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PROLONGATIONS OF VECTOR FIELDS AND THE

INVARIANTS-BY-DERIVATION PROPERTY

C. Muriel∗ and J. L. Romero∗

For any given vector field X defined on some open set M ⊂ R
2, we characterize the prolongations X∗

n of

X to the nth jet space M (n), n ≥ 1, such that a complete system of invariants for X∗
n can be obtained

by derivation of lower-order invariants. This leads to characterizations of C∞-symmetries and to new

procedures for reducing the order of an ordinary differential equation.
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1. Introduction

One of the most-used methods for reducing the order of a given ordinary differential equation

∆(x, u(n)) = 0 (1)

is based on the existence of Lie symmetries (see [1]). The Lie symmetries of Eq. (1) are vector fields

X = ξ(x, u)
∂

∂x
+ η(x, u)

∂

∂u
(2)

defined on some open subset M ⊂ R
2 such that the usual prolongation of X to the nth jet space M (n)

X(n) = ξ(x, u)
∂

∂x
+ η(x, u)

∂

∂u
+

n∑
i=1

η(i)(x, u(i))
∂

∂ui
,

where η(i) = Dx(η(i−1))− Dx(ξ)ui, satisfies the invariance condition

X(n)
(
∆(x, u(n))

)
= 0, ∆(x, u(n)) = 0. (3)

The Lie method of reduction for (1) associated with a given Lie symmetry X is based on the existence
of a complete system of functionally independent invariants for X(n) that can be obtained by successive
derivations of invariants of X(1). If y(x, u) is an invariant of X and w(x, u, u1) is an invariant of X(1), then
w1 = (Dxw)/(Dxy) is an invariant of X(2), and so on. The set {y, w, w1, . . . , wn−1} is thus a complete
system of invariants of X(n). By invariance condition (4), original equation (1) can be written in terms of
these invariants as an (n−1)th-order reduced equation,

∆̃(y, w(n−1)) = 0.
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It is well known that there are order reductions for ordinary differential equations that do not come
from the existence of Lie symmetries. Some examples can be seen in [2] and [3].

In this paper we characterize the different ways of prolonging a vector field that lead to a similar
reduction process. The equations in the mentioned examples can be reduced by this new method.

In Sec. 2, we obtain several characterizations of the prolongations

X∗
n = ξ(x, u)∂x + η(x, u)∂u +

n∑
i=1

η∗
i (x, u(i))∂ui

for which a complete system of invariants can be calculated by derivation of lower-order invariants.

In a natural way, these new prolongations lead to the concept of C∞-symmetries [3]. These symmetries
are characterized in Sec. 3 and the corresponding method of reduction is described in Theorem 4.

In Sec. 4, we also prove that a large class of reduction processes are special cases of our method. Finally,
this reduction method is applied to an equation that lacks Lie symmetries.

2. Main results

We let X be vector field (2) on M ⊂ R
2 and let

X∗
n = ξ(x, u)

∂

∂x
+ η(x, u)

∂

∂u
+

n∑
i=1

η∗
i (x, u(i))

∂

∂ui
(4)

be an arbitrary prolongation of X to M (n). For k = 1, . . . , n, X∗
k denotes the corresponding projection of

X∗
n to the kth jet space M (k).

Definition 1. Let n ∈ N. We say that X∗
n has the ID (invariants-by-derivation) property of the nth

order if whenever f = f(x, u) is an invariant of X and g0 = g0(x, u, u1) is an invariant of X∗
1 , the function

gk = Dxgk−1/(Dxf) is an invariant of X∗
k+1 for k = 1, . . . , n− 1 and the set {f, g0, . . . , gn−1} constitutes a

complete system of functionally independent invariants of X∗
n.

We suppose that X∗
n has the ID property of the nth order and let {y = y(x, u), α = α(x, u)} be such

that X(y) = 0 and X(α) = 1. We consider the system of local coordinates on M (n)

{y, α, α1, α2, . . . , αn}, (5)

where αk = Dxαk−1/(Dxy) and α0 = α for k ∈ {1, . . . , n}. We let

X∗
n =

∂

∂α
+ r∗1(y, α, α1)

∂

∂α1
+ · · ·+ r∗n(y, α, . . . , αn)

∂

∂αn
(6)

be the expression of X∗
n in terms of (5).

We next prove that if X∗
n has the ID property of the nth order, then the infinitesimals r∗k for k = 2, . . . , n

are completely determined by r∗1 .
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We evaluate the Lie bracket [X∗
n, Dy] in terms of coordinates (5),

[X∗
n, Dy](y) = 0,

[X∗
n, Dy](α) = X∗

n(α1) = r∗1(y, α, α1),

[X∗
n, Dy](α1) = X∗

n(α2)− Dy(X∗
n(α1)) = r∗2(y, α, α1, α2)− Dy

(
r∗1(y, α, α1)

)
,

...

[X∗
n, Dy](αi) = X∗

n(αi+1)− Dy

(
X∗

n(αi)
)
=

= r∗i+1(y, α, . . . , αi+1)− Dy

(
r∗i (y, α, . . . , αi)

)
,

...

[X∗
n, Dy](αn−1) = X∗

n(αn)− Dy

(
X∗

n(αn−1)
)
=

= r∗n(y, α, . . . , αn)− Dy

(
r∗n−1(y, α, . . . , αn−1)

)
.

(7)

Let w = w(y, α, α1) be an invariant for X∗
n that is functionally independent of y. In this case, ∂w/∂α1 �=

0, and we have

∂w

∂α
+ r∗1

∂w

∂α1
= 0. (8)

Because X∗
n has the ID property of the nth order, we also have X∗

n(wy) = X∗
n

(
Dy(w)

)
= [X∗

n, Dy](w) = 0.
Therefore,

∂w

∂α
r∗1 +

(
r∗2 − Dy(r∗1)

) ∂w

∂α1
= 0. (9)

We observe that if r∗1 ≡ 0, then necessarily X∗
n = X(n), and X∗

n is hence the ordinary Lie prolongation
of X . We can therefore assume that r∗1 is not a null function. If we multiply (8) by −r∗1 and add (9) to the
resulting equation, we obtain

−(r∗1)2
∂w

∂α1
+

(
r∗2 − Dy(r∗1)

) ∂w

∂α1
= 0.

Because ∂w/∂α1 �= 0, we have

r∗2 = (Dy + r∗1)(r
∗
1).

Because X∗
n has the ID property of the nth order, it follows that X∗

n(w1) = 0. Therefore,

∂w1

∂α
+

∂w1

∂α1
r∗1 +

∂w1

∂α2
r∗2 = 0. (10)

By the ID property, we also have X∗
n(w2) = X∗

n

(
Dy(w1)

)
= [X∗

n, Dy](w1) = 0. Hence,

∂w1

∂α
r∗1 +

∂w1

∂α1
(r∗1)

2 +
∂w1

∂α2

(
r∗3 − Dy(r∗2)

)
= 0. (11)

If we add Eq. (11) and the result of multiplying Eq. (10) by −r∗1 , we obtain

∂w1

∂α2

(
−r∗1r∗2 + r∗3 − Dy(r∗2)

)
= 0,
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and because ∂w1/∂α2 �= 0,

r∗3 = r∗1r∗2 +Dy(r∗2).

Therefore, r∗3 can be written as

r∗3 = (Dy + r∗1)(r
∗
2).

By thus proceeding, we find that the infinitesimals of X∗
n in (6) are necessarily given by

r∗k+1 = (Dy + r∗1)(r
∗
k), k = 1, . . . , n − 1.

Therefore,

X∗
n =

n∑
k=0

(Dy + r∗1)
k(1)

∂

∂αk
. (12)

By (7) and (12), we have also proved that X∗
n satisfies

[X∗
n, Dy] = r∗1X∗

n.

We have proved that if X∗
n has the ID property of the nth order, then the function r∗1 determines the

entire prolongation X∗
n in the variables {y, α, . . . , αn}: if X(y) = 0 and X(α) = 1, then the function r∗1 is

the coefficient of ∂/∂α1 in the vector field X∗
n.

We now analyze the above results in terms of the coordinates {x, u, u1, . . . , un}. Because Dx =
(1/Dyx)Dy, we have

[X∗
n, Dx] =

1
Dyx

[X∗
n, Dy] +X∗

n

(
1

Dyx

)
Dy =

1
Dyx

r∗1X∗
n − X∗

n(Dyx)
(Dyx)2

Dy =

=
r∗1

Dyx
X∗

n −
r∗1X

∗
n(x) +Dy

(
X∗

n(x)
)

Dyx

Dy

Dyx
= λX∗

n + µDx,

where λ denotes the function r∗1/(Dyx) in terms of the coordinates {x, u, u1} and µ = −(Dx + λ)
(
X∗

n(x)
)
.

Hence, we have proved that if X is any given vector field (2) in M ⊂ R
2, X(y) = 0, X(α) = 1, and

r∗1 = r∗1(y, α, α1) is an arbitrary function, then the prolongation X∗
n of X = ∂/∂α given by (12) is such that

[X∗
n, Dx] = λX∗

n + µDx (13)

in terms of the coordinates {x, u, . . . , un}.
Conversely, we now prove that if X∗

n satisfies (13) for some λ ∈ C∞(M (1)) and µ = −(Dx+λ)(X∗
n(x)),

then X∗
n has the ID property. Let f = f(x, u) and g = g(x, u(k)) ∈ C∞(M (k)) be two functionally

independent invariants of X∗
n. We have X∗

n

(
f(x, u)

)
= X∗

n

(
g(x, u(k))

)
= 0 and

X∗
n

(
Dxg

Dxf

)
=

1
(Dxf)2

(
Dxf · X∗

n(Dxg)− Dxg · X∗
n(Dxf)

)
=

=
1

(Dxf)2
(
Dxf · [X∗

n, Dx](g)− Dxg · [X∗
n, Dx](f)

)
=

=
1

(Dxf)2
(
Dxf · (µ · Dxg)− Dxg · (µ · Dxf)

)
= 0.

We have thus proved the following result.
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Theorem 1. Let X be vector field (2) defined on M , and let X∗
n be a prolongation of X to M (n)

of form (4). Then X∗
n has the ID property of the nth order if and only if X∗

n satisfies (13) for some

λ ∈ C∞(M (1)) and µ = −(Dx + λ)(X∗
n(x)).

We now verify that Eq. (13) uniquely determines the coefficients η∗
i of X∗

n in terms of ξ, η, and λ. We
first apply the first term in Eq. (13) to each of the coordinate functions of {x, u, u1, . . . , un},

[X∗
n, Dx](x) = −Dx

(
ξ(x, u)

)
,

[X∗
n, Dx](u) = η∗

1(x, u(1))− Dx

(
η(x, u)

)
,

[X∗
n, Dx](u1) = η∗

2(x, u(2))− Dx

(
η∗
1(x, u(1))

)
,

...

[X∗
n, Dx](ui) = η∗

i+1(x, u(i+1))− Dx

(
η∗

i (x, u(i))
)
,

...

[X∗
n, Dx](un−1) = η∗

n(x, u(n))− Dx

(
η∗

n−1(x, u(n−1))
)
.

(14)

If we now apply the second term in Eq. (13), which can be written as Y = λ
(
X∗

n − ξ(x, u)Dx

)
−

Dx

(
ξ(x, u)

)
Dx, to each of the coordinates of {x, u, u1, . . . , un}, we obtain

Y (x) = −Dx

(
ξ(x, u)

)
,

Y (u) = λ
(
η(x, u) − ξ(x, u)u1

)
− Dx

(
ξ(x, u)

)
u1,

Y (u1) = λ
(
η∗
1(x, u(1))− ξ(x, u)u2

)
− Dx

(
ξ(x, u)

)
u2,

...

Y (ui) = λ
(
η∗

i (x, u(i))− ξ(x, u)ui+1

)
− Dx

(
ξ(x, u)

)
ui+1,

...

Y (un−1) = λ
(
η∗

n−1(x, u(n−1))− ξ(x, u)un

)
− Dx

(
ξ(x, u)

)
un.

(15)

Equating the second terms in Eqs. (14) and (15), we obtain

η∗
i+1(x, u(i+1)) = Dx

(
η∗

i (x, u(i))
)
− Dx

(
ξ(x, u)

)
ui+1 + λ

(
η∗

i (x, u(i))− ξ(x, u)ui+1

)
(16)

for i = 0, . . . , n − 1. Expression (16) is the motivation for the following definition [3].

Definition 2. Let X be vector field (2) defined on M , and let λ ∈ C∞(M (1)) be an arbitrary function.
The λ-prolongation of X of the order n, denoted by X [λ,(n)], is the vector field on M (n) defined by

X [λ,(n)] = ξ(x, u)
∂

∂x
+

n∑
i=0

η[λ,(i)](x, u(i))
∂

∂ui
, (17)
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where η[λ,(0)](x, u) = η(x, u) and

η[λ,(i)](x, u(i)) = Dx

(
η[λ,(i−1)](x, u(i−1))

)
− Dx

(
ξ(x, u)

)
ui +

+ λ
(
η[λ,(i−1)](x, u(i−1))− ξ(x, u)ui

)
, 1 ≤ i ≤ n.

Definition 2 and Theorem 1 allow giving different characterizations of the λ-prolongation of a given
vector field X .

Theorem 2. Let X be vector field (2) defined on M . Let X∗
n be a prolongation of X to the nth jet

space M (n). The following conditions on X∗
n are equivalent:

1. X∗
n has the ID property.

2. [X∗
n, Dx] = λX∗

n + µDx for some function λ ∈ C∞(M (1)) and µ = −(Dx + λ)
(
X∗

n(x)
)
.

3. X∗
n = X [λ,(n)] for some λ ∈ C∞(M (1)).

4. If Q = X(u)− X(x)u1 is the characteristic of the vector field X , then

X∗
n =

n∑
i=0

(Dx + λ)i(Q)
∂

∂ui
+X(x)Dx

for some λ ∈ C∞(M (1)).

Proof. The equivalence of conditions 1 and 2 is given by Theorem 1. In the paragraphs preceding
Definition 2, we proved that conditions 2 and 3 are also equivalent. We now verify that 3 ⇔ 4. Clearly,
Eq. (17) can be written as

η[λ,(i)](x, u(i)) = (Dx + λ)
(
η[λ,(i−1)](x, u(i−1))

)
− (Dx + λ)

(
ξ(x, u)

)
ui =

= (Dx + λ)
(
η[λ,(i−1)](x, u(i−1))

)
− (Dx + λ)

(
ξ(x, u)ui

)
+ ξ(x, u)ui+1 =

= (Dx + λ)
(
η[λ,(i−1)](x, u(i−1))− ξ(x, u)ui

)
+ ξ(x, u)ui+1

for 1 ≤ i ≤ n. For i − 1, the previous formula becomes

η[λ,(i−1)](x, u(i−1))− ξ(x, u)ui = (Dx + λ)
(
η[λ,(i−2)](x, u(i−2))− ξ(x, u)ui−1

)
.

Hence, by recurrence,

η[λ,(i)](x, u(i)) = (Dx + λ)
(
η[λ,(i−1)](x, u(i−1))− ξ(x, u)ui

)
+ ξ(x, u)ui+1 =

= (Dx + λ)2
(
η[λ,(i−2)](x, u(i−2))− ξ(x, u)ui−1

)
+ ξ(x, u)ui+1 = · · · =

= (Dx + λ)i
(
η[λ,(0)](x, u)− ξ(x, u)u1

)
+ ξ(x, u)ui+1 =

= (Dx + λ)i(Q) + ξ(x, u)ui+1.

This proves the equivalence of conditions 3 and 4.
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3. Applications to order reductions of ordinary differential equations

As we have seen in the previous section, the λ-prolongation of a vector field X produces a vector field
X [λ,(n)] on M (n) that has the ID property of the nth order. Because that property is the basis of the Lie
method for reducing the order of ordinary differential equations, it is natural to expect a useful role of
λ-prolongations in obtaining reduction processes. We consider the vector fields that admit a λ-prolongation
for some λ ∈ C∞(M (1)) that leaves the equation invariant [3].

Definition 3. Let ∆(x, u(n)) = 0 be an nth-order ordinary differential equation with (x, u) ∈ M ⊂
R

2. A vector field X defined on M is a C∞(M (1))-symmetry of the equation if there exists a function
λ ∈ C∞(M (1)) such that

X [λ,(n)]
(
∆(x, u(n))

)
= 0, ∆(x, u(n)) = 0.

In this case, we also say that X is a λ-symmetry of the given equation.

Our next result presents a characterization of C∞(M (1))-symmetries based on the second characteri-
zation of the λ-prolongation given in Theorem 2.

We suppose that the equation ∆(x, u(n)) = 0 can be written locally in the explicit form

un = F (x, u(n−1)). (18)

With this equation, we associate the vector field defined on M (n−1)

A =
∂

∂x
+ u1

∂

∂u
+ · · ·+ F (x, u(n−1))

∂

∂un−1
.

Theorem 3. If a vector field X is a C∞(M (1))-symmetry of Eq. (18) for some λ ∈ C∞(M (1)), then

[X [λ,(n−1)], A] = λ · X [λ,(n−1)] + µ · A (19)

for µ = −(Dx + λ)
(
X(x)

)
∈ C∞(

M (1)
)
. Conversely, if

X∗
n = ξ(x, u)

∂

∂x
+

n−1∑
i=0

η∗
i (x, u(i))

∂

∂ui

is a vector field defined on M (n−1) such that [X∗
n, A] = λ · X∗

n + µ · A for some λ, µ ∈ C∞(M (1)), then

X = ξ(x, u)
∂

∂x
+ η∗

0(x, u)
∂

∂u

is a λ-symmetry of Eq. (18), and X∗
n = X [λ,(n−1)].

Proof. We observe that Dx(x) = A(x) and Dx(ui) = A(ui) for i = 0, . . . , n − 2. Theorem 2 proves
that the values of the two terms in (19) coincide on the set {x, u, . . . , un−2}. On the other hand,

[X [λ,(n−1)], A](un−1) = X [λ,(n−1)]
(
A(un−1)

)
− A

(
X [λ,(n−1)](un−1)

)
=

= X [λ,(n−1)]
(
F (x, u(n−1))

)
− A

(
η[λ,(n−1)](x, u(n−1))

)
,

X [λ,(n)](un) = Dx

(
η[λ,(n−1)](x, u(n−1))

)
− Dx

(
ξ(x, u)

)
un +

+ λ
(
η[λ,(n−1)](x, u(n−1))− ξ(x, u)un

)
.

(20)
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Because X is a λ-symmetry,

X [λ,(n)](un) = X [λ,(n−1)]
(
F (x, u(n−1))

)
, un = F (x, u(n−1)).

Hence, the second equation in (20) says that

X [λ,(n−1)]
(
F (x, u(n−1))

)
= A

(
η[λ,(n−1)](x, u(n−1))

)
− A

(
ξ(x, u)

)
F (x, u(n−1)) +

+ λ
(
η[λ,(n−1)](x, u(n−1))− ξ(x, u)F (x, u(n−1))

)
=

= A
(
η[λ,(n−1)](x, u(n−1))

)
+ λ

(
η[λ,(n−1)](x, u(n−1)) + µF (x, u(n−1))

)
.

Therefore,

[X [λ,(n−1)], A](un−1) = λ
(
η[λ,(n−1)](x, u(n−1)) + µF (x, u(n−1))

)
=

= λX [λ,(n−1)](un−1) + µF (x, u(n−1)) = (λ · X [λ,(n−1)] + µ · A)(un−1),

and we obtain (19).
We now prove the converse assertion. If we apply both terms in [X∗

n, A] = λ · X∗
n + µ · A to x, we

find that necessarily µ = −(Dx + λ)
(
ξ(x, u)

)
. Hence, by Theorem 2, we have X∗

n = X [λ,(n−1)]. Because
[X∗

n, A](un−1) = λX∗
n(un−1) + µA(un−1), we obtain

X∗
n

(
F (x, u(n−1))

)
= A

(
η[λ,(n−1)](x, u(n−1))

)
+ λη[λ,(n−1)](x, u(n−1))−

−
(
Dx(ξ(x, u)) + λξ(x, u)

)
· F (x, u(n−1)). (21)

To verify that X satisfies

X [λ,(n)]
(
un − F (x, u(n−1))

)
= 0, un = F (x, u(n−1)), (22)

we evaluate

X [λ,(n)]
(
un − F (x, u(n−1))

)
= Dx

(
η[λ,(n−1)](x, u(n−1))

)
− unDx

(
ξ(x, u)

)
+

+ λ
(
η[λ,(n−1)](x, u(n−1))− ξ(x, u)un

)
− X [λ,(n)]

(
F (x, u(n−1))

)

for un = F (x, u(n−1)). By (21), we obtain (22). Therefore, X is a λ-symmetry of the equation.

Our next objective is to show how a C∞(M (1))-symmetry can be used to reduce the order of an
ordinary differential equation.

Theorem 4. Let X be a λ-symmetry, where λ ∈ C∞(M (1)), of the equation ∆(x, u(n)) = 0. Let

y = y(x, u) and w = w(x, u, u1) be two functionally independent invariants of X [λ,(n)]. The general solution

of the equation can be obtained by solving an equation of the form ∆r(y, w(n−1)) = 0 and an auxiliary

equation w = w(x, u, u1).

Proof. Let y = y(x, u) and w = w(x, u, u1) be two functionally independent invariants of X [λ,(n)] such
that w depends on u1. By Theorem 1, w1 = Dxw/(Dxy) is an invariant for X [λ,(n)], which is functionally
independent of y and w because w1 depends on u2. From w1 and y, we construct a third-order invariant for
X [λ,(n)] by derivation, and so on. Therefore, the set {y, w, w1, . . . , wn−1} is a complete set of functionally
independent invariants for X [λ,(n)]. Because X is a C∞(M (1))-symmetry of the equation by hypothesis,
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this can be written in terms of {y, w, w1, . . . , wn−1}. The resulting equation is a (n−1)th-order equation of
the form

∆r(y, w(n−1)) = 0. (23)

We can recover the general solution of the original equation from the general solution of (23) and the
corresponding first-order auxiliary equation

w = w(x, u, u1).

4. C∞-symmetries and order reductions

In this section, we show that many of the known reduction processes for ordinary differential equations
can be obtained via the above method as a consequence of the existence of C∞-symmetries of the given
equations.

Theorem 5. Let

∆1(x, u(n)) = 0 (24)

be an nth-order ordinary differential equation. If there exists a transformation

y = y(x, u),

w = w(x, u, u1),
(25)

where ∂w/∂u1 �= 0, such that (24) can be written in terms of the variables (y, w) as

∆2(y, w(n−1)) = 0, (26)

then there exists a C∞-symmetry X of Eq. (24) such that (26) is the corresponding reduced equation.

Proof. Let α ∈ C∞(M) be such that the functions y and α are functionally independent. We set
α1 = Dxα/(Dxy) ∈ C∞(M (1)) and consider the local coordinates (y, α, α1) on M (1). We determine a vector
field of the form

X = ξ(y, α)
∂

∂y
+ η(y, α)

∂

∂α

and a function λ(y, α, α1) ∈ C∞(M (1)) such that X is a λ-symmetry of the equation and the functions y

and w are invariants of X [λ,(1)].
We set ξ = 0 and η = 1 and determine λ from the condition X [λ,(1)](w) = 0. Because

X [λ,(1)] =
∂

∂α
+ λ

∂

∂α1

by Definition 2, we deduce that λ = −(∂w/∂α)/(∂w/∂α1).
We prove that the vector field X = ∂/∂α is a λ-symmetry of the equation for the function λ =

−(∂w/∂α)/(∂w/∂α1). We set wi = d(i)w/dy(i) for 1 ≤ i ≤ n−1. It is clear that the set {y, α, w, . . . , wn−1}
is a system of coordinates in M (n). From the construction of X and λ, it follows that {y, w, . . . , wn−1} are
invariants for the vector field X [λ,(n)], and therefore X [λ,(n)] = ∂/∂α in terms of the new local coordinates.
Because Eq. (24) can be written in terms of these local coordinates as Eq. (26) by hypothesis, we obtain

X [λ,(n)]
(
∆2(y, w(n−1))

)
=

∂

∂α

(
∆2(y, w(n−1))

)
= 0.
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This proves that X is a λ-symmetry of the equation.
To verify that (26) is the reduced equation that corresponds to the λ-symmetry by Theorem 4, it

suffices to observe that the reduced equation can be obtained by writing the equation in terms of the
complete system {y, w, . . . , wn−1} of invariants of X [λ,(n)].

Example. We consider the second-order differential equation

uuxx − 2u2
x + u2uxx − u4x2 − u3 − u2 = 0. (27)

This equation has no Lie symmetries, which is proved in the appendix. The Lie reduction method therefore
cannot be used to reduce its order. But it can be shown that by the transformation w = ux/u−xu, Eq. (27)
becomes

wx = w2 + 1. (28)

By Theorem 5, this reduction corresponds to the existence of a λ-symmetry of the equation. We calculate
a vector field X and a function λ such that X(x) = 0 and X [λ,(1)](w) = 0. Then ξ = 0 and by Definition 2,

η
(
−ux

u2
− x

)
+

(
Dx(η) + λη

) (
1
u

)
= 0. (29)

It is clear that if we choose η = 1, then λ = ux + ux/u satisfies (29). By Theorem 5, X = ∂/∂u is a
λ-symmetry of Eq. (27) for λ = ux+ ux/u. This can also be explicitly proved by verifying the equation in
Definition 2. In this case, we have

X [λ,(2)] =
∂

∂u
+

(
ux +

ux

u

) ∂

∂ux
+

(
u + 3uxx + u2x2 +

uxx

u

) ∂

∂uxx
.

If we let ∆ denote the left-hand side of (27), we can verify that

X [λ,(2)](∆) =
2
u
∆,

i.e., X = ∂/∂u is a λ-symmetry of Eq. (27). By construction, x and w = ux/u − xu are invariants of
X [λ,(1)], and Eq. (28) is the reduced equation that corresponds to X . It is also clear that Eq. (28) can be
integrated in quadratures.

5. Conclusions

The classical Lie method for reducing the order of ordinary differential equations with a Lie symmetry
X is based on the existence of a complete system of invariants for the prolongation X(n) that can be
calculated by derivation of lower-order invariants.

We have characterized the prolongations of vector fields with that property. The invariance of the
equation under any of these prolongations leads to the concept of the C∞-symmetry. As proved in Theo-
rem 4, an algorithm for reducing the order of the equation is associated with these new symmetries. Many
of the known reduction processes for ordinary differential equations can be obtained via the above method
as a consequence of the existence of C∞-symmetries of the given equations.
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Appendix

We here prove that Eq. (27) has no Lie symmetries. A vector field

X = p(x, u)
∂

∂x
+ r(x, u)

∂

∂u

is a Lie symmetry of Eq. (27) if the infinitesimals p and r satisfy the determining system

e1 : 2pu + upuu = 0,

e2 : 2puu3x + ruuu2 − 2puxu2 − 2ruu + 2r = 0,

e3 : −3puu4x2 + pxu2x + rux − 3puu3 − 3puu2 + pu2 + 2ruxu − pxxu − 4rx = 0,

e4 : (ru − 2px)u3x2 − (3rux + 2pu2 − rx)ux + (ru − 2px)u2 + (ru − 2r − 2px)u + rxx − r = 0.

The first equation shows that p must be given by

p(x, u) = p1(x) + p2(x)u−1.

After substituting this value in equality e2, we have

−2p2ux+ ruuu2 − 2ruu + 2r + 2p2
′ = 0.

Integrating with respect to u, we obtain

r(x, u) = −2p2u(logu + 1)x + r1u
2 + r2u − p′2,

where r1 and r2 are functions of x. Then equality e3 becomes

−2u logu(p2ux2 − 2p′2x − 2p2) + (p2x
2 + r1ux + r2x + p′1x + p1)u2 − (2r′2 − 4p2 + p′′1)u + 3(p′′2 + p2) = 0.

We deduce that p2 = r1 = 0 and

r2 = −p′1 −
p1

x
.

Equality e4 becomes

(2p′1x
2 − 2p′1x

3 − p′′1x4)u + (−p′′′1 x3 − 2p′1x
3 − p′′1x2 + 2p′1x − 2p1) = 0,

and we deduce that p1 = c1x + c2/x2 for c1, c2 ∈ R such that

c1x
5 + 2c2x

2 + 6c2 = 0.

Therefore, c1 = c2 = 0. This proves that Eq. (27) has no Lie symmetries.
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