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CLASSICAL SYMMETRY REDUCTIONS OF THE

SCHWARZ–KORTEWEG–DE VRIES EQUATION

IN 2+1 DIMENSIONS

M. L. Gandarias,∗ M. S. Bruzón,∗ and J. Ramirez∗

Classical reductions of a (2+1)-dimensional integrable Schwarz–Korteweg–de Vries equation are classified.

These reductions to systems of partial differential equations in 1+1 dimensions admit symmetries that

lead to further reductions, i.e., to systems of ordinary differential equations. All these systems have been

reduced to second-order ordinary differential equations. We present some particular solutions involving

two arbitrary functions.
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1. Introduction

There is much current interest in integrable (2+1)-dimensional equations, i.e., equations with two
spatial variables and one temporal variable. In this paper, we consider the (2+1)-dimensional integrable
generalization of the Schwarz–Korteweg–de Vries (SKdV) equation
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where ∂−1f =
∫
f dx. This equation was recently derived by Toda and Yu [1] using the Calogero manner [2].

Although this equation arises in a nonlocal form, it can be written using the transformations

W = φx, φ = eψ, ψx = u, ψt = v (2)

as

4u2vx − 4uuxv + u2uxxz − uuxxuz − 3uuxuxz + 3u2
xuz − u4uz = 0,

ut − vx = 0.
(3)

The machinery of the Lie group theory provides a systematic method for searching for group-invariant
solutions. For systems of partial differential equations (PDEs) with 2+1 independent variables, such as
system (3), a single group reduction transforms the original system into another system in 1+1 dimensions.
But if the system in 1+1 dimensions admits further symmetries, it can be fully reduced to a system of
ordinary differential equations (ODEs) by the classical Lie symmetry reductions. All these systems of ODEs
can be reduced to second-order ordinary differential equations. In addition, a certain class of solutions can
be derived from these ODEs. Most of the required theory and a description of the method can be found
in [3], [4].
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2. Lie symmetries

The classical method for finding symmetry reductions of systems of PDEs is the Lie group method of
infinitesimal transformations. Although this method is entirely algorithmic, it often involves a large amount
of tedious algebra. In this paper, we use the MACSYMA program symmgrp.max [5] to generate associated
determining equations. To apply the classical method to (3), we seek fields of the form

v = X
∂

∂x
+ Z

∂

∂z
+ T

∂

∂t
+ U

∂

∂u
+ V

∂

∂v
(4)

that leave the set of solutions of (3) invariant. The machinery of Lie group theory provides a systematic
method for seeking these special invariant solutions. Having determined the infinitesimals, the symmetry
variables are found by solving the invariant surface conditions

Φ1 ≡ X
∂u

∂x
+ Z

∂u

∂z
+ T

∂u

∂t
− U = 0, Φ2 ≡ X

∂v

∂x
+ Z

∂u

∂z
+ T

∂v

∂t
− V = 0. (5)

Applying the classical method to system (3) yields a system of equations that leads to a four-parameter
Lie group. Associated with this Lie group, we have a Lie algebra that can be represented by the generators

v1 =
∂

∂t
, v2 =

∂

∂z
,

v3 = x
∂

∂x
− 2z

∂

∂z
− u

∂

∂u
, v4 = t

∂

∂t
+ z

∂

∂z
− v

∂

∂v

and the infinite-dimensional generator

vα = α(t)
∂

∂x
− α′(t)u

∂

∂v
.

To find all invariant solutions with respect to s-dimensional subalgebras, it suffices to construct invariant
solutions for the optimal system of order s. The set of invariant solutions thus obtained is called an optimal

system of invariant solutions. We only consider one-parameter subgroups. The problem of finding an
optimal system of subgroups is equivalent to that of finding an optimal system of subalgebras. Although
this latter problem can still be quite complicated in general, this classification problem for one-dimensional
subalgebras is essentially the same as the problem of classifying the adjoint representation orbits. The
construction of the one-dimensional optimal system appears in [4] using a global matrix for the adjoint
transformation. Olver [3] uses a slightly different technique, which we follow. To construct the one-
dimensional optimal system, we construct the commutator table (Table 1) and the adjoint table (Table 2),
which shows the separate adjoint actions of each element in vi, i = 1, . . . , 4, as it acts on all other elements.
It is easily constructed by summing the Lie series.

Table 1

v1 v2 v3 v4

v1 0 0 0 v2

v2 0 0 −2v2 v2

v3 0 2v2 0 0

v4 −v1 −v2 0 0
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Table 2

v1 v2 v3 v4

v1 v2 v2 v3 v4 − εv1

v2 v1 v2 v3 + 2εv2 v4 − εv2

v3 v1 e−2εv2 v3 v4

v4 eεv1 eεv2 v3 v4

We then consider a general element in a basis of Lr and ask whether it can be transformed into a new
element of a simpler form by iteratively subjecting it to various adjoint transformations. The corresponding
generators of the optimal system of subalgebras are

〈v1〉, 〈µv3 + v4 + vα〉,
〈
µv2 +

1
2
v3 + v4

〉
,

〈µv1 + v3〉, 〈µv1 + v2〉, 〈µv3〉, 〈v4〉,

where µ ∈ R
∗ is arbitrary. In what follows, we list the corresponding similarity variables and similarity

solutions and the systems of PDEs obtained when system (3) is reduced using {ui}, i = 1, . . . , 6. These
generators are obtained by adding the infinite-dimensional generator vα to the generators of the optimal
system.

In Table 3, we list the nontrivial optimal system {ui} with i = 1, . . . , 6, where µ ∈ R
∗ is arbitrary. We

also list the corresponding similarity variables and similarity solutions.

Table 3

ui z1 z2 u v

1 µv3 + v4 + vα xt−µ − β zt2µ−1 t−µf t−1(g − γf)

2 µv2 +
1
2
v3 + v4 + vα xt−1/2 − δ t1/2e−z t1/2f t−1(g − ζf)

3 µv1 + v3 + vα xe−t/µ − η

µ
ze2t/µ e−t/µf g − βf

µ

4 µv1 + v2 + vα x− κ

µ
µz − t f g − αf

µ

5 v3 + vα t (x+ α)2z z1/2f z1/2α′f + g

6 v4 + vα x− ρ
z

t
f

g − fα

t

In Table 3,

β =
∫

t−(µ+1)α(t) dt, γ(t) =
∫

t−µα′(t) dt, δ(t) =
∫

t−3/2α(t) dt,

ζ(t) =
∫

t−1/2α′(t) dt, η(t) =
∫

e−t/µα(t) dt, κ(t) =
∫

α(t) dt,

ρ(t) =
∫

t−1α(t) dt, f = f(z1, z2), g = g(z1, z2).
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Table 4

E1
i (f, g, f

′, g′, f ′′) = 0 E2
i (f, g, f

′, g′, g′′) = 0

S1

4f2gz1 − 4ffz1g − ffz1z1fz2 + 3f2
z1fz2−

− f4fz2 + f2fz1z1z2 − 3ffz1fz1z2 = 0

(2µ− 1)z2fz2 − gz1−

− µz1fz1 − µf = 0

S2

z2

(
ffz1z1fz2 − 3(fz1)2fz2 + f4fz2 − f2fz1z1z2+

+ 3ffz1fz1z2
)
+ 4f2gz1 − 4ffz1g = 0

z2fz2 − z1fz1−

− 2gz1 − f = 0

S3

4f2gz1 − 4ffz1g − ffz1z1fz2 + 3(fz1)2fz2−

− f4fz2 + f2fz1z1z2 − 3ffz1fz1z2 = 0

2z2fz2 − z1fz1−

−µgz1 − f = 0

S4

µ(−ffz1z1fz2 + 3f2
z1fz2 − f4fz2 + f2fz1z1z2−

− 3ffz1fz1z2) + 4f2gz1 − 4ffz1g = 0
gz1 + fz2 = 0

S5

z3
2(8f

2fz2z2z2 − 32ffz2fz2z2 + 24f3
z2)+

+z2(f2fz2 − f5)g+

+ z2
2(20f

2fz2z2 − 28ff2
z2 − 2f4fz2)+

+ 16z3/2
2 (f2gz2 − ffz2g) = 0

fz1 − 2z1/2
2 gz2 = 0

S6

4f2gz1 − 4ffz1g+

+(−ffz1z1 + 3f2
z1 − ffz1 − f4)fz2+

+ f2fz1z1z2 + (f2 − 3ffz1)fz1z2 = 0

z2fz2 + gz1 = 0

In Table 4, we list the systems of PDEs obtained when system (3) is reduced using {ui}, i = 1, . . . , 6. In
what follows, the prime denotes the derivative, ′ ≡ d/dz.

3. Invariance analysis of (1+1)-dimensional systems

In several cases, the reduced systems of 1+1 PDEs admit symmetries that lead to further reductions
to systems of ODEs. We again use the Lie group theory techniques. The system Si, i = 1, . . . , 6, admits
the symmetries

S1 : v11 =
∂

∂z1
− µf

∂

∂g
, v12 = −z1

∂

∂z1
+ 2z2

∂

∂z2
+ f

∂

∂f
,

S2 : v21 = z2
∂

∂z2
, v22 = 2

∂

∂z1
− f

∂

∂g

∂

∂f
,

S3 : v31 = a
∂

∂z1
− f

∂

∂g
, v32 = z1

∂

∂z1
− 2z2

∂

∂z2
− f

∂

∂f
,

S4 : v41 =
∂

∂z1
, vβ = β(z2)

∂

∂z2
− β′(z2)g

∂

∂g
,

S5 : v51 =
∂

∂z1
, v52 = 2z1

∂

∂z1
+ 2z2

∂

∂z2
− f

∂

∂f
− 2g

∂

∂g
.
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1. For system S1, using cv11 + v12, we obtain the similarity variable and similarity solutions

w = −√
z2 (z1 − c), f =

√
z2 h(w), g = −cµ

√
z2 h(w) + k(w)

and the system of ODEs

2kw − whw − h = 0,

w(h2hwww − 4hhwhww + 3h3
w − h4hw)− 8h2kw + 8hhwk + 2h2hww − 3hh2

w − h5 = 0.

This system can be reduced to the second-order ODE

w2
(
4h2 + h4 + 3(h′)2 − 2hh′′) − 2k1h

2 = 0.

Setting k1 = 0, we obtain

h =
2

c2 ±
√
c22 + 1 sin 2(w + c1)

. (6)

2. For system S2, using cv21 + v22, we obtain the similarity variable and similarity solutions

w =
ecz1

z2
2

, f = h(w), g = k(w) − z1f

2

and the system of ODEs

ckw + hw = 0,

c2w3(h2hwww − 4hhwhww + 3h3
w) + c2w2(3h2hww − 4hh2

w) +

+ cw(2h2kw − 2hhwk)− wh4hw + c2wh2hw − h3 = 0.

This system can be reduced to the second-order ODE

h4 + 2h2 log(w) + 3c2w2(h′)2 − 2ch
(
2c1 + cw(h′ + wh′′)

)
− 2k1h

2 = 0.

Setting h = 1/Y and w = ez, we obtain

Y ′′ − (Y ′)2

2Y
− 2c1Y 2

c
+

zY

c2
− k2Y

c2
+

1
2c2Y

= 0.

Following the analysis in [6], we can write the solutions for c = 1, k2 = 0, and k1 �= 0 as

k1Y = V ′ + V 2 +
1
2
z

in terms of the second Painlevé equation (PII)

V ′′ = 2V 3 + zV − k1 −
1
2
.

3. For system S3, using cv31 + v32, we obtain the similarity variable and similarity solutions

w = z
1/2
2 (z1 + cµ), f = hz

1/2
2 , g = ch(w)z1/2

2 + k(w)
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and the system of ODEs

kw = 0,

w(h2hwww − 4hhwhww + 3h3
w − h4hw) + 8h2kw − 8hhwk + 2h2hww − 3hh2

w − h5 = 0.
(7)

This system can be reduced to the second-order ODE

wh4 + w(h′)2 − h(4c+ h′ + wh′′)− k1h
3 = 0.

Integrating once with respect to w for c = 0 and c3 = 0 leads to the Painlevé III equations

h′′ − h′2

h
+

h′

w
− h3 = 0,

and a solution is

h = ± 1
w(c1 − logw)

. (8)

4. For system S4, using cv41 + vβ , we obtain the similarity variable and similarity solutions

w = z1 − c

∫
dz2

β(z2)
, f = h, g =

1
β(z2)

k(w)

and the system of ODEs

kw − chw = 0,

µc(4hhwhww − h2hwww − 3h3
w + h4hw) + 4h2kw − 4hhwk = 0.

(9)

This system can be reduced to the second-order ODE

2dh+ cµ
(
h4 + (h′)2 − hh′′) − k1h

3 = 0.

For d = 0, a solution is

h = ± d2

1 + ed2(w−d1)
, (10)

where k1 − cµd2 = 0.
5. For system S5, using cv51 + v52, we obtain the similarity variable and similarity solutions

w =
z1 + c

z2
, f = z

−1/2
2 h(w), g = z−1

2 k(w)

and the system of ODEs

2wkw + 2k + hw = 0,

w3(4h2hwww − 16hhwhww + 12h3
w) + w2(12h2hww − 16hh2

w) +

+ w(8h2kw − 8hhwk − h4hw + 4h2hw) + 4h2k = 0.

This system can be reduced to the second-order ODE

2
w

+
h2

2
+

6w2(h′)2

h2
− 4w(h′ + wh′′)

h
+ k1 = 0.
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Fig. 1. Graphs of curves for which the solution is singular.

4. About particular solutions

We give a family of solutions of Eq. (1) in this section. To construct these solutions, we use the above so-
lutions for the ODEs together with the corresponding symmetry reductions. From (8), transformations (2),
and the corresponding symmetry reductions

w = z
1/2
2 (z1 + cµ), f = hz

1/2
2 , g = ch(w)z1/2

2 + k(w),

z1 = xe−t/µ − Ω(t), z2 = ze2t/µ,

u = e−t/µf(z1, z2), v = g(z1, z2)−
1
µ

∫
t−(µ+1)α(t) dtf(z1, z2),

where

Ω(t) =
1
µ

∫
e−t/µα(t) dt,

we obtain the corresponding family of solutions for the SKdV equation in 2+1 dimensions

W =
Φ(z)(

x− et/µΩ(t)
)(
log

(
zµ

(
x− et/µΩ(t)

)2µ) + c1
)2 . (11)

These solutions can be written as

W =
−2µ2Φ(z)(

x− Λ(t)
)(
log

(
zµ

(
x− Λ(t)

)2µ) − c1µ
)2 . (12)

In Fig. 1, with Λ(t) = t, Φ(z) = −1/2, c1 = 0, and µ = 1, we plot the curves for which solution (12)
becomes singular for t = 0, 1, 2, 3, 4. In Fig. 2, for the same choice of the arbitrary functions and constants,
we can see a plot of solution (12). We can clearly appreciate two of the curves in which the solution is
singular. The third one can be seen better in Fig. 3.

From (10), considering transformations (2) and the corresponding symmetry reductions

w = z1 −Ψ(z2), f = h, g =
1

β(z2)
k(w),

z1 = x−Υ(t), z2 = µz − t,

u = f(z1, z2), v = g(z1, z2)−
1
µ
αf(z1, z2),
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Fig. 2. A solution of SKdV Eq. (1).
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Fig. 3. A solution of SKdV equation (1).

we obtain the corresponding solution for the (SKdV) equation in 2+1 dimensions

W =
d2Φ(z)

2 cosh2
(
d2

(
d1 − x+Υ(t) + Ψ(−t+ µz)

)) , (13)
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Fig. 4. A solution of SKdV equation (1).

where

Ψ(z2) = c

∫
dz2

β(z2)
, Υ(t) =

1
µ

∫
α(t) dt

and Φ(z) is an arbitrary function. It is interesting that this family of solitonic solutions has a rich structure
due to the arbitrary functions Υ(t), Ψ(z2), and Φ(z) with z2 = µz− t. Solution (13) for d2 = −1/2, d1 = 0,
Φ(z) = −2, Υ(t) = t2, and Ψ(−t+ µz) = (t+ z)2 is plotted in Fig. 4. In this figure, we also plot a family
of parabolic curves due to the choice of Ψ. These curves represent the time evolution of the maxima of the
solitonic solutions.

In Fig. 5, solution (13) for d2 = 2, d1 = 1, Φ(z) = sin2(z), Υ(t) = 0, and Ψ(−t + µz) = (t − z)2 is
plotted. In this figure, we also plot another family of parabolic curves showing the maxima of the solitonic
solutions. We can observe different behaviors of the solution due to the choice of Φ(z).

5. Conclusions

In this paper, we have discussed the (2+1)-dimensional integrable generalization of the SKdV equation.
Through this invariance analysis, we obtain a set of six (1+1)-dimensional systems of PDEs. The invariance
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Fig. 5. A solution of SKdV equation (1).

study of these systems leads to a set of systems of ODEs. All these systems have been reduced to second-
order ordinary differential equations. We have obtained different families of particular solutions that have a
very rich qualitative behavior. We have found that Eq. (1) has unbounded solutions and solitonic solutions.
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