
Integrability of Equations Admitting the Nonsolvable
Symmetry Algebra so(3,R)

By C. Muriel and J. L. Romero

If an ordinary differential equation admits the nonsolvable Lie algebra so(3,R),
and we use any of its generators to reduce the order, the reduced equation does
not inherit the remaining symmetries. We prove here how the lost symmetries
can be recovered as C∞-symmetries of the reduced equation. If the order of
the last reduced equation is higher than one, these C∞-symmetries can be
used to obtain new order reductions. As a consequence, a classification of the
third-order equations that admit so(3,R) as symmetry algebra is given and a
step-by-step method to solve the equations is presented.

1. Introduction

One of the most utilized methods to find exact solutions of ordinary differential
equations is based on the concept of Lie group of transformations that have
been widely studied in the literature ([1]–[3]) etc.). If an nth-order differential
equation admits a k-dimensional Lie algebra, G as symmetry algebra, then
its general solution can be obtained by means of the general solution of an
(n − k)th-order reduced equation and the solution of a kth-order auxiliary
equation. In the particular case when G is solvable, the process of integration
can be achieved through k successive quadratures, from the general solution of
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the corresponding reduced equation. Nevertheless, if G is nonsolvable, this
step-by-step method of reduction is no longer applicable because, at some
stage of the reduction process, at least one of the generators of G is lost as Lie
symmetry.

Some order reduction processes for equations whose symmetry algebra is
nonsolvable have recently been studied. This is the case of the Chazy equation
[4], studied by Clarkson and Olver [5, 6]. The symmetry group associated to
the Chazy equation is the most involved of the three known actions of SL(2, C)
on two-dimensional complex spaces. Clarkson and Olver [6] described a
connection between these three actions via the standard prolongation process,
and use this to interrelate their differential invariants. It allows them to construct
fundamental differential invariants, of the most complicated action, from the
invariants of the basic unimodular action. If the original equation is written in
terms of these fundamental invariants, its order is reduced by three.

Apart from Lie symmetries, the concept of exponential vector field appears
in [1]. Although they are not well-defined vector fields, they can be used to
obtain order reductions of ordinary differential equations. These exponential
vector fields raised many studies on hidden symmetries by several authors
(see [7], and the references cited therein). Type I hidden symmetries are the
symmetries that are lost by reduction processes and their importance yields in
the fact that they can also be used to reduce the order of differential equations
for which the classical Lie method is not applicable. The main problem with
these symmetries is that there has been no general method for determining
them and only several ad hoc methods have been worked out ([7]).

In [8] a new class of symmetries (C∞-symmetries) has been introduced.
This class contains Lie symmetries and has associated an algorithm to reduce
the order of an ordinary differential equation which is more general than
that corresponding to Lie symmetries. Many of the known order reduction
processes that are not a consequence of the existence of Lie symmetries are a
consequence of the invariance of the equation under C∞-symmetries. We have
also found some ordinary differential equations whose Lie symmetries are
trivial, have no obvious order reductions, but can completely be integrated by
using this new class of symmetries.

Type I hidden symmetries can be recovered as C∞-symmetries of the reduced
equations and, in particular, the C∞-symmetries that are a consequence of the
invariance of the equation under exponential vector fields can be calculated
through a well-defined algorithm. While hidden symmetries are manifested as
nonlocal symmetries of the reduced equations, whose coordinate functions
depend on the integrals of the dependent and independent variables, the
C∞-symmetries of an equation are well-defined vector fields on the space of
the variables of the equation.

In this article, we consider nth-order differential equations that admit the
nonsolvable symmetry algebra so(3,R), associated to the action of the rotation
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group. It can always be chosen a base of generators {X1, X2, X3} of the Lie
algebra so(3,R) such that the corresponding Lie brackets are given by

[X1, X2] = X3,

[X1, X3] = −X2,

[X2, X3] = X1.

(1)

If we use any of the generators Xi to reduce the order of the equation, the
remaining are lost as Lie symmetries of the equation are obtained at the first
step of the reduction. We prove here that the lost symmetries can be recovered
as C∞-symmetries for the reduced equation. Any of these two C∞-symmetries
can be used to reduce the order again and the unused C∞-symmetry can be
recovered as a C∞-symmetry of the equation obtained at the second stage of the
reduction. As a consequence, the order of the original equation can successively
be reduced by three, by means of a process which is somewhat similar to the
usual for solvable algebras. The main advantage of this step-by-step method of
reduction is that the general solution of the original equation can be recovered
from the reduced one by solving three first-order differential equations.

As a consequence, the former method provides the general form of the
third-order differential equations that admit the Lie algebra so(3,R) as symmetry
algebra: i.e., any equation admitting so(3,R) can be transformed, by a change
of variables, into a equation of the form that we present in Section 4.1.
Previously, an equivalent general form for these equations had been calculated
by Mahomed and Leach [9] by direct methods (see also [10]). Besides, we
provide here an algorithm to reduce the order of these equations, and we have
obtained a simple general form for the first-order reduced equations that appear
at the last step of the reduction. Moreover, we present a method to recover the
general solution of the third-order equation by solving two first-order equations
that can be solved by quadratures, because one of them is linear and the other
one can be solved by simple integration.

2. Notation and preliminary results

Let us consider an nth-order ordinary differential equation

�
(
x, u(n)

) = 0, (2)

where (x, u) ∈ M, for some open subset M ⊂ X × U � R
2. We denote by M (k)

the corresponding k-jet space M (k) ⊂ X × U (k), for k ∈ N. Their elements are
(x, u(k)) = (x, u, u1, . . . , uk), where, for i = 1, . . . , k, ui denotes the derivative
of order i of u with respect to x. We assume that the implicit function theorem
can be applied to equation (2), and, as a consequence, this equation can locally
be written in the explicit form
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un = �
(
x, u(n−1)

)
. (3)

The vector field

A(x,u) = ∂

∂x
+ u1

∂

∂u
+ · · · + �

(
x, u(n−1)

) ∂

∂un−1

will be called the vector field associated with equation (3).

2.1. Lie symmetries and order reductions

It is well known [3] that a vector field X on M is a Lie symmetry of equa-
tion (3) if and only if there exists a function ρ ∈ C∞(M (1)) such that[

X (n−1), A(x,u)
] = ρ A(x,u),

where X (n−1) denotes the usual (n − 1)th prolongation of the vector field X.
A Lie symmetry X can be used to reduce the order of the equation by one:

we introduce a change of variables {y = y(x, u), α = α(x, u)} such that the
vector field X can be written as X = ∂

∂α
, in some open set of variables {y, α},

that will also be denoted by M. Since X is a Lie symmetry of (3), this equation
can be written in terms of variables {y, α(n)} of M (n) in the form

αn = 	(y, α1, α2, . . . , αn−1). (4)

It can easily be checked that the vector field associated with equation (4) is
the vector field

A(y,α) = 1

Dx (y(x, u))
A(x,u), (5)

written in the new variables, where Dx denotes the total derivative operator
with respect to x.

If we set w = α1 in (4), we obtain a reduced equation

wn−1 = 	(y, w, w1, . . . , wn−2), (6)

where (y, w) is in some open set M1 ⊂ R
2.

Let π
(k)
X : M (k) → M (k−1)

1 be the projection (y, α, α1, . . . , αk) �→
(y, w, . . . , wk−1) = (y, α1, . . . , αk), for k ∈ N. A vector field V on M (k) will
be called π

(k)
X -projectable if [

X (k), V
] = f X (k),

for some function f ∈ C∞(M (k)). This implies that V must take the following
form in the variables {y, α(k)}:

V = ξ (y, α1, . . . , αk)
∂

∂y
+ η(y, α, α1, . . . , αk)

∂

∂α
+

k∑
i=1

ηi (y, α1, . . . , αk)
∂

∂αi
.
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The π
(k)
X -projection of V on M (k−1)

1 is the vector field

(
π

(k)
X

) ∗ (V ) = ξ (y, w, . . . , wk−1)
∂

∂y
+

k∑
i=1

ηi (y, w, . . . , wk−1)
∂

∂wi−1
.

With this definition, it can be checked that the vector field A(y,α) is
π

(n−1)
X -projectable and its projection is the vector field A(y,w) associated with

reduced equation (6).

2.2. C∞-symmetries and order reductions

The concept of Lie symmetry for an ordinary differential equation can be
generalized in several ways: conditional symmetries, Lie–Bäcklund symmetries,
etc. In [8] we have introduced the concept of C∞-symmetry. This concept is
somewhat similar to the concept of Lie symmetry, but it is based on a different
way to prolong vector fields:

DEFINITION 1. (Generalized prolongation formula). Let X = ξ (x, u) ∂
∂x +

η(x, u) ∂
∂u be a vector field defined on M, and let λ ∈ C∞(M (1)) be an arbitrary

function. The λ-prolongation of order n of X, denoted by X [λ,(n)], is the vector
field defined on M (n) by

X [λ,(n)] = ξ (x, u)
∂

∂x
+

n∑
i=0

η[λ,(i)]
(
x, u(i)

) ∂

∂ui
,

where η[λ,(0)](x, u) = η(x, u) and

η[λ,(i)]
(
x, u(i)

) = Dx

(
η[λ,(i−1)]

(
x, u(i−1)

)) − Dx (ξ (x, u))ui

+ λ
(
η[λ,(i−1)]

(
x, u(i−1)

) − ξ (x, u)ui

)
,

for 1 ≤ i ≤ n.

Let us observe that, if λ = 0, the λ-prolongation of order n of X is the usual
nth prolongation of X.

DEFINITION 2. Let �(x, u(n)) = 0 be an nth-order ordinary differential
equation. We will say that a vector field X, defined on M, is a C∞(M (1))-symmetry
of the equation if there exists a function λ ∈ C∞(M (1)) such that

X [λ,(n)]
(
�

(
x, u(n)

)) = 0, when �
(
x, u(n)

) = 0.

In this case we will also say that X is a λ-symmetry, or a C∞-symmetry if
there is no place for confusion.

Let us observe that if X is a 0-symmetry then X is a classical Lie symmetry.
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In [8] it is proved that a vector field X on M is a C∞(M (1))-symmetry of
equation (3) if and only if there exist two functions, λ, ρ ∈ C∞(M (1)), such that[

X [λ,(n−1)], A(x,u)
] = λX [λ,(n−1)] + ρ A(x,u).

We have also proved that if X is a C∞(M (1))-symmetry then there exists
a procedure to reduce the equation to an (n − 1)th-order equation and a
first-order equation:

THEOREM 1. Let X be a λ-symmetry, with λ ∈ C∞(M (1)), of the equation
�(x, u(n)) = 0. Let y = y(x, u) and w = w(x, u, u1) be two functionally
independent first-order invariants of X [λ,(n)]. The general solution of the
equation can be obtained by solving an equation of the form �r (y, w(n−1)) = 0
and an auxiliary equation w = w(x, u, u1).

The equation �r (y, w(n−1)) = 0 can be constructed as follows: if y = y(x, u)
and w = w(x, u, u1) are two functionally independent first-order invariants of
X [λ,(n)], then the set

y, w, w1 = Dxw

Dx y
, . . . , wn−1 = Dxwn−2

Dx y

constitutes a complete system of functionally independent invariants of X [λ,(n)]

and, therefore, the equation can be written in terms of {y, w, w1, . . . , wn−1}.

3. C∞-symmetries and conservation of symmetries
for the Lie algebra so(3,R)

Let us consider an nth-order differential equation

�
(
x, u(n)

) = 0 (7)

that admits the nonsolvable Lie algebra so(3,R) as symmetry algebra. It can
always be chosen as a base of generators {X1, X2, X3} of so(3,R) such that the
corresponding Lie brackets are given by (1).

If we use any of the generators Xi to reduce the order, the others are lost as
Lie symmetries of the equation obtained at the first step of the reduction. Next,
we study how the two lost symmetries can be recovered as C∞-symmetries of
the reduced equation. As a consequence, any of them can be used to reduce
the order and the unused symmetry can be regained as a C∞-symmetry
of the (n − 2)th-order equation. This last C∞-symmetry leads to a new order
reduction. As a result, the order of the equation can be reduced by three in
three steps. It is sufficient to study the use of sequences that begin with X1,

because the study of the reduction process that begins with X2 or X3 is similar.
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3.1. Reduction process

� FIRST STEP: Use of the Lie symmetry X1:
With the notations introduced in the previous section, if the Lie symmetry
X1 is used to reduce the order of equation (7), the reduced equation will be
denoted by

�1
(
y, w(n−1)

) = 0, (8)

where (y, w) ∈ M1.

The Lie symmetries X2, X3 are lost for this reduced equation. However,
they can be recovered as C∞-symmetries. This result is proved in the
following theorem.

THEOREM 2. There exist two complex-valued functions, f2, f3 ∈ C∞(M, C),
such that the vector fields f2(X (1)

2 + i X (1)
3 ) and f3(X (1)

2 − i X (1)
3 ) are

π
(1)
X1

-projectable. Their projections on M1, Y2 = (π (1)
X1

) ∗ ( f2(X (1)
2 + i X (1)

3 ))
and Y3 = (π (1)

X1
) ∗ ( f3(X (1)

2 − i X (1)
3 )), are C∞-symmetries of equation (8).

Proof: Let us denote X̃2 = X2 + i X3 and X̃3 = X2 − i X3. It can easily be
checked that[

X (k)
1 , X̃2

(k)
] = −i X̃2

(k),
[
X (k)

1 , X̃3
(k)

] = i X̃3
(k),

for k ∈ N. Let f2, f3 ∈ C∞(M, C) be such that

X1( f2) = i f2, X1( f3) = −i f3.

We have [
X (k)

1 , f2 X̃2
(k)

] = 0,
[
X (k)

1 , f3 X̃3
(k)

] = 0,

for k ∈ N; therefore, the vector fields f2 X̃2
(1), f3 X̃3

(1) are π
(1)
X1

-projectable.
Let us denote Yi = (π (1)

X1
) ∗ ( fi X̃i

(1)), for i = 2, 3.

By using the prolongation formula given in Definition 1, it can be
checked that f X (k) = ( f X )[λ,(k)], where λ = −D( f )

f . Hence((
π

(1)
X1

) ∗ (
fi X̃i

(1)))(k) = Y [λi ,(k)]
i , λi = −Dy( fi )

fi
(i = 2, 3). (9)

Because X2 and X3 are Lie symmetries of the original equation, we get[
fi X̃i

(n−1), A(y,α)
] = λ̃i fi X̃i

(n−1) + ρ̃i A(y,α) (i = 2, 3),

for some functions λ̃i , ρ̃i . It can be checked, by using the identity of Jacobi
for the families of vector fields {X (n−1)

1 , f2 X̃2
(n−1), A(y,α)} and {X (n−1)

1 ,

f3 X̃3
(n−1), A(y,α)}, that the functions λ̃i and ρ̃i are X (1)

1 -invariant. We define
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λi and ρi , respectively, by (π (n−1)
X1

) ∗ (λi ) = λ̃i and (π (n−1)
X1

) ∗ (ρi ) = ρ̃i , for
i = 2, 3. Therefore,[

Y [λi ,(n−1)]
i , A(y,w)

] = [(
π

(n−1)
X1

) ∗ (
fi X̃i

(n−1)
)
,
(
π

(n−1)
X1

) ∗ (
A(y,α)

)]
= (

π
(n−1)
X1

) ∗ (
λ̃i fi X̃i

(n−1) + ρ̃i A(y,α)
)

= λi

(
π

(n−1)
X1

) ∗ (
fi X̃i

(n−1)
) + ρi

(
π

(n−1)
X1

) ∗ (
A(y,α)

)
= λi Y

[λi ,(n−1)]
i + ρi A(y,w).

This concludes the proof. �

As a consequence of the previous theorem, any of the two C∞-symmetries,
Y2 and Y3, can be used to reduce the order of equation (8). We will only
study here the use of the C∞-symmetry Y2, because the corresponding
study for the vector field Y3 is similar.

� SECOND STEP: Use of the C∞-symmetry Y2:
We choose a system of coordinates {z = z(y, w), β = β(y, w)} such that Y2

can be written as ∂
∂β

. Let µ = µ(z, β, βz) be an invariant of Y2
[λ2,(1)] such

that it is functionally independent of z. Thus, we obtain an order reduction
for equation (8) by using Y2 which can be written in explicit form as

µn−2 = 	
(
z, µ(n−3)

)
, (10)

where (z, µ) ∈ M2, for some open set M2 of a two-dimensional manifold on
C × C. Let us denote by π

[λ2,(k)]
Y2

: M (k)
1 → M (k−1)

2 the map defined by
(z, β, µ, µ1, · · · , µk−1) �→ (z, µ, µ1, · · · , µk−1). The vector field associated
with equation (10) is

A(z,µ) = (
π

[λ2,(n−2)]
Y2

) ∗ (
A(z,β,µ)

)
,

where A(z,β,µ) denotes the vector field

A(z,β,µ) = ∂

∂z
+ βz

∂

∂β
+ µ1

∂

∂µ
+ · · · + 	

(
z, µ(n−3)

) ∂

∂µn−3
.

THEOREM 3. There exists a function g3 ∈ C∞(M1, C) such that g3Y [l3,(1)]
3 is

π
[λ2,(1)]
Y2

-projectable and its projection (π [λ2,(1)]
Y2

) ∗ (g3Y3) is a C∞-symmetry
of equation (10).

Proof: It can be checked that[
Y [λ2,(k)]

2 , Y [λ3,(k)]
3

] = h2Y [λ2,(k)]
2 + h3Y [λ3,(k)]

3
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for some functions h2, h3 ∈ C∞(M1, C). Let g3 ∈ C∞(M1, C) be a function
such that Y2(g3) = −h3g3. Then[

Y [λ2,(k)]
2 , g3Y [λ3,(k)]

3

] = g3h2Y [λ2,(k)]
2 ,

for k ∈ N. Therefore, g3Y [λ3,(1)]
3 is π

[λ2,(1)]
Y2

-projectable.
Since Y3 is a C∞-symmetry of equation (8), there exist two functions

λ̃3, ρ̃3 such that[
g3Y [λ3,(n−2)]

3 , A(z,β,µ)
] = λ̃3g3Y [λ3,(n−2)]

3 + ρ̃3 A(z,β,µ). (11)

By the identity of Jacobi for the vector fields {Y [λ2,(n−2)]
2 , g3Y [λ3,(n−2)]

3 ,

A(z,β,µ)}, it can be checked that the functions λ̃3 and ρ̃3 are

Y [λ2,(n−2)]
2 -invariant. Hence, if λ′

3 and ρ3 are such that (π [λ2,(n−2)]
Y2

) ∗ (λ′
3) = λ̃3

and (π [λ2,(n−2)]
Y2

) ∗ (ρ3) = ρ̃3, we finally obtain

[(
π

[λ2,(n−2)]
Y2

) ∗ (
g3Y [λ3,(n−2)]

3

)
, A(z,µ)

]
= λ′

3

(
π

[λ2,(n−2)]
Y2

) ∗ (
g3Y [λ3,(n−2)]

3

) + ρ3 A(z,µ).

Therefore (π [λ2,(1)]
Y2

) ∗ (g3Y [λ3,(1)]
3 ) is a λ′

3-symmetry of equation (10) that
will be denoted by Z3.

� THIRD STEP: Use of the C∞-symmetry Z3:
The (n − 2)th-order equation obtained at the second stage, once we have
used the Lie symmetry X1 and the C∞-symmetry Y2, admits the vector
field Z3 as a C∞-symmetry. Clearly Z3 can be used to reduce again the
order of the equation.

3.2. Recovery of solutions

The method of reduction by using C∞-symmetries allows us to reduce the order
of any equation admitting so(3, R) as symmetry algebra by three successive
one-order reductions. As a consequence, the general solution of the original
equation can be obtained, through the reduced one, by solving three auxiliary
first-order equations.

If the order of the original equation is three, after two order reductions, a
first-order differential equation is obtained. At this last step of the reduction, the
unused Lie symmetry that has been lost can be recovered as a C∞-symmetry.
In the following section, we will show how the method of the C∞-symmetries
can be used to give a general form of the first-order equations that appear in the
last step of the reduction process. The corresponding two first-order auxiliary
equations will also be given, and we will show the way they can be solved.



346 C. Muriel and J. L. Romero

4. General method to solve a third-order equation admitting
the nonsolvable symmetry algebra so(3,R)

Let

�
(
x, u(3)

) = 0 (12)

be an arbitrary third-order equation admitting so(3,R) as symmetry algebra.
The action of the rotation group so(3,R) on a two-dimensional real manifold

can be modeled by the transformation group generated by the following vector
fields:

X1 = ∂

∂x
, X2 = cos(x) cot(u)

∂

∂x
+ sin(x)

∂

∂u
,

X3 = −sin(x) cot(u)
∂

∂x
+ cos(x)

∂

∂u
.

(13)

By means of a change of variables in equation (12), we can assume that the
symmetry algebra is generated by the vector fields {X1, X2, X3} given in (13).

Let us study in coordinates the reduction process described in the previous
section.

� FIRST STEP: USE OF X1:
Let {y = u, α = x} be the change of variables such that the vector field X1

takes the form X1 = ∂
∂α

, and we consider the corresponding system of
local coordinates {y, α(3)} in M (3). The vector fields X2 and X3 in (13) are
then expressed as follows:

X2 = sin(α)
∂

∂y
+ cos(α) cot(y)

∂

∂α
,

X3 = cos(α)
∂

∂y
− (sin(α) cot(y))

∂

∂α
.

By Theorem 2, there exist two functions f2, f3 such that the vector fields
f2(X (1)

2 + i X (1)
3 ) and f3(X (1)

2 − i X (1)
3 ) are π

(1)
X1

-projectable. It can be checked
that

X̃2 = X (1)
2 + i X (1)

3 = e−iα

(
−i

∂

∂y
+ cot(y)

∂

∂α

+ (−αy
2 − iαy cot(y) − csc(y)2) ∂

∂αy

)
and

X̃3 = X (1)
2 − i X (1)

3 = eiα

(
i

∂

∂y
+ cot(y)

∂

∂α

+ ( −αy
2 + iαy cot(y) − csc(y)2) ∂

∂αy

)
.
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Therefore, the vector fields f2(X (1)
2 + i X (1)

3 ) and f3(X (1)
2 − i X (1)

3 ) are
π

(1)
X1

-projectable for the functions

f2 = eiα, f3 = e−iα.

We denote w = αy = 1
ux

and equation (12) can be expressed as a
second-order differential equation

�1
(
y, w(2)

) = 0, (14)

for (y, w) ∈ M1 which corresponds to equation (8).
By Theorem 2, the vector fields Y2 = (π (1)

X1
) ∗ ( f2(X (1)

2 + i X (1)
3 )) and

Y3 = (π (1)
X1

) ∗ ( f3(X (1)
2 − i X (1)

3 )) are C∞-symmetries of equation (8). It can
be checked that these C∞-symmetries and the corresponding functions l2, l3

are:

Y2 = −i
∂

∂y
+ (−w2 − iw cot(y) − csc(y)2)

∂

∂w
, λ2 = −iw

Y3 = i
∂

∂y
+ (−w2 + iw cot(y) − csc(y)2)

∂

∂w
, λ3 = iw.

Let us observe that Y3 = Ȳ2, λ3 = λ̄2.
� SECOND STEP: USE OF Y2:

In the system of coordinates{
z = ln

(
cot

(
y

2

))
− i arctan(w sin(y)), β = −iy

}
(15)

the vector field Y2 can be written as ∂
∂β

. It can be checked that

µ = βz sinh(β)

2 (cosh(z) − cosh(β) sinh(z))
(16)

is a first-order invariant of Y2
[λ2,(1)]. Thus, we obtain an order reduction for

equation (14) by using Y2:

�2
(
z, µ(1)

) = 0, (17)

where (z, µ) ∈ M2.

In terms of {z, β, µ} we have

Y [l3,(1)]
3 = 2 csch(β)

∂

∂z
− ∂

∂β
− 4 csch(β) µ2 sinh(z)

∂

∂µ
.

By Theorem 3, there exists a function g3 such that g3Y [l3,(1)]
3 is

π
[λ2,(1)]
Y2

-projectable. In this case we have that, for g3 = sinh(β), the projection
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Z3 = (
π

[λ2,(1)]
Y2

) ∗ (
g3Y [l3,(1)]

3

) = 2
∂

∂z
− 4µ2 sinh (z)

∂

∂µ

is a C∞-symmetry of equation (17) for the function

l ′3 = 2µ sinh(z).

� THIRD STEP: USE OF Z3:
After the second stage of the reduction process, we have obtained the
first-order differential equation (17) that admits Z3 as λ′

3-symmetry. To
determine the most general and simple form of first-order differential
equations that admit Z3 as λ′

3-symmetry, we use the change of variables
{s = − 1

µ
+ 2 cosh(z), r = z} where Z3 is simply expressed as Z3 = 2 ∂

∂r .

In coordinates {s, r, rs} equation (17) can be written in an explicit form as

rs = F(s, r ).

This equation admits Z3 = 2 ∂
∂r as λ̃3-symmetry, for the function λ̃3 =

−2rs sinh(r )
s−2 cosh(r ) .

By Definition 1,

Z [̃λ3,(1)]
3 = 2

∂

∂r
− 4rs sinh(r )

s − 2 cosh(r )

∂

∂rs
.

If we impose

Z [̃λ3,(1)]
3 (rs − F(r, s)) = 0 when rs = F(s, r ),

we obtain that

F(s, r ) = C(s)(−s + 2 cosh (r ))

for some arbitrary function C depending on s. Therefore, we have obtained
the following general form for the first-order differential equation obtained
at the last stage of the reduction process

rs = C(s) (−s + 2 cosh (r )) . (18)

If, in this third stage, we use coordinates {r, s, sr } instead of {s, r, rs}, the
general form we would obtain is

sr = B(s)

(−s + 2 cosh (r ))
, (19)

where B is an arbitrary function depending on s.
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4.1. Classification of equations

The step-by-step method of reduction based on the existence of C∞-symmetries,
for third-order equations (12), leads to first-order differential equations of the
form (18)–(19).

As a consequence, we can give a complete classification of the third-order
ordinary differential equations that admit the nonsolvable Lie algebra so(3,R)
as symmetry algebra. If we write the first-order reduced equation (18) (resp.
(19)) in terms of the original system of coordinates, we obtain the general
form of third-order differential equations that admit the symmetry algebra
generated by the vector fields (13):

u3 = csc(u)
(
u2

1 + sin(u)2)2
C̃(s)

+ u1

(
−1 + u2

1 − 3u2 cot(u) − 3
(
u2

1 + u4
1 − u2

2 − u2 sin(2u)
)

u2
1 + sin(u)2

)
,

where

s = −2i
(−u2 sin(u) + cos(u)

(
2u2

1 + sin(u)2))(
u2

1 + sin(u)2) 3
2

and C̃(s) = i
4C(s) (resp. C̃(s) = i

4 B(s)).

4.2. Recovery of solutions

Let us consider the first-order reduced equation (18). Because {s = − 1
µ

+
2 cosh(z), r = z}, equation (18) in terms of {z, µ, µz} is(

µz

µ2
+ 2 sinh(z)

)
C

(
− 1

µ
+ 2 cosh(z)

)
= µ. (20)

Similarly, equation (19) in terms of {z, µ, µz} is

µz

µ2
+ 2 sinh(z) = B

(
− 1

µ
+ 2 cosh(z)

)
µ. (21)

If µ = H0(z, C1) solves equation (20) or (21), by (16), we get

βz sinh(β) = 2H0(z, C1)(cosh(z) − cosh(β) sinh(z)).

We set β̃ = cosh(β). Clearly β̃ must satisfy the first-order linear equation

β̃ z = 2H0(z, C1)(cosh(z) − β̃ sinh(z)). (22)

Let β̃ = H1(z, C1, C2) be the general solution of the previous equation. By (15)

cos(y) = H1

(
ln

(
cot

(
y

2

))
− i arctan(w sin(y)), C1, C2

)
(23)
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is the general solution of equation (14). When w in (23) is locally expressed, in
terms of y, as w = H2(y, C1, C2), the general solution of the original equation
is obtained from

αy = H2(y, C1, C2)

by simple quadrature with respect to the variable y:

α =
∫

H2(y, C1, C2) dy + C3 = H3(y, C1, C2, C3).

In terms of the original variables {x, u} the general solution of equation (12) is
given by

x = H3(u, C1, C2, C3).

5. An example

Let us consider the third-order differential equation

u3 = u1

(
−1 + u1

2 − 3u2 cot(u) − 3
(
u1

2 + u1
4 − u2

2 − u2 sin(2u)
)

u2
1 + sin(u)2

)
(24)

that admits the Lie algebra so(3,R) as symmetry algebra. The corresponding
first-order reduced equation (21) is given by

µz

µ2
+ 2 sinh(z) = 0.

The general solution of this equation is µ = H0(z, c1) = −1
−2 cosh(z) + c1

. The
linear first-order equation corresponding to equation (22) is

β̃ z + 2 sinh(z)

−2 cosh(z) + c1
β̃ = 2 cosh(z)

−2 cosh(z) + c1
.

This equation can easily be integrated and its general solution is

β̃ = −c2 + 2 sinh(z)

−c1 + 2 cosh(z)
.

By (15), we have

cos(y) = −
−2iw + 2 cot(y) − c2

√
1 + w2sin(y)2

2iw cos(y) − 2 csc(y) + c1

√
1 + w2sin(y)2
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and w can locally be expressed as

w = ± i (c2 − c1 cos(y)) csc(y)√
(c2 − c1 cos(y))2 + 4 sin(y)2

.

To obtain real solutions of the equation, we choose c1 = iC1 and c2 = iC2,

where C1 and C2 are arbitrary real constants. Thus

w = ± (C2 − C1 cos(y)) csc(y)√
− (C2 − C1 cos(y))2 + 4 sin(y)2

is real, when variable y is defined on some open set of R such that −(C2 −
C1 cos(y))2 + 4 sin(y)2 > 0. Because w = αy, by integration with respect to y
we get

α = ±1

2
arctan

2(−C1 + C2 cos(y))
√

−(C2 − C1 cos(y))2 + 4 sin(y)2

(−C1 + C2 cos(y))2 + (−C2 + C1 cos(y))2 − 4 sin(y)2

−C3.

(25)

When α and y in (25) are replaced by x and u, respectively, we obtain the
general solution of equation (24). This general solution can be expressed, in
implicit form, as follows:

tan(2x + C3) = ±
2(−C1 + C2 cos(u))

√
−(C2 − C1 cos(u))2 + 4 sin(u)2

(−C1 + C2 cos(u))2 + (−C2 + C1 cos(u))2 − 4 sin(u)2
.

(26)

Some particular solutions can easily be expressed. For instance, when
C2 = 0, C1 = 2 we get the following one-parameter family of solutions of the
original equation (24):

u = ±1

2
arccos(−tan(C3 + x))2.

6. Conclusions

When the classical Lie method is used to reduce the order of any ordinary
differential equation admitting the three-dimensional nonsolvable Lie algebra
so(3,R) as symmetry algebra, then at least one of its generators is lost in the
reduction process.

Nevertheless, in this article we have proved that the method of reduction by
using C∞-symmetries can be applied to carry out three successive one-order
reductions, if the order of the original equation is n > 3.
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If n = 3, the Lie method of reduction is not applicable, because the
corresponding third-order auxiliary equation is equivalent to the original
equation. We have proved here that, in this case, after two successive one-order
reductions, the first-order reduced equation conserves the unused symmetry as
a C∞-symmetry. This let us give a simple general form for the first-order
equations achieved at the end of the reduction procedure. As an additional result,
we get a complete classification of the third-order equations that admit so(3,R).

The main consequence of this step-by-step method of reduction is that the
general solution of the original equation can be obtained from the reduced one
by solving three first-order differential equations. Two of these equations can
be solved by quadratures, because one of them is linear and the other can
directly be solved by integration. In particular, if n = 3, the general solution
of the original equation can be obtained from the first-order reduced equation
by two quadratures.
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