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In this article, we introduce a new dispersion order weaker than the classic disper-
sion order discussed by Lewis and Thompson~1981!+We study the equivalence of
this order with the majorization order under the assumption of unimodality+ Finally,
we use this equivalence to characterize the IFR aging notion for unimodal distri-
butions by means of the notion of decreasing in randomness+

1. INTRODUCTION

The notion of stochastic variability orders have been extensively studied in the lit-
erature+ Lewis and Thompson@6# introduced a concept of variability through the def-
inition of the dispersion order~L-T sense!+ LetF andGbe two distribution functions;
we say thatF is less dispersive thanG, denotedF aDisp G, if any pair of quantiles of
Gare at least more widely separated as the corresponding quantiles ofF+Many useful
characterizations of the dispersion order can be found in the literature+ For example,
Shaked@10# provided a characterization of the dispersion ordering through the ex-
istence of an expansion function and he also gave a new interpretation by the number
of crossings of the distribution functions+Muñoz-Pérez@7# characterized the disper-
sion order by the concept of Q-addition of random variables and by the spread func-
tion under restriction on the respective quantile function+ Rojo and Guo@9# showed
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thatF andG are ordered in the L-T sense if and only if the sample spacings are also
ordered in the L-T sense+They also showed the preservation of the ordering by mono-
tone convex~concave! transformations and by truncation at the same quantile+ Fi-
nally, Shaked and Shanthikumar@11# and, later, Pellerey and Shaked@8# showed the
relationship between the variability orders and reliability theory; in particular, they
provided a characterization of the increasing failure rate~IFR! aging notion by means
of the dispersion order+

Although the ordering in the L-T sense is intuitively reasonable, sometimes it
involves two main disadvantages when we want to compare some specific distribu-
tions+ First, suppose that two distribution functions have the same finite interval as
their supports; then Shaked@10# and Hickey@5# showed that, in this case, they are
not related in terms of the L-T sense unless they are identical+ Second, we have that
the variablesX and2X are, in general, not equally dispersed or even ordered in the
L-T sense+ However, in the literature, there are other variability orders which do not
have these disadvantages; for instance, the convex, peakedness, and dilation orders;
see Shaked and Shanthikumar@11# +

Parallel to this, there exists the notion of majorization for two probability vec-
tors withn components+ Let p 5 ~ p1, + + + , pn! andq 5 ~q1, + + + ,qn! be two probability
vectors+We say thatp is smaller in the majorization sense thanq, denotedp aM q if
(k5i

n p~i ! # (k5i
n q~i ! for i 51, + + + , n,wherep~i ! denotes the increasing rearrangement

of p and the same forq~i !+ Hickey @4# generalized the notion of the majorization
order for the continuous distribution function; this we will see later+Roughly speak-
ing, the concept of majorization is not properly a concept of dispersion; however,
this order measures another interesting statistical property known as randomness+
Nevertheless, Hickey @5# related the order in the L-T sense with the concept of
majorization and he showed thataDisp impliesaM under unimodal distributions, but
they are not equivalent+

The purpose of this article is to introduce a new concept of variability order weaker
than the dispersion order in the L-T sense which we will call weakly dispersive, de-
notedd

wd
+ In Section 2, we study thed

wd
order and we obtain some characterizations+

We also study the relationship among the dispersion ordering in the L-T sense, the
majorization order, and the weakly dispersive order+ In particular, we will note that
this new concept does not have the disadvantages that the order in the L-T sense has
and we also show that the weakly dispersive order is equivalent to the majorization
order under the assumption of unimodality+Hence, the weakly dispersive order seems
to be a bridge between the dispersion order in the L-T sense and the majorization
order+ In Section 3, we propose a new concept of aging based on the concept of
randomness+Using results of equivalence in Section 2,we characterize the IFR aging
notion for unimodal distributions by means of the concept of randomness+

2. THE WEAKLY DISPERSIVE ORDER: MOTIVATION AND PROPERTIES

From this point forward, let X andY be random variables which are defined on the
same probability space~V,A,P! and letm be the Lebesgue measure on Borel’s
s-algebra+We will always consider continuous distribution functions+
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Definition 1: Let X and Y be two random variables with distribution functions F
and G, respectively. Then, X is said to be less weakly dispersive than Y, denoted
X d

wd
Y or, equivalently, Fd

wd
G, if for all « . 0, it holds that

sup
x0

@F~x0 1 «! 2 F~x0!# $ sup
y0

@G~ y0 1 «! 2 G~ y0!# +

We will say thatXandYare equally dispersed in the weakly dispersive sense, de-
noted asX 5

wd
Y, if X d

wd
YandYd

wd
X holds+ It is easily seen that the relationd

wd
is a par-

tial order in the set of distribution functions for real random variables+
The expression supx0

@F~x0 1 «! 2 F~x0!# is well known in the literature and it
is called the Lévy concentration function+ For example, Averous, Fougéres, and
Meste@1# proposed a tailweight ordering for unimodal distributions based on this
function+ The interpretation of Definition 1 is meaningful through the notion of the
concentration of probability+ Roughly speaking, we can say that if we have an in-
terval of length« in the support of the variableY, then we can always find another
interval, with the same length, in the support of the variableX which concentrates
more probability than the first one+Of course, the supremum is always well defined,
but it is not always true that it is achieved at a point of the support of the variable+
However, this is true if the distribution function is continuous on its support and the
support is a closed interval+

We have to emphasize that thed
wd

order defines dispersion as a concentration
of probability in intervals with the same length+ Intuitively, the d

wd
order is differ-

ent than the classic dispersion order in the L-T sense+ For two distribution func-
tions F and G denote byF21 and G21, respectively, the corresponding left-
continuous quantile function~i+e+, F21~u! 5 inf $x : F~x! $ u% and the same for
G21!+ Formally, F aDisp G, or, equivalently, X aDisp Y, if and only if

F21~b! 2 F21~a! # G21~b! 2 G21~a! whenever 0, a , b , 1+

Here, for the distributionF, we fix an interval of the form~F21~a!,F21~b!! which
accumulate a probabilityb 2 a and we compare its length with the analogous in-
terval for the variableY+ This comparison is stronger than the weakly dispersive
order, as we will see later+

A dispersion order can be expected to satisfy properties of preservation under
location and some homogeneous scale transformations+ The following results show
that+

First,we denote byast the classical stochastic order and we denote by5
st

equal-
ity in distribution+ We also say that a functionh is an expansion or an expansive
function if it holds that

6h~x! 2 h~ y!6 $ 6x 2 y6 ∀x, y [ R+

Theorem 1: Let X and Y be two continuous random variables with distribution
functions F and G, respectively, such that Y5

st
h~X !, where h~{! is a real mono-

tone expansive function. Then, Xd
wd

Y+
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Proof: Let x0 be a point inR and let« . 0 be arbitrary+ By assumption, h is a
monotone function+ First, suppose thath is increasing+

If we consider the interval~x0, x0 1 «!, it is seen from the definition of expan-
sion thath~x0 1 «! 2 h~x0! $ «+ Denotey0 5 h~x0!; then it is clear thaty0 1 « #
h~x0 1 «!+ In addition, from the supposition thath is increasing and by the assump-
tion thath is an expansion, it holds thath has to be strictly increasing+ Then,

F~x0 1 «! 2 F~x0! 5 Prob$h~X ! # h~x0 1 «!% 2 Prob$h~X ! # h~x0!%,

and by the assumption thath~X ! 5st Y, it holds that the last expression is equal to

G~h~x0 1 «!! 2 G~h~x0!!,

and using the definition ofy0, we have that

G~h~x0 1 «!! 2 G~h~x0!! $ G~ y0 1 «! 2 G~ y0!+

Sincex0 and « are arbitrary, then by the definition of supremum we have the
implication+

Now suppose thath is decreasing+ It is only necessary to prove thatX 5
wd

2X,
because if we have thath is a monotone decreasing expansion, then2h is a mono-
tone increasing expansion; thus, 2h~X ! 5st 2 Y andX d

wd
2Y 5

wd
Y+

Note thatX 5
wd

2X is easily obtained from

F2X~x 1 «! 2 F2X~x! 5 FX~2x! 2 FX~2x 2 «!+ n

Theorem 1 provides many possible comparisons+ In particular if we take a
linear expansion function~i+e+, of the formh~x! 5 ax1 b where6a6 $ 1! , then it
holds thatX d

wd
aX1 b+ For example, we can say thatX is equal weakly dispersive

to 2X and is less weakly dispersive than23X+ These last two examples are not
always possible in the L-T sense+ Moreover, X is equal weakly dispersive toX 1 c
for all c [ R; thus the relationd

wd
is location independent+

Another interesting property is related to the supports+ If a random variable is
ordered in dispersion with respect to other variables, then it can be expected that the
supports will be ordered too+

Theorem 2: Let X and Y be random variables with supports SX 5 ~aX,bX! and SY5
~aY,bY! being finite intervals. If Xd

wd
Y, then the ranges of the supports are ordered;

that is, bX 2 aX # bY 2 aY.

Proof: If we takebY 2 aY 5 «, the proof follows directly from Definition 1+ n

The weakly dispersive order satisfies another desirable closure property; that is,
for two independent continuous random variables, we have thatX is less weakly
dispersive thanX1 Y+ The classical dispersive order in the L-T sense does not have
this property+ It has this property if and only ifX has a logconcave density; see
Shaked and Shanthikumar@11# +
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Theorem 3: Let X and Y be two independent continuous random variables with
distribution functions FX and FY, respectively. Then, Xd

wd
X 1 Y.

Proof: From Götze and Zaitsev@3, p+ 772#, for example, we know that

sup
z0

@FX1Y~z0 1 «! 2 FX1Y~z0!#

# minHsup
x0

@FX~x0 1 «! 2 FX~x0!# , sup
y0

@FY~ y0 1 «! 2 FY~ y0!#J;
therefore the stated result follows+ n

As we mentioned in Section 1, one of the main disadvantages of the dispersion
order in the L-T sense is that we cannot compare two distribution functions having
the same finite interval as their supports unless they are identical+ This can be seen
by employing the argument used in Hickey@5# +Without loss of generality, let the
common support be the unit interval+ If F aDisp G, it then follows that for allx in
~0,1!, F~x! $ G~x! and 12 F~x! $ 12 G~x!, and soF~x! 5 G~x!+ The next results
show that we can compare many distributions with the same finite interval as their
support in the weakly dispersive sense+ Let F be a distribution function; we will
denote the left and right end points of their support bylF andrF , respectively; that is,

lF 5 inf $x : x [ supp~F!% and rF 5 sup$x : x [ supp~F!%+

Theorem 4: Let F and G be two continuous distribution functions such that2`,
a 5 l F 5 lG. If G is a concave function on their support and Fast G, then Fd

wd
G.

Proof: By assumption, G is a nondecreasing concave function; therefore,

G~x 1 D! 2 G~x! $ G~ y 1 D! 2 G~ y!

wheneverx # y andD . 0+ If we takey0 in R and« . 0, it holds that

G~ y0 1 «! 2 G~ y0! # G~a 1 «! 2 G~a! 5 G~a 1 «!+

In addition, from F ast G, we have thatF~x! $ G~x! for all x in R+ In particular, it
holds that

G~a 1 «! # F~a 1 «!+

Sincey0 and « are arbitrary, then, by the definition of supremum, we have the
implication+ n

Similarly, we can prove the following theorem+

Theorem 5: Let F and G be two continuous distribution functions such that1`.
b 5 rF 5 rG. If G is a convex function on their support and Gast F, then Fd

wd
G.

Note that the supposition in Theorems 4 and 5 about the concavity and convex-
ity of the distributionG, respectively, means that the distributionG is unimodal+
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From Theorems 4 and 5,we can compare a large number of distributions having
the same finite interval as their supports+ For example, if we look at Figure 1, the
functionsFi , for i 51, 2, and 3, correspond to three distribution functions in the same
finite interval~0,1!, and it is easy to see from Theorem 5 thatF3 d

wd
F2 d

wd
F1+

3. THE RELATIONSHIP WITH OTHER ORDERS IN DISPERSION

As an obvious consequence of the previous results, the dispersive order in the L-T
sense and the weakly dispersive order are not equivalent+ TheaDisp order is strictly
stronger; this follows from the next result+

Theorem 6: Let X and Y be two continuous random variables with distribution
functions F and G, respectively. If FaDisp G, then Fd

wd
G.

Proof: Note that for continuous distribution functions, F aDisp G means that there
exists a functionf such thatY5st f~X ! andf satisfies thatf~x '! 2 f~x! $ x '2 x
wheneverx # x ' ; see Shaked and Shanthikumar@11# + Hence, f is an increasing
expansion function+ The stated result now follows from Theorem 1+ n

We can say that this implication can be expected because the dispersion order is,
in general, a strong order+ To obtain new implications with other known orders, we
first need some definitions+

There are different ways to study the notion of unimodal density onR+ We
consider one of the most general ways based on the following definition~see Sudhakar
and Kumar@12, p+ 2# !+

Definition 2: A real random variable X or its distribution function F is called
unimodal about a mode (or vertex) mF if F is convex on~2`,mF ! and concave on
~mF ,`!.

A simple consequence of Definition 2 is that ifF is unimodal aboutmF , then
apart from a possible mass atmF , F is absolutely continuous, and, if this is the case,

Figure 1. Distribution having the same interval support+
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then the unimodality ofF aboutmF is equivalent to the existence of a densityf,
which is nondecreasing on~2`,mF ! and nonincreasing on~mF ,`!+ Note that this
density functionf may be constant in a set of positive measure or may not be con-
tinuous in a countable number of points on its support+ It is easily seen from Defi-
nition 2 that the set$x : f ~x! $ c% is always an interval for allc . 0+

As a direct consequence of the concept of unimodal distribution, if we have that
F is a symmetric and unimodal distribution about the modemF , then it is well known
that supx0

@FX~x0 1 «! 2 FX~x0!# is equal toFX~mF 1 «02! 2 FX~mF 2 «02! for all
« . 0 ~see Sudhakar and Kumar@12, Corr+ 1# !+ If we haveX andY as two random
variables withF andG as two symmetric and unimodal distribution functions about
mF andmG, respectively, such thatF d

wd
G, then it is easily seen thatF is more peaked

about its mode thanG; that is, it holds that6X2 mF 6ast 6Y2 mG6+ Hence, from the
classical characterization of the stochastic order, it follows that

E~g~6X 2 mF 6!! # E~g~6Y2 mG 6!!

for all increasing functiong for which the expectation exists+
We are now interested in studying the relationship between the weakly disper-

sive order and the notion of majorization for continuous distributions+ This concept
was introduced by Hickey@4# and it was used to compare continuous distribution
functions in terms of randomness+Using the notation in Hickey@5# ,we say thatG is
at least as dispersed asF in the majorization sense, denotedG aM F, if

E
0

t

g*~ y! dy # E
0

t

f *~x! dx ∀t, (1)

wheref * andg* are the decreasing rearrangements off andg, respectively; that is,

f *~x! 5 sup$c :m~c! . x%, x . 0, (2)

with m~c! 5 µ$x : f ~x! . c%, µ denoting Lebesgue measure, andf the corresponding
density function ofF+ Note that the wider side of the majorization symbol is placed
against the less dispersed distribution+

Hickey @5# studied the relationship between the majorization order and the dis-
persive order in the L-T sense+ If F andG are two distribution functions withG
unimodal distribution, thenF aDisp Gn G aM F+ The following theorem shows the
relation between the weak dispersion order and the majorization order+We show that
they are equivalent under the assumption of unimodal distributions+

Theorem 7: Let F and G be continuous distribution functions, with f and g being
their unimodal density functions, respectively. Then, Fd

wd
G if and only if GaM F.

Proof: To prove the equivalence, it is only necessary to show that

E
0

t

f *~s! ds5 sup
x

@FX~x 1 «! 2 FX~x!# (3)

for all F unimodal distribution functions about the modem0+
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By the unimodality assumption onF, we know that the supremum offt~x! 5
F~x1 t ! 2 F~x! is achieved in a real valuex1 [ R such that the mode,m0, is in the
interval@x1, x1 1 t # ~see Sudhakar and Kumar@12, Thm+ 1+7# !+ From the definition
of unimodality, it also holds that there exists a density functionf which is nonde-
creasing on~2`,m0! and nonincreasing on~m0,`!+Without loss of generality, we
can considerf to be a left-continuous function+

Therefore, from ~2!, it is easily shown that

f *~t ! 5 min$ f ~x1!, f ~x1 1 t !%, (4)

wherex1 is such that

F~x1 1 t ! 2 F~x1! 5 sup
x

@F~x 1 t ! 2 F~x!# +

Note that we use the minimum in~4! becausef may not be continuous inx1 or
x1 1 t+ If f is continuous, obviouslyf ~x1! 5 f ~x1 1 t !+

First, let us assume thatf ~{! does not possess flat zones; that is, there is not a set
of positive measures wheref is constant+ Then, the supremum offs~x! holds in only
one real value for eachs [ @0, t # + Consequently, using~3+2! in Hickey @4# , it holds
that

E
0

t

f *~s! ds5E
f ~x!$f *~t !

f ~x! dx,

and by the assumption of unimodality, the set$x : f ~x! $ f *~t !% is an interval+ In
addition, from ~4!, the set$x : f ~x! $ f *~t !% corresponds to the interval~x1, x1 1 t !;
hence, ~3! holds+

Finally, assume thatf possesses flat zones+ It means that the supremum offs~x!
may not be unique+Without loss of generality,we will only consider a flat zone; that
is, there exist intervalsI15 ~x1, x2! andI25 ~x3, x11 t !,wherex2 , m0 andx3 . m0

andf ~x! 5 c for all x in I1 ø I2+
Then, the rearrangementf *~s! has flat zones too, and it is easy to see thatf * is

decreasing on~0, x32 x2! andf *~s! 5 c in ~x32 x2, t !+Hence, if we setx32 x25 t1,
it holds that

E
0

t

f *~s! ds5E
0

t1

f *~s! ds1 cµ~~t1, t !!

5E
x2

x3

f ~x! dµ1 cµ~I1 ø I2!

5E
x1

x11t

f ~x! dµ

and, hence, ~3! holds+ n
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In general, if we do not assume unimodality, the majorization and the weak
dispersion order are not equivalent, as we can see in the following example+

Example 1:Let X andYbe random variables with density functionsf andg given by

f ~x! 5 Hx 1 1 if 21 # x , 0

12 x if 0 # x # 1

and

g~x! 5 H2x if 21 # x , 0

x if 0 # x # 1,

respectively+ It is easy to compute that

mf ~c! 5 mg~c! 5 µ$x : g~x! . c% 5 ~2 2 2c! I@0,1#~c!+

Then, f *~x!5g*~x!5 ~12x02! I@0,2!~x!+Therefore,we have thatF 5M G+However,
it holds thatF d

wd
G, but G 0d

wd
F; thus, F Þ

wd
G+ It is easy to prove thatF d

wd
G by

just looking at the graphs of the densities, but note that if we take« 51,we have that

sup
∀y0

$G~ y0 1 1! 2 G~ y0!% 5
1

2

and the supremum is achieved aty0 5 0+ However, the supremum

sup
∀x0

$F~x0 1 1! 2 F~x0!% 5
3

4

and it is achieved atx0 5 2 1
2
_ , soG 0d

wd
F+

4. APPLICATION TO THE CONCEPT OF AGING

Let X be a lifetime random variable,with distribution functionF such thatF~0! 5 0+
Given a unit which has survived up to timet, its residual life is given by

Xt 5 $X 2 t 6X . t %,

and letX~t,`! be the truncated random variable

X~t,`! 5 $X6X . t %+

In the context of lifetime distributions, the variableX~t,`! represents the life for a
unit which has survived up to timet, and it is related to the residual life by

Xt 5 X~t,1`! 2 t+ (5)

The stochastic process$Xt , t $ 0% has been studied in the literature to characterize
different aging concepts+ In particular, Pellerey and Shaked@8# characterized the
notion of increasing failure rate by means of the dispersion order; that is, the distri-
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butionX is IFR if and only ifXt aDisp Xs for all 0 # s, t+ For distribution functions
which admit a density function, sayf, the concept of increasing failure rate means
that the failure rate function, denoted byr ~t ! and defined as

r ~t ! 5 lim
hr0

1

h
Prob$X , t 1 h6X.t % 5

f ~t !

OF~t !
,

where OF~t ! 5 1 2 F~t !, is increasing+ In other words, the intensity of failure of a
device in an infinitesimal amount of time is increasing when the time is increasing+
For more details about the IFR notion of aging, see Barlow and Proschan@2# +

For our purposes,we define a new concept of aging,which we will call decreas-
ing in randomness+

Definition 3: The stochastic process$Xt , t $ 0% , defined earlier, is said to be
decreasing in randomness if

Xt1 aM Xt2 ∀0 # t1 , t2+ (6)

Hickey@6# noted thatXt1 aM Xt2 means thatXt1 has at least as much randomness
asXt2+ Thus, we can say that the stochastic process$Xt , t $ 0% has the property of
decreasing in randomness when the randomness of the residual lifetime is decreas-
ing when the time is increasing+

As an application of the characterization of the majorization order in Theo-
rem 7, we characterize the IFR unimodal distributions in term of randomness+

Theorem 8: Let X be a unimodal random variable and let$Xt , t $ 0% be the residual
lifetime stochastic process as described earlier. Then, X is an IFR distribution if
and only if$Xt , t $ 0% is decreasing in randomness.

Proof: First, note that the assumption thatX is unimodal implies the unimodality of
the residual life distributionXt for all t+

If X is IFR, thenXt aDisp Xs for 0 # s , t, and from Theorem 6, it follows that
Xt d

wd
Xs for 0# s, t+From the unimodality of the residual life distributions and from

Theorem 7, it follows thatXs aM Xt +
To prove the sufficient condition, note that under the assumption of unimodal-

ity, the density function is nondecreasing in 0, t , m0; thus, it is easy to check that
the failure rate function is always increasing for all 0, s , t # m0, wherem0

represents the mode ofX+ Now, let s andt be such thatm0 , s , t+ By assumption,
it holds thatXs aM Xt ; thus, from Theorem 7, it follows that Xt d

wd
Xs+ Using the

definition of weakly dispersive, it follows that

sup
x

@FXt
~x 1 «! 2 FXt

~x!# $ sup
y

@FXs
~ y 1 «! 2 FXs

~ y!#

for all « . 0+ The fact that both residual lifetime distributionsXt andXs, for m0 ,
s , t, are unimodal and the mode is their left end point of the support implies that
the supremum is achieved at the mode+ Therefore,

FXt
~0 1 «! 2 FXt

~0! $ FXs
~0 1 «! 2 FXs

~0!
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for all « . 0+ Dividing by « and taking the limit to zero, it holds that

fXt
~0! 5

f ~t !

OF~t !
$ fXs

~0! 5
f ~s!

OF~s!
;

hence, r ~s! # r ~t !+ n

Note that there are many distribution functions that are decreasing in random-
ness+ In particular, if we takeF to be a distribution function with log-concave den-
sity, then it is well known thatF is IFR ~see Sudhakar and Kumar@12, Thm+ 9+6# !+
The condition of log-concave density means thatF belongs to the class of strong
unimodal densities which is strictly included in the set of unimodal densities~see
Sudhakar and Kumar@12, Thm 1+10# !+
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