output nodes:

It is clear that in order not to exhaust the

degrees of freedom of our system not more than 11

input coefficients should be considered and that
overfitting is likely to occur when the number of

input coefficients exceed 6. For comparative

purposes ANN regression models have been

computed for all the 180 sets of coefficients but

among the best performing models we selected

those bearing a number of input coefficients not

higher than 6. The configurations of the neural

models tested were:

. training algorithm: improved back-propaga-
tion.

. activation functions: linear for the input layer

and all possible combination of gaussian, sig-

moid and hyperbolic tangent function for the

hidden and output layers.

The program QNET
† 2000 has been used for the

ANN calculations.

The training of the net was stopped by mini-

mising the standard deviation of error of predic-

tions, SDEPTEST, estimated on a test set of 9
mixtures. Since the starting weights are randomly

generated for each set of coefficients five ANN

runs were made and the resulting SDEPs were

averaged.

For each combination of parameters (wavelet

filter, padding, sorting and selection criteria) the
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best performing ANN models corresponding to
low SDEPTEST and to small number of coeffi-

cients, were selected. However, it is worth noticing

that in the case of ANN the test set is used to stop

the training of the network and thus it does not

represent a true validation set, being rather a

monitoring set. Accordingly the predictive ability

of the chosen ANN models was checked by the

external validation set (SDEPEXT) of 8 mixtures.

3. Experimental section

3.1. Differential pulse anodic stripping voltammetry

The differential pulse anodic stripping voltam-

metry measurements were carried out at an Auto-

lab/PGSTAT20 electrochemical system coupled to

a Metrohm VA 663 Stand. An electrochemical

three electrode cell, with a platinum auxiliary

electrode, a silver/silver chloride, 3 M potassium

chloride reference electrode and an Hanging
Mercury Drop Electrode, from Metrohm, was

employed.

Analytical reagent grade chemicals were used

throughout the experiments. Voltammograms

were recorded at room temperature. All solutions

were de-aerated with nitrogen for at least 10 min

prior to realising the experiments. A 2 M acetic

acid/2 M ammonium acetate buffer solution was
utilised as supporting electrolyte (pH 4.8�/5.0).

Lead and thallium solutions were prepared from

nitrate salt stock solutions at 250 mg l�1 concen-

tration.

The voltammetric parameters were as follows:

deposition potential�/�/1.30 V; deposition

time�/120 s; rest period�/20 s; initial

potential�/�/1.30 V; end potential�/0.00 V; scan
rate�/8.5 mV s�1; pulse amplitude�/0.10 V; pulse

time�/0.07 s; pulse repetition time�/0.6 s. The

drop surface was approximately 0.52 mm2.

A region of the full voltammogram of each

sample corresponding to 80 points in the potential

range from �/0.30 to �/0.70 V was used for the

multivariate calibration analysis.

3.2. Sampling

Forty mixtures of thallium and lead at concen-

trations ranging from 0.1 to 1.0 mg l�1 were

experimentally analysed. The whole experimental

domain was spanned as shown in Table 1.

Nine out from these mixtures were used as

internal test set (monitoring set for ANN), namely

T2, T9, L3, L8, T1L6, T4L4, T10L5, T6L1, and
T9L9, where L indicates lead, T indicates Thal-

lium, 1 corresponds to a concentration of 0.1

mg l�1, 2 corresponds to 0.2 mg l�1 and so on.

After some time 8 additional mixtures were

measured in order to obtain an external validation

set (TESTEXT); they are shown in Table 1 and

correspond to T1L9, T2L10, T3L5, T5L3, T6L8,

T8L6, T9L1, and T10L2, respectively.

4. Results and discussion

The results obtained with the automatic selec-

tion of the wavelet coefficients gives generally

lower standard deviation error of calculations

(SDEC) and of prediction of the validation set

(SDEPTEST) with respect to the fixed selection
criterion.

The results obtained with the automatic selec-

tion criterion and different combinations of the

other parameters for each regression technique are

shown in Fig. 2a�/d. In this figure, SDEC (Fig. 2a

and c), and SDEPTEST (Fig. 2b and d) values are

reported for each cycle of calculations. Each plot

corresponds to a given sorting criterion of the
wavelet coefficients, different symbols being used

for the three padding criteria. On the abscissa for

each regression technique, in the order MLR, PLS,

and ANN, the wavelet filters are ordered as

follow: db1, db2, db3, db4, db5, db10, db20,

sym4, sym5, sym6, sym7, sym8, coif1, coif2, and

coif5. Summarising each group of 15 points on the

abscissa corresponds to a different regression
method and within the 15 points the first 7 ones

correspond to the daublets, the following 5 ones to

the symlets and the last 3 ones to the coiflets

wavelet family.

It can be seen that the variance sorting criterion

performs generally better with respect to the
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regression sorting one, giving on average lower

values of both SDEC and SDEPTEST.

The selection of wavelet coefficients with the

biggest variance has already given good results in

regression tasks [23,26]. However, the lowest

SDEC and SDEPTEST values obtainable by the

different criteria are of similar magnitude.
The performance of the different models does

not differ significantly by varying the padding

criterion used, except for the wavelet filters of

higher orders. This is somewhat to be expected

since the extension of the signal on the boundaries

(padding) requires the computation at each stage

of decomposition, of few extra coefficients, whose

number depends on the length of the filter.
Different padding criteria lead to more and more

different values of the wavelet coefficients with

increasing levels of decomposition. However, the

results obtained show that this problem does not

constitute serious drawback if an effective criterion

for the selection of the wavelet coefficients is

adopted.

The linear (MLR and PLS) and the non linear
(ANN) regression techniques furnish equivalent

models with respect to fit and predictive capability,

thus indicating that a linear equation is sufficient

to explain the behaviour of the investigated

system.

The best performing models for each combina-

tion of parameters are reported on Table 2

together with the SDEPEXT values. The SDEPEXT

values are systematically worse than the corre-

sponding SDEPTEST ones, resulting anyway within

similar ranges. This is probably due to the fact that

the mixtures belonging to the external test set were

measured in a different time period and a calibra-

tion transfer procedure [13] has not been applied.
In Table 2, the SDEC, SDEPTEST and SDEPEXT

values for the PLS regression model calculated by

using the whole voltammograms, each one con-

sisting of 80 points, are also reported. The

dimensionality of these PLS models was of 3 and

4 significant latent variables, according to leave

one out cross validation, for thallium and lead

respectively. The PLS models reported on Table 2,
obtained after feature selection, show a dimen-

sionality for both dependent variables (thallium

and lead concentrations) that is lower than (2

significant PLS components) or equal to the

dimensionality of the PLS models on the untreated

voltamogramms. Only in the cases where the PLS

models converged to the MLR, i.e. where the

number of PLS components is equal to the number
of selected coefficients, the dimensionality for the

PLS model for thallium reached 4 latent variables

(PLS models on rows 3, 5 and 10, Table 2). At a

first sight, it may seem that there is no significant

reduction of the model complexity after wavelet

analysis. However, the number of PLS latent

variables is influenced by the fact that the wavelet

Table 1

Composition of the samples

[Pb] (mg l�1)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.0 L1a L2a L3b L4a L5a L6a L7a L8b L9a L10a

0.1 T1a T1L1a T1L6b T1L9c

0.2 T2b T2L2a T2L7a T2L10c

0.3 T3a T3L3a T3L5c T3L8a

0.4 T4a T4L4b T4L9a

[TI] (mg l�1) 0.5 T5a T5L3c T5L5a T5L10a

0.6 T6a T6L1b T6L6a T6L8c

0.7 T7a T7L2a T7L7a

0.8 T8a T8L3a T8L6c T8L8a

0.9 T9b T9L1c T9L4a T9L9b

1.0 T10a T10L2c T10L5b T10L10a

Columns, lead concentration; rows, thallium concentration. aTraining set; btest set (monitoring set for ANN); cexternal test set.
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coefficients were selected under the constrain of

not being correlated, and the models are indeed

more parsimonious being needed at maximum 9

wavelet coefficients as independent variables. A

great benefit may come from this as well in data

storage.

Despite the fact that the improvement (fit and

prediction) of the regression models after wavelet

compression is, in the present case, not particularly

remarkable, these models perform better, suggest-

ing that regression in the wavelet domain may be

advantageous. Actually, the voltammograms rela-

tive to the studied mixtures do not show any

significant instrumental noise and exhibit quite a

smooth behaviour, and the advantages of wavelet

analysis can be better appreciated in more complex

matrices, where the signal to noise ratio cannot be

enhanced to optimal extent.

Two of the best performing models in Table 2,

i.e. the plot of residuals vs. experimental lead and

thallium concentrations are reported in Fig. 3a

and Fig. 4a and in Fig. 3b and Fig. 4b, respec-

tively. The trends are in general satisfactory. The

relative percent errors, for the training set and for

the test set, result on average below 5% for the best

MLR model (Fig. 3) considering both thallium

Fig. 2. (a) Automatic coefficient selection*/Variance sorting (AV). SDEC values (training set) vs number of cycles for the different

padding criteria: %, zero padding; I, symmetric padding; m, smooth padding. (b) Automatic coefficient selection*/Variance sorting

(AV) SDEPTEST values (test/monitoring set) vs number of cycles for the different padding criteria: %, zero padding; I, symmetric

padding; m, smooth padding. In the case of smooth padding the points corresponding to db10, sym4, sym5, sym6 and sym7 were

omitted from the plot (Fig. 2a and b) showing SDEP values between 0.15 and 0.28. These cases correspond to regression models where

only one coefficient was selected; the following coefficients in order of variance being strongly correlated to this one were discarded. (c)

Automatic coefficient selection*/Correlation sorting (AR). SDEC values (training set) vs number of cycles for the different padding

criteria: %, zero padding; I, symmetric padding; m, smooth padding. (d) Automatic coefficient selection*/Correlation sorting (AR)

SDEPTEST values (test/monitoring set) vs number of cycles for the different padding criteria: %, zero padding; I, symmetric padding;

m, smooth padding.
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Table 2

Standard deviation of error of calculation (SDEC) and of prediction for test set (SDEPTEST) and external test set (SDEPEXT)

SDEC SDEPTEST SDEPEXT

PLS considering the whole signal (80 variables) 0.0291 0.0347 0.0503

pad crit wav selcrit lev ncfs SDEC SDEPTEST SDEPEXT

MLR

zpd sym7 AR 3 10 0.0186 0.0208 0.0350

sym5 AV 5 3 0.0268 0.0183 0.0423

sym7 FR 4 4 0.0245 0.0229 0.0379

coif2 FV 3 4 0.0315 0.0292 0.0521

sym coif2 AR 6 4 0.0296 0.0240 0.0496

sym5 AV 5 3 0.0262 0.0201 0.0454

coif2 FR 5 4 0.0312 0.0242 0.0638

sym8 FV 5 4 0.0275 0.0266 0.0633

spd sym8 AR 3 6 0.0240 0.0274 0.0404

db20 AV 4 6 0.0239 0.0224 0.0413

coif5 FR 6 4 0.0275 0.0249 0.0983

sym6 FV 3 4 0.0300 0.0250 0.0492

PLS

zpd db20 AR 4 9 0.0302 0.0330 0.0440

sym5 AV 5 3 0.0268 0.0183 0.0423

sym7 FR 4 4 0.0260 0.0227 0.0365

coif1 FV 5 4 0.0296 0.0306 0.0483

sym coif2 AR 6 4 0.0296 0.0240 0.0496

sym5 AV 5 3 0.0262 0.0201 0.0454

coif2 FR 5 4 0.0322 0.0267 0.0633

coif1 FV 5 4 0.0293 0.0305 0.0481

spd sym8 AR 3 6 0.0267 0.0307 0.0477

db3 AV 6 4 0.0282 0.0222 0.0406

coif2 FR 3 4 0.0278 0.0329 0.0609

coifl FV 5 4 0.0292 0.0305 0.0480

NNa

zpd sym6 AR 3 6 0.0215 0.0256 0.0717

db3 AV 6 3 0.0237 0.0260 0.0486

sym7 FR 4 4 0.0221 0.0281 0.0345

coif5 FV 3 4 0.0263 0.0261 0.0477

sym coif2 AR 6 4 0.0269 0.0298 0.0356

sym5 AV 5 3 0.0237 0.0243 0.0436

coif2 FR 5 4 0.0250 0.0275 0.0822

sym4 FV 3 4 0.0250 0.0266 0.0438

spd db20 AR 4 4 0.0272 0.0300 0.0533

db3 AV 6 4 0.0230 0.0269 0.0465

db2 FR 3 4 0.0243 0.0331 0.0432

coif1 FV 5 4 0.0258 0.0239 0.0300

The reported values are: the average of SDEC and SDEP for [Pb2�] and [TI]�, respectively; the padding criterion (pad_crit); the

wavelet filter (wav); the criteria used in coefficient selection (selcrit): A�/automatic, F�/fixed; the criteria used in coefficient sorting:

R�/squared correlation coefficient; V�/variance; the optimum decomposition level (lev); the number of selected wavelet coefficients

(ncfs).
a The network topology is always ncfs-2-2. The transfer functions used in each level are for each row, respectively: lgg; lsg; lsg; lgg;

lgg; lsg; lst; lgg; lsg; lgg; lgg; lgg. Where l stands for linear; g for gaussian; s for sigmoid and t for hyperbolic tangent; i.e. lgg: input�/

linear; hidden�/gaussian; output�/gaussian.
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Fig. 3. (a) Residuals vs. experimental thallium concentrations, by using the MLR model calculated on the selected (sym7, automatic

selection criterion, correlation sorting) wavelet coefficients: k, training set; %, test/monitoring set; j, external test set. (b) Residuals

vs. experimental lead concentrations, by using the MLR model calculated on the selected (sym7, automatic selection criterion,

correlation sorting) wavelet coefficients: k, training set; %, test/monitoring set; j, external test set.
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and lead. The best ANN model (Fig. 4) behaves

analogously for lead, while the average relative

percent error for thallium, is of 7% for the training

set and of 8% for the test set. In the case of the

external test set, the average relative percent error,

for both metals, is as well below 5%, considering

Fig. 4. (a) Residuals vs. experimental thallium concentrations, by using the NN model calculated on the selected (coif1, fixed selection

criterion, variance sorting) wavelet coefficients: k, training set; %, test/monitoring set; j, external test set. (b) Residuals vs.

experimental lead concentrations, by using the NN model calculated on the selected (coif1, fixed selection criterion, variance sorting)

wavelet coefficients: k, training set; %, test/monitoring set; j, external test set.
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either the MLR or the ANN model, except for two

or three mixtures. In general, the lead content is

better predicted than thallium. These errors are

comparable with those reported in previously

published studies [12,13], although it has to be

taken into account that the experimental condi-

tions are different and the thallium and lead peaks

are less heavily overlapped in the case reported in

the cited references.

In Figs. 5 and 6 a comparison between original

and reconstructed signals for the two best per-

forming models are reported. It is interesting to

notice that in one case (coif1, Fig. 5) the selected

wavelet coefficients highlight the position of the

maximum corresponding to lead and thallium

peaks, respectively. On the contrary, in the other

case (sym7, Fig. 6), the wavelet coefficients focus

on the regions where the lead and thallium peaks

cross each other: these regions are thus supposed

to capture the discontinuities due to the different

slope directions of the signal corresponding to the

two different peaks.

5. Conclusions

In this work we have shown that FWT can be

effectively coupled to predictive feature selection

criteria in order to find a minimum number of best

performing wavelet coefficients. These coefficients

constitute a new set of predictor variables that can

be passed to any regression methods. The pro-

posed procedure allowed us to calculate satisfac-

tory multivariate calibration models for both

[TI�] and [Pb2�] ions, whose voltammetric re-

sponses, were seriously overlapped under the

studied experimental conditions. That of over-

lapped signals constitutes a well known and widely

studied problem and many other chemometric

approaches have been successfully applied, to

thallium and lead mixtures as well; however, there

are many advantages that can be envisaged when

feature selection is accomplished in wavelet do-

main. These can be summarised as follows:

(1) Data reduction. Very few wavelet coeffi-

cients are able to model the relevant information

Fig. 5. Few representative original voltamogramms on top and the corresponding reconstructed signals (coif1 selected coefficients by

using a fixed number, 4, of coefficients, with the variance sorting criterion) on bottom. Pure lead: solid grey lines; pure thallium: solid

black lines; mixtures of the two metals: dotted grey lines.
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contained in a whole signal. For the data examined

by us, 3 or 4 coefficients have been sufficient to

obtain predictive regression models. Thus, low-

ering to a significant extent the ratio between the

number of variables and the number of objects, it

is possible to use a wider pool of regression

techniques in different experimental context;

(2) The possibility of doing simultaneously

denoising, background removal, and feature selec-

tion;

(3) The selected wavelet coefficients correspond

to contiguous regions of the signal; i.e. the order of

the variables is implicitly taken into account,

which is particularly helpful for interpretative

purposes. In fact, once they are reconstructed in

the original domain, it is not only possible to

localise the spectral regions correlated to the

dependent variables, but also to establish at which

scale (frequency) the features of interest are

located. In other words, the representation in the

wavelet domain offers the possibility to use not

only the single intensity values of the signal, but

also peak widths, slopes of particular regions,

degree of smoothness, and many other shape

features, in order to predict the dependent vari-

ables.

Fig. 6. Few representative original voltamogramms on top and the corresponding reconstructed signals (sym7 selected coefficients by

using the automatic selection criterium, 10 coefficients, and the correlation sorting criterion) on bottom. Pure lead: solid grey lines;

pure thallium: solid black lines; mixtures of the two metals: dotted grey lines; correlation sorting criterion) on bottom. Pure lead: solid

grey lines; pure thallium: solid black lines; mixtures of the two metals: dotted grey lines.
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