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QUASICONFORMAL MAPPINGS AND SOLUTIONS OF THE

DISPERSIONLESS KP HIERARCHY

B. Konopelchenko,∗ L. Mart́ınez Alonso,† and E. Medina‡

A ∂̄ formalism for studying dispersionless integrable hierarchies is applied to the dispersionless KP (dKP)

hierarchy. We relate this formalism to the theory of quasiconformal mappings on the plane and present

some classes of explicit solutions of the dKP hierarchy.
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1. Introduction

Dispersionless, or semiclassical, integrable hierarchies constitute an important part of integrable system
theory. They are basic in various approaches to solving problems arising in physics and applied mathematics
(see, e.g., [1]–[8]). These hierarchies are related to some classical problems in conformal map theory [9].
We recently proposed a ∂̄ method for studying dispersionless integrable hierarchies [10], [11]. This method
reveals an intimate connection between these hierarchies and the theory of quasiconformal mappings [12]–
[15].

Our analysis is based on the nonlinear ∂̄ equation

Sz̄ =W (z, z̄, Sz), (1)

where z ∈ C, S(z, z̄, t) is a complex-valued function depending on an infinite set t of parameters (times),
Sz̄ := ∂S/∂z̄, Sz := ∂S/∂z, and W is an appropriate function of z, z̄, and Sz.

Equation (1) implies that the first-order derivatives of S with respect to the parameters t satisfy the
family of Beltrami equations

fz̄ = µ(z, t)fz, (2)

where

µ :=W ′(z, z̄, Sz), W ′ =Wξ(z, z̄, ξ). (3)

This provides a link between the ∂̄ method and the theory of quasiconformal mappings, which relies on the
Beltrami equation. We note that Eq. (1), in turn, is also well known from the theory of quasiconformal
mappings (see, e.g., [16]).

Our method for finding solutions of (1) follows the classic schemes for solving first-order PDEs of
the Hamilton–Jacobi type. Our objective in this paper is to illustrate our approach by presenting some
explicit exact solutions of the dispersionless KP (dKP) hierarchy. We also prove that the simplest among
these solutions (Example 1 in Sec. 4) cannot be obtained by standard methods based on the hodograph
transformation technique [2].
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2. The dKP hierarchy

The dKP hierarchy is the classical version of the Lax-pair equations of the standard KP theory [1]–[7],

∂z

∂tn
= {Ωn, z}, Ωn(p, t) := (zn)+, n ≥ 1. (4)

Here, z = z(p, t) is a complex function depending on a complex variable p and an infinite set t := (t1, t2, . . . )
of complex parameters, which is assumed to admit a Laurent expansion of the form

z = p+
∑
n≥1

an(t)
pn

, p→ ∞. (5)

We let (zn)+ denote the polynomial part of the expansion of zn in powers of p,

(z)+ = p, (z2)+ = p2 + 2a1, (z3)+ = p3 + 3pa1 + 3a2, etc.,

and the Poisson bracket is

{F,G} := ∂F

∂p

∂G

∂x
− ∂F

∂x

∂G

∂p
, x := t1.

The compatibility conditions for (4) have the form

∂Ωm

∂tn
− ∂Ωn

∂tm
+ {Ωm,Ωn} = 0, m �= n. (6)

Two interesting examples of nonlinear equations of the dKP hierarchy are the following:

1. For n = 2, Eq. (4) leads to the Benney moment equations

∂an+1

∂t
+
∂an+2

∂x
+ nan

∂a1

∂x
= 0, t := −2t2. (7)

2. Compatibility equations (6) for n = 2 and m = 3 imply the dKP equation (the Zabolotskaya–
Khokhlov equation)

(
ut −

3
2
uux

)
x

=
3
4
uyy, u := 2a1, t := t3, y := t2. (8)

It follows from (6) (see [6]) that for any solution z = z(p, t) of the dKP hierarchy, there exists an
associated function S = S(z, t) such that

∂S(z, t)
∂tn

= Ωn

(
p(z, t), t

)
, n ≥ 1, (9)

where p = p(z, t) is obtained by inverting the solution z = z(p, t). Without loss of generality, we assume
that S admits a Laurent expansion

S(z, t) =
∑
n≥1

zntn +
∑
n≥1

Sn(t)
zn

, z ∈ Γ, (10)
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in a circle Γ =
{
z : |z| = r

}
. We note that if we set n = 1 in (9) and use (10), then p = p(z, t) becomes

p =
∂S(z, t)
∂x

= z +
∑
n≥1

bn(t)
zn

, bn :=
∂Sn

∂x
. (11)

Conversely, given a function S = S(z, t) that satisfies (9) and (10), it can be proved that the function
z = z(p, t) inverse to the function p = p(z, t) in (11) determines a solution of the dKP hierarchy [4].

Hereafter, we call functions satisfying conditions (9) and (10) the S-functions of the dKP hierarchy.
They are related to the τ -functions [4] because

S(z, t) =
∑
n≥1

zntn +
∑
n≥1

1
nzn

∂ log τ(t)
∂tn

, z ∈ Γ.

We note that system (9) for a dKP S-function is a set of compatible Hamilton–Jacobi-type equations

∂S

∂tn
= Ωn

(
∂S

∂x
, t
)
, n ≥ 2, (12)

which represents the semiclassical limit of the linear system for the wave function of the standard KP
hierarchy.

Several methods for constructing solutions of the dKP hierarchy through S-functions have been de-
vised [2], [4], [6]. Here, we use the ∂̄ method proposed in [10], [11], in which S-functions are described via
solutions of ∂̄ equations (1). We recall that the symmetries of (1) in this approach (first-order variations
f := δS) are described by the family of Beltrami equations (2), (3). In particular, this property implies
that all the first-order derivatives ∂S/∂tn of a solution of (1) satisfy (2).

We consider a local solution f of a Beltrami equation. For f having a nonzero Jacobian at a certain
point z0, all smooth local solutions F in the vicinity of z0 are analytic functions of f : F = F (f). This
property suggests that under appropriate conditions, solutions S of ∂̄ equation (1) that admit expansions
of form (10) satisfy conditions (12) as well. Therefore, they provide S-functions for the dKP hierarchy. In
what follows, we propose a rigorous basis for this scheme.

3. Quasiconformal mappings

Quasiconformal mappings are a natural and very rich extension of the concept of conformal mappings;
it is convenient to recall some of their basic properties here (see, e.g., [10]–[15]).

Let µ = µ(z) be a measurable function on a domain G of the complex plane such that |µ(z)| < k

almost everywhere in G for some 0 < k < 1. We call a function f = f(z) a quasiconformal mapping with
complex dilatation µ in G if

1. f is a homeomorphism f : G→ G′ and
2. f is a generalized solution of linear Beltrami equation (2) on G with locally square-integrable
partial derivatives fz̄ and fz.

The properties of solutions of Beltrami equation (2) are well known (see, e.g., [13]). Some of them
are of principal importance for us. Before presenting these results, we introduce the Calderón–Zygmund
operator [13]

(Th)(z) :=
1
2πi

∫∫
C

h(z′)
(z′ − z)2

dz′ ∧ dz̄ ′, (13)

where the integral is taken in the sense of the Cauchy principal value. We then have the fundamental
result [13].
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Theorem 1. For any p ≥ 2, the operator T defines a bounded operator in Lp(C). Moreover, ‖T ‖p is

continuous with respect to p and satisfies

lim
p→2

‖T ‖p = 1. (14)

This theorem implies that for any 0 ≤ k < 1, there exists δ(k) > 0 such that k‖T ‖p < 1 for all
2 < p < 2 + δ(k).

The next theorem describes the quasiconformal mapping property, which is important for the ∂̄ method.

Theorem 2. Let µ be a measurable function with compact support inside the circle |z| < R and such

that ‖µ‖∞ < k < 1. Then for any p > 2 such that k‖T ‖p < 1, the only generalized solution of Beltrami
equation (2) such that

f(z) = O

(
1
z

)
, z → ∞, (15)

and fz̄, fz ∈ Lp(C) is f ≡ 0.

This result is the uniqueness part of the existence theorem for the so-called normal solutions of Beltrami
equations [12]–[14]. Its proof relies on the operator T representing the action of ∂z∂

−1
z̄ on Lp(C), and under

the conditions of the theorem, the Beltrami equation for f becomes the integral equation

φ− µTφ = 0, φ := fz̄,

on Lp(C). Because ‖µT ‖p ≤ k‖T ‖p < 1, we then have φ ≡ 0, and property (15) then gives f ≡ 0.
We now return to ∂̄ equation (1) and assume that W (z, z̄, Sz) vanishes for all z outside a circle

Γ =
{
z : |z| = r

}
. We assume that we find a solution S = S(z, z̄, t) of (1) inside the disk D =

{
z : |z| < r

}
with a boundary value S|Γ := S(z, r2/z, t) of form (10) and such that the set

Ω :=
{
t : sup

z∈D

∣∣W ′(z, z̄, Sz(z, t)
∣∣ ≤ k

}
is nonempty for some k, 0 < k < 1. In this case, we can apply Theorem 2 to Beltrami equation (2), (3).
Moreover, taking into account that

∂S

∂tn
= zn +

∑
m≥1

∂Sm(t)
∂tn

z−m, z ∈ Γ,

we find that these functions can be continuously extended from D to analytic functions outside Γ. They
therefore become solutions of (2), (3) in the whole complex plane. On the other hand, it is clear that

∂S

∂tn
− (zn)+ =

∂S

∂tn
− Ωn

(
∂S

∂x
, t
)
= O

(
1
z

)
, z → ∞,

and Theorem 2 therefore implies that (9) is satisfied. Consequently, S = S(z, z̄, t) determines an S-function
of the dKP hierarchy for t ∈ Ω.

4. Solutions of the dKP hierarchy

To construct explicit solutions of the dKP hierarchy, we consider ∂̄ equations of the form

Sz̄ = θ
(
r − |z|

)
V (z, z̄, Sz), (16)
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where r > 0, θ(ξ) is the standard Heaviside function, and V is an analytic function of z, z̄, and Sz. Our
scheme of solution is as follows:

1. We first generate solutions S = S(z, a) of (16),

Sz̄ = V (z, z̄, Sz), |z| < r, (17)

depending on a set of free parameters a := (a0, a1, . . . ).

2. We next select those solutions whose boundary value on Γ =
{
z : |z| = r

}
is of form (10).

Equation (17) is a PDE of a Hamilton–Jacobi type, and the methods for generating its solutions are
well developed. For example, if V = V (Sz) depends only on Sz , then (17) implies

mz̄ = Vm(m)mz, m := Sz.

We can instantly solve this equation applying the methods of characteristics. The general solution of (17)
is then implicitly characterized by

S = V (m)z̄ +mz − f(m),

Vmz̄ + z = fm(m),
(18)

where f = f(m) is an arbitrary function. We note that from the second equation in (18), we have

fm(m0) = z, m0 := m(z, z̄)
∣∣
z̄=0

,

and fm(m0) is therefore the function inverse to m0 = m0(z).
To obtain explicit solutions, we need further simplifying assumptions. For instance, we consider cases

where only a finite set of N+1 parameters a = (a0, a1, . . . , aN ) is considered. We then encounter the
problem of selecting solutions S in which no terms zntn with n > N appear in (10). Other types of
solutions of the ∂̄ equation would have time variables tn, n > N , which are functions of t1, . . . , tN , and no
solution of the dKP hierarchy would arise in that way.

We start the exploration of possible favorable cases by considering the class of ∂̄ equations (17) of the
form

Sz̄ = z̄s
M∑

m≥0

pm(z)(Sz)m, |z| < r, (19)

where s ≥ 0, M ≥ 2, the coefficients pm = pm(z) are polynomials in z, and pM �≡ 0. We seek a series
solution of (19) of the form

S =
∑
n≥0

cn(z)z̄n(s+1), (20)

where c0 is an arbitrary N -degree polynomial (N ≥ 2),

c0(z) =
N∑

n=0

anz
n, aN �= 0. (21)

Substituting (20) in (19), we obtain the recursion relation

cn+1 =
1

(n+ 1)(s+ 1)

M∑
m≥0

pm(z)
( ∑

r1+···+rm=n

c′r1
· · · c′rm

)
, n ≥ 0, (22)

which shows that all the coefficients cn(z) of (20) are polynomials. We must find their degrees for examining
the form of S on the boundary |z| = r.
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Table 1

(M,N) V (z, Sz) S|z̄=0

(2, 2) α(Sz)2 +
(∑1

i=0 βiz
i
)
Sz +

∑2
i=0 γiz

i
∑2

i=0 aiz
i

(3, 2) α(Sz)3 +
(∑1

i=0 βiz
i
)
(Sz)2 +

(∑2
i=0 γiz

i
)
Sz +

∑3
i=0 ηiz

i
∑2

i=0 aiz
i

(2, 3) α(Sz)2 +
(∑2

i=0 βiz
i
)
Sz +

∑4
i=0 γiz

i
∑3

i=0 aiz
i

Lemma. If the degrees of the coefficients pm in (19) satisfy the conditions

deg pm ≤ (M −m)(N − 1), m = 0, 1, . . . ,M,

then

deg cn = n
[
M(N − 1)−N

]
+N, n ≥ 0. (23)

Proof. We apply the induction principle. It is obvious that (23) holds for n = 0. We now suppose
that it holds for n′ ≤ n and consider the terms in expression (22) for cn+1. By taking into account that
r1 + · · ·+ rm = n, we obtain

deg(pmc
′
r1
· · · c′rm

) =
m∑

i=1

[
ri
[
M(N − 1)−N

]
+N − 1

]
+ deg pm =

= n
[
M(N − 1)−N

]
+m(N − 1) + deg pm ≤

≤ n
[
M(N − 1)−N

]
+M(N − 1) = (n+ 1)

[
M(N − 1)−N

]
+N.

Moreover, because pM is a nonzero constant, it is clear that the corresponding terms in (22) satisfy the
condition

deg(pMc
′
r1
· · · c′rM

) = n
[
M(N − 1)−N

]
+M(N − 1) = (n+ 1)

[
M(N − 1)−N

]
+N.

We therefore conclude that (23) holds for cn+1 as well, which proves the lemma.

Assuming that series (20) converges for some r ≥ 0, we find that under the assumption of the above
lemma, the continuous extension of S to the boundary |z| = r is

S =
∑
n≥0

r2n(s+1) cn(z)
zn(s+1)

,
cn(z)
zn(s+1)

= O(zdn), (24)

where

dn = n
[
M(N − 1)−N − s− 1

]
+N. (25)

Because the solution corresponding to (21) depends on N+1 free parameters (a0, . . . , aN ), only those cases
for which dn ≤ N for all n ≥ 0 are of interest. It is obvious from (25) that this is possible only if

N ≤ M + s+ 1
M − 1 . (26)

For example, if we set s = 0, this means that we have only the three possibilities listed in Table 1.
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Example 1. The simplest case in the class (2, 2) corresponds to

Sz̄ = θ
(
1− |z|

)
(Sz)2, (27)

where S|z̄=0 is a quadratic polynomial. This yields

S =



1
2
(z − b)2

a− 2z̄ − c, |z| ≤ 1,

1
2
z(z − b)2

az − 2 − c, |z| ≥ 1.

The regularity of S inside the unit circle requires |a| > 2.
On the boundary |z| = 1, we have

S =
1
2a
z2 +

(
1
a2

− b

a

)
z +

2
a3
+
b2

2a
− 2b
a2

− c+O
(
1
z

)
.

Therefore, to fit the required form of an S-function of the dKP hierarchy, we must identify

x =
1
a2

− b

a
, t2 =

1
2a
, c =

2
a3
+
b2

2a
− 2b
a2
.

On the other hand, the complex dilatation for the corresponding Beltrami equation (1), (2) is

µ(z, z̄) := 2θ
(
1− |z|

) z − b

a− 2z̄ . (28)

We then obtain the bound

|µ(z, z̄)| < 2 |b|+ 1|a| − 2 , z ∈ C.

Thus, for any 0 < k < 1, we have |µ(z)| ≤ k provided k|a| > 2
(
|b| + k + 1

)
. Hence, there is a nonempty

domain in the space of parameters in which Beltrami equation (1), (2) satisfies the conditions assumed in
our discussion in Sec. 3. It follows that

p := Sx =
z2 − 4t2z + 2(x+ 4t22)

z − 4t2
, |z| = 1,

and we obtain the solution of the t2 flow (Benney flow) of the dKP hierarchy

z =
p

2
+ 2t2 +

√(p
2
− 2t2

)2

− 2x− 8t22 . (29)

We note that this solution depends on the time parameters via two functions u1 = 2t2 and u2 =
−2x− 8t22; indeed, we can rewrite it in the form

z =
p

2
+ u1 +

√(p
2
− u1

)2

+ u2 .

If this solution could be obtained by the hodograph methods [2], it would correspond to such a reduction of
the dKP hierarchy in which the functions u = (u1, u2) satisfy a diagonalizable hydrodynamic-type system
with the Riemann invariants provided by zeros of the function ∂z(p,u)/∂p. But this function has no zeros
for u2 �= 0 because

∂z(p,u)
∂p

=
p/2− u1 +

√
(p/2− u1)2 + u2

2
√
(p/2− u1)2 + u2

.

Therefore, we conclude that solution (29) of the dKP hierarchy cannot be obtained with the hodograph
technique approach.
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Example 2. The ∂̄ equation

Sz̄ = θ
(
1− |z|

)
(Sz)3, (30)

where S|z̄=0 is a quadratic polynomial, is an example of the (3, 2) case. The corresponding S-function is

S = z̄m3 + (z − b)m− a

2
m2 − c, |z| < 1,

where

m =
1
6z̄
(
a−

√
a2 − 12(z − b)z̄

)
.

The defining relations for the dKP parameters (x, t2) are

x =
b

6
(√

a2 − 12 − a
)
, t2 =

1
108

(
18a− a3 + (a2 − 12)3/2

)
. (31)

The corresponding solution of the t2 flow of the dKP hierarchy is

z = a
(
a−

√
a2 − 12

) p
12
+

3x√
a2 − 12

+
1
12

[(
a
(
a−

√
a2 − 12

)
p+

36x√
a2 − 12

)2

−

− 12

((
a−

√
a2 − 12

)
p+

3
(
a+

√
a2 − 12

)
x√

a2 − 12

)2



1/2

,

where a = a(t2) follows from (31).

Example 3. The class (2, 3) is the most interesting because it provides solutions of the dKP hierarchy
depending on the parameters (x, t2, t3). We consider

Sz̄ = θ
(
1− |z|

)
(Sz)2 (32)

with a cubic polynomial S|z̄=0. Taking m0 := Sz|z̄ = az2 + bz + c and using (18), we obtain

f(m) = − b

2a
m+

1
12a2

(4am+ b2 − 4ac)3/2 + d = − b

2a
m+

1
12a2

(4az̄m+ 2az + b)3 + d (33)

and

m =
1
8z̄2

[
1
a
− 4

(
z +

b

2a

)
z̄ −

√
4
a

(
b2

a
− 4c

)
z̄2 − 8

a

(
z +

b

2a

)
z̄ +

1
a2

]
. (34)

Hence, we have

S =
(
z +

b

2a

)
m+ z̄m2 − 1

12a2
(4az̄m+ 2az + b)3 − d, |z| < 1. (35)

It is then clear that for the function S to be continuous we must require [11]

4
a

(
b2

a
− 4c

)
z̄2 − 8

a

(
z +

b

2a

)
z̄ +

1
a2

�= 0, |z| < 1.

We also note that S is regular at the origin because limz→0m = c.

1536



We outline the calculation of u = −2∂S1/∂x. We need to compute the first few terms in the expansion
of S for |z| = 1. For this, we use the identity

Sz = m−
(m
z

)2

, |z| = 1. (36)

Then, expanding m for |z| = 1 and setting

Sz = 3t3z2 + 2t2z + x−
S1

z2
+ . . . , |z| = 1,

in (36), we obtain

3t3 = −3
4
+
3
8a
+

1
32a2

(
(1 − 8a)3/2 − 1

)
, 2t2 =

b

8a2

(
1− 4a−

√
1− 8a

)
,

x = − b2

8a2

(
1 +

4a− 1
2
√
1− 8a

)
+

c

4a
(
1−

√
1− 8a

)
,

and

S1 =

(
2b2 + (1− 8a)c

)2
(1− 8a)5/2

. (37)

These expressions imply that u = −2∂S1/∂x is (t := t3, y := t2)

u =
4
(
5− 12t+ 4

√
1− 12t

)2((−1 + 12t)x− 4y2
)

3(1 + 4t)
(
1− 12t+ 2

√
1− 12t

)3 , (38)

which satisfies (8). We note that according to [8], solution (38) belongs to the class of solutions of the dKP
equation that yield Einstein–Weyl structures conformal to Einstein metrics.

More general cases corresponding to (19) with s �= 0 and z dependence in its right-hand side will be
considered elsewhere.
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