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REDUCTIONS OF THE DISPERSIONLESS KP HIERARCHY

M. Mañas,∗ L. Mart́ınez Alonso,∗ and E. Medina†

We present a method for constructing the S-function based on a system of first-order differential equations

and use it to analyze reductions of dispersionless integrable hierarchies.
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1. Introduction

Dispersionless integrable systems have awakened more and more interest during the last decade. Some
reasons for this increasing interest are their applications to the classification problem in topological field
theory [1], the study of systems of hydrodynamic type [2], and the theory of conformal maps [3]. Reductions
of these systems were considered in [2], [4].

In this paper, we provide a general scheme for studying the reductions of the dispersionless integrable
systems. Our scheme is based on the S-function determination method introduced in [5]. We can thus char-
acterize both the reductions and the hodograph solutions. This scheme is used to study the dispersionless
KP (dKP) hierarchy. We also analyze various illustrative examples and obtain large families of solutions of
some reductions of the dKP hierarchy.

2. Reductions of the dispersionless KP hierarchy

2.1. Characterization of the reductions. To introduce the dKP hierarchy, we consider a function
z = z(p, t) depending on a complex variable p and an infinite set of complex time parameters t := (x :=
t1, t2, . . . ) that admits an expansion of the form

z = p+
∞∑

n=1

an(t)
pn

, p → ∞. (1)

Then the dKP hierarchy [4]–[6] is given by the set of equations

∂z

∂tn
= {Ωn, z}, Ωn := (zn)+, n ≥ 1, (2)

where { · , · } is the usual Poisson bracket defined with respect to the variables p and x and Ωn = (zn)+
denotes the polynomial part of zn as a function of p. For example,

(z)+ = p, (z2)+ = p2 + 2a1, (z3)+ = p3 + 3pa1 + 3a2.
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The compatibility conditions for (2),

∂Ωm

∂tn
− ∂Ωn

∂tm
+ {Ωm,Ωn} = 0, m �= n,

constitute a hierarchy of nonlinear partial differential equations. For instance, for m = 3 and n = 2, we
obtain the dKP equation

(ut3 + 3uux)x =
3
4
ut2t2 , u := −a1, y := t2, t := t3. (3)

It follows [5] that there exists the S-function S = S(z, t) such that

∂S(z)
∂tn

= Ωn(p, t), n ≥ 1, (4)

S(z, t) =
∑
n≥1

zntn +
∑
n≥1

Sn(t)
zn

, z → ∞. (5)

Setting n = 1 in (4) yields

p = z +
∑
n≥1

bn(t)
zn

, bn :=
∂Sn

∂x
, (6)

and it can be proved [5] that the inverted series determines a solution z = z(p, t) of the dKP hierarchy.
Conditions (4), which characterize the S-function, constitute a system of compatible Hamilton–Jacobi-type
equations, which represents the semiclassical limit of the linear system for the wave function of the standard
KP hierarchy.

From (5) and (6), it is clear that a function S admitting an expansion of form (5) satisfies (4) iff

(
∂S(z)
∂tn

)
−
= 0, n ≥ 1. (7)

Hereafter, we assume that S is a function of either z or p and let S(z) and S(p) denote the corresponding
functions (S(z, t) = S(p(z, t), t)). Furthermore, we let S(p) = S+(p) + S−(p) denote the decomposition of
S(p) in terms of positive and negative powers of p. From (5) and (6), we have

S+(p) =
∑
n≥1

Ωn(p, t)tn. (8)

Hence, Eq. (7) gives (
∂S(p)
∂p

∂p

∂tn
+
∂S−(p)
∂tn

)
−
= 0, n ≥ 1. (9)

We now consider N -reductions of the dKP hierarchy for which z = z(p, t) depends on t only through
N functions u = (u1(t), . . . , uN(t)). We characterize these reductions in terms of systems of equations for
p = p(z,u) of the form

∂p

∂ui
= Ri(p,u), i = 1, . . . , N, (10)

or, equivalently, in terms of z = z(p,u),

∂z

∂ui
+Ri(p,u)

∂z

∂p
= 0, i = 1, . . . , N. (11)
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We assume the following conditions for the functions Ri.

1. The functions Ri are rational functions of p, which have singularities only at N simple poles
pi = pi(u), i = 1, . . . , N , and vanish at p =∞. Therefore, they admit the expansions

Ri(p,u) =
N∑

j=1

rij(u)
p− pj(u)

. (12)

2. The functions Ri satisfy the compatibility conditions for (11),

∂Ri

∂uj
− ∂Rj

∂ui
+Rj

∂Ri

∂p
−Ri

∂Rj

∂p
= 0, i �= j. (13)

We also assume that S−(p) depends on t only through the functions u = u(t). Therefore, condition (9)
can be written as (

∂S(p)
∂p

Ri +
∂S−(p)
∂ui

)
−
= 0. (14)

To construct solutions of the reductions, we assume that S satisfies the conditions

∂S

∂p
(pi) = 0, i = 1, . . . , N. (15)

We now let E = E(p,u) denote any entire function in p satisfying

E(pi,u) = Fi(u), i = 1, . . . , N, (16)

where
Fi(u) :=

∂S−
∂p

(pi).

In terms of this function, we find that (14) is equivalent to

∂S−(p)
∂ui

+Ri
∂S−(p)
∂p

= (ERi)−. (17)

Moreover, using (13) we find that the compatibility conditions for (17) are

∂(ERi)−
∂uj

− ∂(ERj)−
∂ui

+Rj
∂(ERi)−

∂p
−Ri

∂(ERj)−
∂p

= 0, i �= j. (18)

Taking into account that

(ERj)− =
N∑

k=1

rjkFk

p− pk
, (19)

we find that Eqs. (18) constitute a set of consistency conditions for the functions Fj .
Summarizing, if we start with a set of functions Ri(p,u) and Fi(u) (i = 1, . . . , N) satisfying (13)

and (18), we can obtain a solution of the N -reduction of the dKP hierarchy from (11). Moreover, from (15)
and (16), we have

∂S+

∂p
(pi) + Fi(u) = 0

or, equivalently,
∞∑

n=1

vin(u)tn + Fi(u) = 0, vin :=
∂Ωn

∂p
(pi), i = 1, . . . , N. (20)

This system provides implicit relations for the functions u = u(t) characterizing the N -reductions. Finally,
from (5) and (17), we see that S− can be obtained recursively. Because of the form of implicit relations (20),
we call these solutions the hodograph solutions.
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2.2. Bourlet integrability. In [7], the inverse problem technique was used to construct S-functions in
order to solve the initial value problem for several dispersionless models. Our analysis provides an alternative
standpoint for determining S, which is based on systems of differential equations (10) and (17). The S-
function is then characterized by a set of spectral data {pi(u), rij(u), Fi(u) : 1 ≤ i, j ≤ N}. Moreover,
from (12) and (19), we find that compatibility conditions (13) and (18) are equivalent to the following
consistency conditions for the spectral data:

rik
∂pk

∂uj
− rjk

∂pk

∂ui
=

∑
l �=k

rjlrik − rilrjk

pk − pl
,

∂rik

∂uj
− ∂rjk

∂ui
= 2

∑
l �=k

rjkril − rikrjl

(pk − pl)2
,

rik
∂Fk

∂uj
− rjk

∂Fk

∂ui
=

∑
l �=k

rjlrik − rilrjk

(pk − pl)2
(Fk − Fl),

(21)

where i �= j. The first two groups of equations in system (21) characterize the reductions of the dKP
hierarchy, while the whole system determines the set of hodograph solutions.

It can be shown that system (21) is consistent in the sense that the relations

∂

∂um

∂pk

∂ul
=

∂

∂ul

∂pk

∂um
,

∂

∂um

∂rik

∂ul
=

∂

∂ul

∂rik

∂um
,

∂

∂um

∂Fk

∂ul
=

∂

∂ul

∂Fk

∂um

hold by virtue of Eqs. (21). We can also see that system (21) is equivalent to the system

∂pk

∂ui
=

1
rskk

(
rik

∂pk

∂usk

−
∑
l �=k

rsklrik − rilrskk

pk − pl

)
, i < sk,

∂pk

∂ui
= − 1

rskk

∑
l �=k

rsklrik − rilrskk

pk − pl
, i > sk,

∂Fk

∂ui
=

1
rskk

(
rik

∂Fk

∂usk

−
∑
l �=k

rsklrik − rilrskk

(pk − pl)2
(Fk − Fl)

)
, i < sk,

∂Fk

∂ui
= − 1

rskk

∑
l �=k

rsklrik − rilrskk

(pk − pl)2
(Fk − Fl), i > sk,

∂rik

∂uj
=

∂rjk

∂ui
+ 2

∑
l �=k

rjkril − rikrjl

(pk − pl)2
, i > j,

(22)

for k = 1, . . . , N , where for each k, sk ∈ {1, . . . , N} is such that rskk �= 0 and rik = 0 for i > sk. System (22)
is of the Bourlet type [8]. To see this, we note that (u1, . . . , usk−1, usk+1, uN−1) are principal variables for pk

and Fk, while usk
are parametric variables. Analogously, (u1, . . . , ui−1) are principal variables for rik, while

(ui, . . . , uN) are parametric variables. The compatibility condition with respect to the principal variables
can be verified straightforwardly. On the other hand, because rksk

�= 0 and pk �= pl, k, l = 1, . . . , N ,
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k �= l, it follows that the functions defining the system are analytic. Therefore, applying the Bourlet
theorem, we conclude that in a neighborhood of an initial point u0 = (u(0)

1 , . . . , u
(0)
N ), there is a unique

solution {pk, Fk, rik} such that for the principal variables taking the initial values, the solution becomes a
set of arbitrary analytic functions of the corresponding parametric variables. The general solution therefore
depends on N(N+1) arbitrary analytic functions of the parametric variables: 3N functions of one variable
and N analytic functions of l variables for each l = 2, . . . , N − 1.

2.3. Systems of hydrodynamic type. Implicit equations (20) are transformations of the hodograph
type. This suggests the presence of hydrodynamic-type equations. Indeed, assuming that z = z(p,u) is a
regular function near the points pi, we find from (11) that

∂z

∂p
(pi) = 0, i = 1, . . . , N.

Consequently, Eqs. (2) imply

N∑
j=1

∂zi

∂uj

∂uj

∂tn
= vin

N∑
j=1

∂zi

∂uj

∂uj

∂x
, n ≥ 1,

where zi := z(pi,u(t)). Thus, expressing u(t) in terms of the functions zi, we find that u(t) satisfies the
system of hydrodynamic-type equations

∂u
∂tn

= An(u)
∂u
∂x

, n = 1, . . . , N,

u =




u1
...
uN


 , An := K−1DnK,

Dn := diag(v1n, . . . , vNn), Kij :=
∂zi

∂uj
.

(23)

We note that taking v2i = 2pi into account, we obtain the Gibbons–Kodama formula [2]

An = vn(A), A :=
A2

2
(24)

from (23), where vn(p) := ∂Ωn/∂p. Finally, if we assume that the functions ∂xuj, j = 1, . . . , N , are
independent, we can also express our rational functions Ri in terms of the Gibbons–Kodama matrix A as

Ri(p,u) =
N∑

j=1

(A(u)− p)−1
ji

∂a1

∂uj
. (25)

From (25), we find that

rik = −∂zk

∂ui
rk, rk :=

∂a1

∂zk
.

In terms of the new coordinates {zi}N
i=1, system (21) becomes

∂ri

∂zj
= 2

rirj

(pj − pi)2
,

∂pi

∂zj
=

rj

pj − pi
,

∂Fi

∂zj
= rj

Fj − Fi

(pj − pi)2
.
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We note that according to the previous system,

∂Fi

∂zj

1
Fj − Fi

=
∂pi

∂zj

1
pj − pi

=
1
2
∂ log ri

∂zj
, i �= j. (26)

These relations provide a geometric interpretation of (21). Defining

βij :=
1√
ri

∂
√
rj

∂zi
=

√
rirj

(pi − pj)2
= βji, i �= j, (27)

we obtain a family of parallel conjugate nets x = x(u) given by the solutions of

∂x
∂zi

= HiXi, (28)

where Hi and Xi (the respective Lamé coefficients and renormalized tangent vectors) are characterized by
the equations

∂Hi

∂zi
= βjiHj (29)

and
∂Xi

∂zi
= βijXj . (30)

Obviously, Hi :=
√
ri solves (29), and system (26) then implies that FiHi and piHi are also solutions

of (29).

3. Examples

3.1. N=1 reductions. If only one function u = u(t) participates in the reduction and we set
u = −a1, then Eq. (10) becomes the Abel equation

∂p

∂u
=

1
p− p1(u)

, (31)

where p1 is an arbitrary function (obviously, the set of compatibility conditions is empty in this case).
From (11), we obtain the following recursion relation for the coefficients of the expansion of z = z(p, u):

a1 = −u, a2 = −
∫

p1(u) du,

a′m+2 = p1(u)a′m+1 +mam, m ≥ 1,

where a′m := ∂am/∂u. We can now use this expansion and (20) to generate solutions of the equations of
the dKP hierarchy. For instance, setting tn = 0 for n ≥ 4, we reduce (20) to the Kodama equation [4] for
N=1 reductions of the dispersionless KP equation.

An explicit expression for the solution z = z(p, u) of (11) is available only in a few cases. For instance,
the simplest case corresponds to p1(u) ≡ 0 (the dispersionless KdV reduction). We then obtain

z = (p2 − 2u)1/2.

On the other hand, in the case p1 ≡ 0, we can solve (17) for determining S− and obtain

S−(p, u) = −
(∫ z(p,u)

0

F

(
1
2
(q2 − z(p, u)2)

)
dq

)
−
.
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3.2. N=2 reductions. We now consider the case u = (u, v) with u = −a1. From (25), we obtain

∂p

∂u
=

p−A22

(p−A11)(p−A22)−A12A21
,

∂p

∂v
=

A12

(p−A11)(p−A22)−A12A21
,

(32)

where A := (Aij(u)) is the 2×2 matrix function of Gibbons and Kodama [2]. The right-hand sides of (32)
have simple poles at

A± :=
1
2
(trA±

√
(trA)2 − 4 detA ).

In this case, Eq. (13) leads to the conditions

∂vA11 = ∂uA12,

(
∂v detA

−∂u(u+ detA)

)
= A

(
∂v trA

−∂u trA

)
. (33)

The coefficients in the expansion of z(p,u) are determined by the recursion relations

a1 = −u, a2 = −
∫

A11 du +A12 dv,

a3 =
∫
(detA− u−A11 trA) du −A12 trAdv,

∂uam+2 = trA∂uam+1 − detA∂uam +mam − (m− 1)A22am−1,

∂vam+2 = trA∂vam+1 − detA∂vam + (m− 1)A12am−1.

Choosing E to be

E := p
F+ − F−
A+ −A−

+
A+F− −A−F+

A+ −A−
,

where

F±(u) :=
∂S−(p)
∂p

∣∣∣∣
A±

, F :=
A−F+ −A+F−

A+ −A−
, G :=

F− − F+

A+ −A−
,

we reduce (18) to the form (−∂vF

∂uF

)
= A

(
∂vG

−∂uG

)
. (34)

Hence, if A and F± satisfy the corresponding consistency conditions and we set tn = 0 for n > 4, then the
first flows of the dKP hierarchy can be found by solving the system of equations

4
(
A3

± − 2uA± −
∫

A11 du+A12 dv

)
t4 + 3(A2

± − u)t3 + 2A±t2 + x = −F± (35)

for u. If t4 = 0, these equations are equivalent to the Kodama system for N=2 reductions [4],

− 3(u+ detA)t3 + x = F,

3 trAt3 + 2t2 = G.
(36)
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A particularly interesting case arises if we impose the conditions u = −a1 and v = −a2, which
corresponds to the choice

A =
(

0 1
−V W

)
, V := A+A−, W := A+ + A−.

We then find that (33) becomes

∂vV + ∂uW = 0,

∂uV − V ∂vW +W∂vV + 1 = 0.
(37)

Hence, setting

V = ∂uZ, W = −∂vZ,

we can formulate (37) as the Monge–Ampere equation

∂uuZ + ∂uZ ∂vvZ − ∂vZ ∂uvZ + 1 = 0. (38)

Analogously, (34) can be written as

F = ∂uT, G = ∂vT,

∂uuT + V ∂vvT +W∂uvT = 0.
(39)

We next construct some solutions of the dKP equation. A solution of (37) and (39) is

W =
2v
u
, V =

v2

u2
+ cu2 + u, T = k1u+ k2v.

The corresponding hodograph solutions for (3) are

u(x, y, t) =
1
6ct

(
−6t+

√
36t2 + c[12t(x− k1)− (2y − k2)2]

)
and

u(x, y, t) =
12t(x− k1)− (2y − k2)2

72t2
,

which correspond to the respective cases c �= 0 and c = 0.
Another solution of (37) and (39) is

W =
2v
u
, V =

v2

u2
+ u, T = k

v

u
.

It leads to a hodograph solution of (3) implicitly defined by the algebraic equation

72t2u3 + 4(y2 − 3tx)u2 = k2.

We obtain a solution of (3), implicitly defined by a transcendental equation, by choosing

W = cv + d, V = aecu +
1
c
, T = k1u+ k2v, a, c �= 0.

In this case, u is determined from the equation

−3
(
u+ aecu +

1
c

)
t+ (x− k1) = 0.
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3.3. N=3 reductions. In this case, we assume that u = (u, v, w) are given by the first coefficients
of the expansion of p = p(z,u)

p = z +
u

z
+

v

z2
+

w

z3
+O

(
1
z4

)
.

The reduction is then defined by the system

∂p

∂u
=

p2 − V p+R+ u

p3 − V p2 +Rp+H
,

∂p

∂v
=

p− V

p3 − V p2 +Rp+H
,

∂p

∂w
=

1
p3 − V p2 +Rp+H

,

(40)

where p3 − V p2 +Rp+H have three simple roots. Compatibility conditions (13) can be formulated as

Vv = −Rw, Vu = Hw + uVw,

Rv = −Hw +RVw − V Rw, Ru = V Hw −HVw + uRw − 2, (41)

Hv = 1− V Hw +HVw, Hu = −V +RHw −HRw + uHw.

If we now choose S = S+(p) and tn = 0 for n > 4 and take Eqs. (15) and a1 = −b1 = −u and a2 = −b2 = −v
into account, we obtain

∂S+(p)
∂p

= 4t4(p3 − V p2 +Rp−H) = x+ 2py + 3(p2 − u)t+ 4(p3 − 2up− v)t4. (42)

From this equation, it is clear that we can obtain solutions of the first two members of the dKP hierarchy
by solving the system

V = − 3t
4t4

, R =
y

2t4
− 2u, H = v − x− 3tu

4t4
. (43)

For instance, trying a function V of the form V = V (u, v) in (41), we find the solution of the first two
members of the dKP hierarchy implicitly determined by the transcendental equation

k3
1x− 2k2

1k2y + 3k1k
2
2t+ 4(k

2
1k3 + 3k1k2 − k3

2)t4 + (12k
2
1k2t4 − 3k3

1t)u + 4k
3
1k5t4e

k1u = 0

and

v = −k3

k1
− 3t
4k1t4

− k2

k1
u.

In the particular case k5 = 0, we find

u(x, y, t, t4) =
k3
1x− 2k2

1k2y + 3k1k
2
2t+ 4(k

2
1k3 + 3k1k2 − k3

2)t4
3k2

1(k1t− 4k2t4)
.
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