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In this article we introduce a new dispersion order weaker than the classic disper-
sion order discussed by Lewis and Thomp$b®81). We study the equivalence of
this order with the majorization order under the assumption of unimodairtglly,

we use this equivalence to characterize the IFR aging notion for unimodal distri-
butions by means of the notion of decreasing in randomness

1. INTRODUCTION

The notion of stochastic variability orders have been extensively studied in the lit-
eratureLewis and Thompsof6] introduced a concept of variability through the def-
inition of the dispersion ordét-T sense. LetF andG be two distribution functions

we say thaf is less dispersive tha®, denoted- <ps, G, if any pair of quantiles of
Gare atleastmore widely separated as the corresponding quantiddaify useful
characterizations of the dispersion order can be found in the liter&orexample
Shaked 10] provided a characterization of the dispersion ordering through the ex-
istence of an expansion function and he also gave a new interpretation by the number
of crossings of the distribution functiongufioz-Pérez7] characterized the disper-
sion order by the concept of Q-addition of random variables and by the spread func-
tion under restriction on the respective quantile funct®ojo and Gud9] showed
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thatF andG are ordered in the L-T sense if and only if the sample spacings are also
orderedinthe L-T sens&€hey also showed the preservation of the ordering by mono-
tone convexconcave transformations and by truncation at the same quarkite
nally, Shaked and Shanthikumldrl] and later, Pellerey and Shakd@&] showed the
relationship between the variability orders and reliability thearyparticular they
provided a characterization of the increasing failure (BtR) aging notion by means

of the dispersion order

Although the ordering in the L-T sense is intuitively reasonastenetimes it
involves two main disadvantages when we want to compare some specific distribu-
tions First, suppose that two distribution functions have the same finite interval as
their supportsthen Shakedl10] and Hickey{5] showed thatin this casethey are
not related in terms of the L-T sense unless they are idenBealondwe have that
the variableX and—X are in generalnot equally dispersed or even ordered in the
L-T senseHowever in the literaturethere are other variability orders which do not
have these disadvantagés instancethe convexpeakednessnd dilation orders
see Shaked and Shanthikunpat].

Parallel to thisthere exists the notion of majorization for two probability vec-
tors withn componentsLetp = (py,..., P,) andgq = (d4,...,0d,) be two probability
vectors We say thap is smaller in the majorization sense th@renotedy <y q if
k=i Piy = Xk=i qq) fori =1,..., n,wherep;, denotes the increasing rearrangement
of p and the same foq;,. Hickey [4] generalized the notion of the majorization
order for the continuous distribution functigthis we will see latelRoughly speak-
ing, the concept of majorization is not properly a concept of dispersiowevey
this order measures another interesting statistical property known as randomness
NeverthelessHickey [5] related the order in the L-T sense with the concept of
majorization and he showed théih;s,implies <, under unimodal distributionsut
they are not equivalent

The purpose of this article is to introduce a new concept of variability order weaker
than tvrvle dispersion order in the L;vT sense which we will call weakly disperdere
noted=<. In Section 2we study the< order and we obtain some characterizations
We also study the relationship among the dispersion ordering in the L-T,4bBse
majorization orderand the weakly dispersive ordén particular we will note that
this new concept does not have the disadvantages that the order in the L-T sense has
and we also show that the weakly dispersive order is equivalent to the majorization
order under the assumption of unimodaliigncethe weakly dispersive order seems
to be a bridge between the dispersion order in the L-T sense and the majorization
order In Section 3 we propose a hew concept of aging based on the concept of
randomnesdJsing results of equivalence in Sectiom& characterize the IFR aging
notion for unimodal distributions by means of the concept of randomness

2. THE WEAKLY DISPERSIVE ORDER: MOTIVATION AND PROPERTIES

From this point forwargdlet X andY be random variables which are defined on the
same probability spac@}, .4,P) and letu be the Lebesgue measure on Borel's
o-algebraWe will always consider continuous distribution functions
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DEeFINITION 1: Let X and Y be two random variables with distribution functions F
and G, respectively. Then X is said to be less weakly dispersive than Y, denoted
X < Y or, equivalently, I{V< G, if for all £ > 0, it holds that

SuUpF(Xo + €) — F(Xo)] = sup G(yo + &) — G(Yo)].
Xo Yo

We will saythabé andYaredequaIIy dispersed inthe weakly d|spers(|jve saiese
noted aX = Y, if X< YandY< Xholds Itis easily seenthatthe relatigais a par-
tial order in the set of distribution functions for real random variables

The expression syd F(xo + &) — F(Xo)] is well known in the literature and it
is called the Lévy concentration functioRor example Averous Fougéresand
Meste[1] proposed a tailweight ordering for unimodal distributions based on this
function The interpretation of Definition 1 is meaningful through the notion of the
concentration of probabilitfRoughly speakingwe can say that if we have an in-
terval of lengthe in the support of the variablé then we can always find another
interval with the same lengthin the support of the variabl€ which concentrates
more probability than the first on®f coursethe supremum is always well defined
but it is not always true that it is achieved at a point of the support of the variable
However this is true if the distribution function is continuous on its support and the
support is a closed interval

We have to emphasize that tg\eorder defines dlsperS|on as a concentration
of probability in intervals with the same lengtimtuitively, the X order is differ-
ent than the classic dispersion order in the L-T sef®e two distribution func-
tions F and G denote byF ! and G™1, respectively the corresponding left-
continuous quantile functiofi.e., F~*(u) = inf{x: F(x) = u} and the same for
G™1). Formally F <pisp G, 01, equivalently X <p;g, Y, if and only if

FY(B)—F a)=G*(B)— G *(a) wheneverO<a<pg<1

Hereg for the distributionF, we fix an interval of the forn{F ~*(a), F ~%(8)) which
accumulate a probabilitg — « and we compare its length with the analogous in-
terval for the variabley. This comparison is stronger than the weakly dispersive
order as we will see later

A dispersion order can be expected to satisfy properties of preservation under
location and some homogeneous scale transformafldresfollowing results show
that

First, we denote by<the classical stochastic order and we denotéth;qual-
ity in distribution We also say that a functiolmis an expansion or an expansive
function if it holds that

Ih(x) —h(y)| = [x—y| Ox,y€ER.

THEOREM 1: Let X and Y be two continuous random variables with distribution
functions F and G, respectivelyv,V such thats=\(h(X), where H-) is a real mono-
tone expansive function. Then,XY.
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Proor: Let Xy be a point inR and lete > 0 be arbitraryBy assumptionh is a
monotone functionFirst, suppose that is increasing

If we consider the intervdlxg, X + €), it is seen from the definition of expan-
sion thath(xy + &) — h(xp) = e. Denotey, = h(Xp); then it is clear thayy + & =
h(x, + ¢). In addition from the supposition thdtis increasing and by the assump-
tion thath is an expansiofit holds thath has to be strictly increasind@hen

F(xo+ &) — F(Xo) = Prob{h(X) = h(xq + &)} — Prob{h(X) = h(xp)},
and by the assumption thl{X) =Y, it holds that the last expression is equal to
G(h(Xo + &) = G(h(Xo)),
and using the definition of,, we have that
G(h(xo + &)) — G(h(xg)) = G(y, + &) — G(Yp).

Since Xy and € are arbitrarythen by the definition of supremum we have the
implication

Now suppose thdt is decreasinglt is only necessary to prove thats —
because if we have thatis a monotone decreasing exvpansrﬂrren his a mono-
tone mcreasmg expansmthus —h(X) =¢— YandX < -YZ V.

Note thatX & —X is easily obtained from

F_«(x+ &) — F_x(X) = Fx(—%x) — Fx(—=x — ¢). |

Theorem 1 provides many possible comparisdnsparticular if we take a
linear expanglon functiofi.e., of the formh(x) = ax + b where|a| = 1), then it
holds thatX < aX + b. For examplewe can say thaX is equal weakly dlsperswe
to —X and is less weakly dispersive tharBX. These last two examples are not
always possible in the L-T sensMoreover Xis equal weakly dispersive &6 + ¢
for all ¢ € R; thus the relations is location independent

Another interesting property is related to the suppdfta random variable is
ordered in dispersion with respect to other variajtlesn it can be expected that the
supports will be ordered too

THEOREM 2: Let X andY be random variables with supporgsSay, bx) and § =
(ay, by) being finite mtervals If )Vé Y, then the ranges of the supports are ordered;
thatis, bk —ayxy = by —

Proor: If we takeby — ay = ¢, the proof follows directly from Definition1 B

The weakly dispersive order satisfies another desirable closure prohettis
for two independent continuous random variables have thak is less weakly
dispersive thaiX + Y. The classical dispersive order in the L-T sense does not have
this property It has this property if and only iK has a logconcave densjtgee
Shaked and Shanthikumflrl].
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THEOREM 3: Let X and Y be two independent continuous random variables with
distribution functions k and K, respectively. Then, % X+Y.

Proor: From Gotze and Zaitsg\, p. 772], for example we know that

SUP Fx1v(Zo + &) — Fxiv(Zo)]

Zo

= min{sup[Fx<xo + &) — Fx(xo)], SUpFy(yo+ &) — Fy<yo>]};
Yo

Xo
therefore the stated result follows |

As we mentioned in Section dne of the main disadvantages of the dispersion
order in the L-T sense is that we cannot compare two distribution functions having
the same finite interval as their supports unless they are idenficel can be seen
by employing the argument used in HickEs]. Without loss of generalitylet the
common support be the unit intervéil F <p;s, G, it then follows that for allx in
(0,1), F(x) = G(x) and 1- F(x) =1 — G(x), and saF(x) = G(x). The next results
show that we can compare many distributions with the same finite interval as their
support in the weakly dispersive sentet F be a distribution functionwe will
denote the left and right end points of their supporkdgndrg, respectivelythat is

Il = inf{x:x € suppF)} and rg = sup{x:x & suppgF)}.
THEOREM 4: Let F and G be two continuous distribution functions such tvlvagai <
a=Ig =lgs. If G is a concave function on their support and<g; G, then F< G.
Proor: By assumptionG is a nondecreasing concave functitimerefore
G(x+A)—G(x)=G(y+A) —G(y)
whenevelx =y andA > 0. If we takey, in R ande > 0, it holds that
G(yot+e) —G(yy) =G(at+e) —G(a)=G(a+e).

In addition from F <4, G, we have thaF (x) = G(x) for all xin R. In particular it
holds that

G(a+e)=F(a+e).

Sincey, and ¢ are arbitrary then by the definition of supremupmwe have the
implication u

Similarly, we can prove the following theorem

THEOREM 5: Let F and G be two continuous distribution functions suchvtvlgat >
b =rg =rg. If Gis a convex function on their support and<G; F, then F< G.

Note that the supposition in Theorems 4 and 5 about the concavity and convex-
ity of the distributionG, respectivelymeans that the distributio® is unimodal



112 J. M. Fernandez-Ponce and A. Suarez-Llorens

I3
Fy

1

Ficure 1. Distribution having the same interval support

From Theorems 4 and %/e can compare a large number of distributions having
the same finite interval as their supporf®r exampleif we look at Figure 1the
functionsk;, fori =1, 2, and 3 correspond to three distribution functions in the same
finite interval (0,1), and it is easy to see from Theorem 5 tﬁg"[’% szé Fi.

3. THE RELATIONSHIP WITH OTHER ORDERS IN DISPERSION

As an obvious consequence of the previous restiliesdispersive order in the L-T
sense and the weakly dispersive order are not equivalaet<ps, order is strictly
stronger this follows from the next result

THEOREM 6: Let X and Y be two continuous ranvgdom variables with distribution
functions F and G, respectively. If Bpis, G, then F< G.

Proor: Note that for continuous distribution functiaris <5, G means that there
exists a functiorp such thaty =4 ¢(X) and¢ satisfies thath (x’) — p(x) = x’ — X
wheneverx = x’; see Shaked and Shanthikunjad]. Hence ¢ is an increasing
expansion functionThe stated result now follows from Theorem 1 u

We can say that this implication can be expected because the dispersion order is
in generala strong orderTo obtain new implications with other known ordgnge
first need some definitions

There are different ways to study the notion of unimodal densityRolVe
consider one of the most general ways based on the following defifsgeSudhakar
and Kumair12, p. 2]).

DEerFINITION 2: A real random variable X or its distribution function F is called
unimodal about a mode (or vertex)nf F is convex or{—oo, m:) and concave on
(mF’OO)'

A simple consequence of Definition 2 is thatHfis unimodal abouing, then
apart from a possible massrat, F is absolutely continuoyand if this is the casg
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then the unimodality of aboutmg is equivalent to the existence of a dendity
which is nondecreasing dr-co, mg) and nonincreasing ofmg,c0). Note that this
density functionf may be constant in a set of positive measure or may not be con-
tinuous in a countable number of points on its supplbis easily seen from Defi-
nition 2 that the sefx: f(x) = c} is always an interval for at > 0.

As a direct consequence of the concept of unimodal distribiifiare have that
F is a symmetric and unimodal distribution about the madethen it is well known
that sup, [Fx(Xo + €) — Fx(Xo)] is equal toFx(me + £/2) — Fx(mg — &/2) for alll
& > 0 (see Sudhakar and Kuml2, Corr. 1]). If we haveX andY as two random
variables withF andG as two symmtgtrlc and unimodal distribution functions about
me andmg, respectivelysuch thaF < G, then itis easily seen th&tis more peaked
about its mode tha@; that is it holds that X — mg| <4 |Y — mg|. Hence from the
classical characterization of the stochastic qridollows that

E(g(|X —me|)) = E(g(]Y — mg|))

for all increasing functiomg for which the expectation exists

We are now interested in studying the relationship between the weakly disper-
sive order and the notion of majorization for continuous distributidhss concept
was introduced by Hickef4] and it was used to compare continuous distribution
functions in terms of randomneddsing the notation in Hicke}s], we say thaG is
at least as dispersed Bsn the majorization sensdenoteds <y, F, if

[omay= [ roax o 1)
0 0

wheref * andg* are the decreasing rearrangementtarfdg, respectivelythat is
f*(x) = sup{c:m(c) > x}, x>0, (2)

with m(c) = p{x: f(x) > c}, pdenoting Lebesgue measuaadf the corresponding
density function of. Note that the wider side of the majorization symbol is placed
against the less dispersed distribution

Hickey[5] studied the relationship between the majorization order and the dis-
persive order in the L-T sensd F and G are two distribution functions witls
unimodal distributionthenF <pis, G = G < F. The following theorem shows the
relation between the weak dispersion order and the majorization ¥vdeshow that
they are equivalent under the assumption of unimodal distributions

THEOREM 7: Let F and G be continuous dlstrlbuuon functlons with fand g belng
their unimodal density functions, respectively. Therag B ifand only if G<y F

Proor: To prove the equivalencé is only necessary to show that

ftf*(s) ds= sug Fx(x + &) — Fx(X)] 3)

for all F unimodal distribution functions about the moiabg.
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By the unimodality assumption dh, we know that the supremum @k (x) =
F(x+t) — F(x)is achieved in a real valug € R such that the moden,, is in the
interval[ x;, X; + t] (see Sudhakar and Kumr2, Thm. 1.7]). From the definition
of unimodality it also holds that there exists a density functfamhich is nonde-
creasing or{—oo, mg) and nonincreasing ofmy, o). Without loss of generalitywe
can considef to be a left-continuous function

Therefore from (2), it is easily shown that

f(t) = min{ f(xy), f(x, + )}, 4)
wherex; is such that

F(x; +1) — F(xy) = sugF(x+1t) — F(x)].

Note that we use the minimum i) becaus€é may not be continuous ir; or
Xy + t. If fis continuousobviouslyf(x;) = f(x; + t).

First, let us assume thé&t-) does not possess flat zonésat is there is not a set
of positive measures whefé constantThen the supremum ap(x) holds in only
one real value for eache [0, t]. Consequentlyusing(3.2) in Hickey[4], it holds
that

t
f f*(s)ds=f f(x) dx,
0 f(x)=f *(t)

and by the assumption of unimodalithe set{x:f(x) = f*(t)} is an interval In
addition from (4), the set{x: f(x) = f *(t)} corresponds to the intervek,, x; + t);
hence (3) holds

Finally, assume thdtpossesses flat zondsmeans that the supremum §(x)
may not be uniquaNithout loss of generalitywve will only consider a flat zonghat
is, there exist intervall, = (X, X») andl, = (X3, X5 + t), wherex, < mpandxs > mg
andf (x) = cforall xin I, U I,.

Then the rearrangemeit (s) has flat zones ta@and it is easy to see thht is
decreasing ofD, X3 — X,) andf *(s) = cin (X3 — X,, t). Henceif we setxz — x, =y,
it holds that

f f*(s)ds:flf*(s)ds+ cu((t, 1))
0 0

= Jxaf(x)du+ cu(ly U ly)

2

Xq+t
= f f(x) du

1

and hence (3) holds u
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In general if we do not assume unimodaljtthe majorization and the weak
dispersion order are not equivaleas we can see in the following example
Example 1:Let X andY be random variables with density functidremndg given by
x+1 if-1=x<0
f(x) = .
1-x if0=x=1
and
-x if =1=x<0
X =
9(x) X ifo=x=1,
respectivelylt is easy to compute that
m; () = my(c) = P{Xx: g(x) > ¢} = (2 = 2¢) I g 1y(C).

Thenf*(x)= lgx)—(l x/2)I[0 2(X). Thdereforewe have thaF =y, G. However
it holds thatF < G, but G $ F; thus F # G. It is easy to prove thaf < ‘G by
just looking at the graphs of the densitibat note that if we take = 1, we have that

1
sup{G(yo +1) — G(Yo)} = >
Oyo

and the supremum is achievedygt= 0. However the supremum

sup{F(xo +1) — F(x)} = 4§1

Oxo

d
and it is achieved at, = — 3, soGW% F.

4. APPLICATION TO THE CONCEPT OF AGING

Let X be a lifetime random variahJ&vith distribution functionF such that (0) =
Given a unit which has survived up to tinygts residual life is given by

X = {X—t|X>1t},
and letX .., be the truncated random variable
Xiooy = IX| X >t}

In the context of lifetime distributionghe variableX, .., represents the life for a
unit which has survived up to tinteand it is related to the residual life by

Xi = Xighor) — L. (5)

The stochastic proce$X;,t = 0} has been studied in the literature to characterize
different aging conceptdn particulay Pellerey and Shakel@] characterized the
notion of increasing failure rate by means of the dispersion otHat is the distri-
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butionXis IFR if and only ifX; <pisp Xsfor all 0 = s < t. For distribution functions
which admit a density functigrsayf, the concept of increasing failure rate means
that the failure rate functigrienoted by (t) and defined as

f®
F(t)’

whereF (t) = 1 — F(t), is increasingIn other wordsthe intensity of failure of a
device in an infinitesimal amount of time is increasing when the time is increasing
For more details about the IFR notion of agisge Barlow and Prosch§#].

For our purposesve define a new concept of aginghich we will call decreas-
ing in randomness

1
r(t) = I|m i Prob{X <t+ h|y-} =

DerFINITION 3: The stochastic proceds(;,t = 0}, defined earlier, is said to be
decreasing in randomness if

X, <mX, 00=t, <t,. (6)

Hickey[6] noted thakX; <\ X, means thaX;, has at least as much randomness
asX.,. Thus we can say that the stochastic proc@ést = 0} has the property of
decreasing in randomness when the randomness of the residual lifetime is decreas-
ing when the time is increasing

As an application of the characterization of the majorization order in Theo-
rem 7, we characterize the IFR unimodal distributions in term of randomness

THEOREM 8: Let X be a unimodal random variable and{&, t = 0} be the residual
lifetime stochastic process as described earlier. Then, X is an IFR distribution if
and only if{X;, t = 0} is decreasing in randomness.

Proor: First, note that the assumption théats unimodal implies the unimodality of
the residual life distributiorX; for all t.

dIf Xis IFR, thenX; <pjsp Xs for 0 = s < t, and from Theorem Gt follows that
X¢ < Xsfor 0= s<t. From the unimodality of the residual life distributions and from
Theorem 7it follows that Xs <y, X;.

To prove the sufficient conditigmote that under the assumption of unimodal-
ity, the density function is nondecreasing iR < mp; thus it is easy to check that
the failure rate function is always increasing for alkOs < t = my, wherem
represents the mode ®f Now, let sandt be such thamy, < s <'t. By assumption
it holds thatXs <y X;; thus from Theorem 7it follows that X; < Xs. Using the
definition of weakly dispersivgt follows that

sup Fx (X + &) — Fx (X)] = supg Fx (y + &) — Fx (Y]]
X y

for all ¢ > 0. The fact that both residual lifetime distributioXgsand X, for mg <
s < t, are unimodal and the mode is their left end point of the support implies that
the supremum is achieved at the motlkerefore

Fx (0 + &) — Fx (0) = Fx (0 + &) — Fx (0)
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for all ¢ > 0. Dividing by & and taking the limit to zerat holds that

_fO ¢ =19,
fXI(O) - If(t) = fXS(O) - IE(S),
hencer(s) =r(t). [ ]

Note that there are many distribution functions that are decreasing in random-
ness In particular if we takeF to be a distribution function with log-concave den-
sity, then it is well known thafF is IFR (see Sudhakar and Kumi2, Thm. 9.6]).

The condition of log-concave density means tRdielongs to the class of strong
unimodal densities which is strictly included in the set of unimodal dengisies
Sudhakar and Kumdd2, Thm 110]).
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