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Operators with hypercyclic Cesaro means

by

FERNANDO LEON-SAAVEDRA (Cédiz)

Abstract. An operator T on a Banach space B is said to be hypercyclic if there exists
a vector z such that the orbit {T"xz},>1 is dense in B. Hypercyclicity is a strong kind of
cvelicity which requires that the lincar span of the orbit is dense in B. If the arithmetic
means of the orbit of 2 are dense in B then the operator T is said to be Cesaro-hypercyclic.
Apparently Cesaro-hypercyclicity is a strong version of hypercyclicity. We prove that an
operator is Cesaro-hypereyclic if and only if there exists a vector x € B such that the orbit
{n "IT"I,}T,Zl is dense in B. This allows us to characterize the unilatcral and bilateral
weighted shifts whose arithmetic means are hypercyclic. As a consequence we show that
there are hypercyclic operators which are not Cesaro-hypereyelic, and more surprisingly.
there are non-hypercyclic operators for which the Cesaro means of some orbit are dense.
However. we show that both classes, the class of hypercyclic operators and the class of
(esaro-hypercyclic operators, have the same norm-closure spectral characterization.

1. Introduction. Let T be a bounded linear operator on a complex
Banach space B. The motivation for this work comes from some questions
related to ergodic theory (see [Du], [LZ]. [MZ], [Sw] for instance). The uni-
form ergodic theory deals with the asymptotic behavior of the arithmetic

means

[+T 4. +T"
M (T) = et

n
in the operator norm (uniform) topology, as n tends to infinity. N. Dunford
in 1943 (see [Du]) discussed the connections between the spectrum of T and
convergence of sequences of functions Q,(T') of T. Specifically, he obtained
the following basic result in uniform ergodic theory:

THEOREM (Dunford). The sequence M, (T) uniformly converges if and
only if
(a) imn~ YT = 0. and
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(b) the point 1 is at most a simple pole of the resolvent R\(T) =
(T — A~ 1.

Many interesting and equivalent geometric conditions for the convergence
of M,,(T) are also obtained in [MZ] and [LZ].

In the present work we consider the natural question (posed by J. Zemé-
nek to the author) of connections between T' and the “maximal divergence”
of M, (T). The maximal divergence is understood to be the existence of a
vector x in B such that the orbit {17, (T)x},>1 is dense in B. Let us call such
operators Cesaro-hypercyclic and the vector for which the last condition is
satisfied, a Cesaro-hypercyclic vector.

An operator T is hypercyclic if there exists a vector 2 such that the
orbit {T"x} is dense in B. In this case the vector x is called hypercyclic for
T. If there exists a vector - for which the set {A\T"x : n € N. XA € C} is
dense. then the operator T and the vector x are called supercyclic. If there
exists a sequence {\,} for which the set {\, T2} is dense we will say that
T is supercyclic for the sequence {\,}. Finally we can extend the notion to
sequences of linear operators: the sequence {7, } is hvpercvelic if there exists
x such that {T,x} is dense.

Our first result states that an operator T is Cesaro-hvpercvelic if and
ounly if there exists a vector u such that {n='T"r} is dense. that is, T
is supercyclic for the sequence {1/n}. This result is similar to Dunford’s
Theoremi in the hypercyclic setting. Observe that it implies that Cesaro
hyvperevelicity is a special kind of supercvelicity.

Since the Cesaro means are more regular. in general one may think that
Cesaro hyperevelicity is a stronger condition than hyperevelicity. In Sec-
tion 3 we characterize the unilateral and bilateral weighted shifts which are
Cesaro-hyperevelic. As a consequence we show that for the case of unilat-
cral shift. Cesaro hypercyelicity is indeed a stronger condition than hyper-
evelicity. Surprisingly. for the bilateral weighted shift case. there are still
examples that have no vectors with dense orbit but do have dense Cesaro
orbit.

Thus hypercyclicity does not imply Cesaro hyperevelicity and vice versa.
In this connection. in Section 4 we show that any separable Banach space
admits a Cesaro-hypercyclic operator. thus obtaining the Cesaro version of
Ansari-Bernal's result (see [An]. [Be]) for hypercvelicity. Finallv. although
both classes are quite different we show (see Section 5) that their norm
closures have the same spectral characterization.

Before going further the author would like to thank the stafl of the Insti-
tute of Mathematics of the Polish Acadeniy of Sciences, specially Professor
J. Zemdnek. for their hospitality during the author’s stay in Warsaw in
February 1998.
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2. Hypercyclic arithmetic means. This section is devoted to prov-
ing an analogue to Dunford’s result. That is, an operator T on a Banach
space is Cesaro-hypercyclic if and only if the sequence T™ /n is hypercyclic.
Hence, Cesaro hypercyclicity is a special kind of supercyclicity. To prove
this result we need to show some properties relating to the spectrum of
Cesaro-hypercyclic operators.

Given a complex number X. let M, (X) denote the arithmetic mean of
the powers of A, that is,

R .S D L

M,(N) = . .on=12..

Observe that if |A\] > 1 then M, (A) diverges to oc. On the other hand if
Al < 1 then M, () is contained in the closed unit disk for any positive
integer n. Therefore we can state the following result.

LEMMA 2.1, Let A, 2, be complex numbers. Then the set {]\[,,('/\):()},,,21
of complex numbers is not dense in C.

Denote by o,(T") the point spectrum of an operator T'. Tt is well known
that the range ran(7T — \) is dense if and only if A ¢ o,(T*).

PROPOSITION 2.2. If T is Cesaro-hypercyclic then op(T*) = 0, that is.
ran(T — A) is dense for any \ € C.

Proof. Suppose that A € ¢,(T*). Then there exists r* ¢ B* \ {0} such
that T*2* = Aa*. Now if z is a Cesaro-hypercyclic vector for T . then the
sequence {Z\[n(T):c}nZQ is dense in B. Therefore the collection of complex
numbers (M, (T)x. z*) will be dense in C. But for each n we have

(M, (T)z.2*) = (. Mo (T*)z*) = (x. M, (N\)z*) = M, (M) {2, 2*)

and by Lemma 2.1 it is clear that the set of complex numbers defined by
the right side of this equation, as n ranges through the positive integers. is
not dense in the complex plane, which concludes the proof. m

Now let us regard z as a hypercyclic vector for the sequence {n~17"}
or the sequence {n=!(I — T")}, and observe that
T”.T [ _ T’n T
(2.1) “ SCAAD

- , =n"tz]
n n

converges to zero as n — oc. So (2.1) establishes the following:

PROPOSITION 2.3. Let T be a bounded linear operator and x € B. Then
the following conditions are equivalent:

(a) The sequence {n='T"z} is dense.
(b) The sequence {n=1(I — T™)x} is dense.



204 F. Leén-Saavedra

The following theorem characterizes the chaotic behaviour of {M,(T)x)
in terms of a special kind of supercyclicity of T, in a useful form.

THEOREM 2.4. Let T be a bounded lineqr operator on a Banach space B.
The following conditions are equivalent:

(a) The sequence of arithmetic means M, (T) is hypercyclic.
(b) The sequence {n=1T"} 4s hypercyclic.

Proof. The main idea of the proof is based on the equality

n—1 n
(T_[)1+T+...+T :]—T.
n n
Assume that T s Ceséro-hypercyclic. Then there exists a vector x € B such
that {]l/;fn(T)x} is dense in B. Since T is Ceséro-hypercyclic, by Proposi-
tion 2.2, ran(7T — I) is dense and therefore the image of a dense subset under
I — I is dense. Hence, the orbit

(7= DTy = {11 )}

n

(2.2)

Is dense in B. Finally since {n‘l([—T")} is hypereyelic, from Proposition 2.3
we deduce that the sequence {n~177} ig hypercyclic.

For the converse assume that the sequence {n=1Tm} i hypercyclic. Then
Proposition 2.3 along with expression (2.2) ensures the existence of a vector
- B such that the orbit

UT = DMT)(2)} = {Ar,(Ty(T - Nax)}
I~ dense in B. That is, the vector (T - D is Ceséro-hypercyclic forT. m

REMARK 2.5. From the proof of Theorem 2.4 it follows that any Cesaro-
hvpereyelie vector for 7T ig also supercyclic for the sequence {n=1},

3. Unilateral and bilateral weighted shifts. This section deals with
the relationship between the set of hypercyclic operators and the set of
Cesaro-hypercyelic operators. In view of the properties of convergence (uni-
ormization) that the Cesaro means usually enjoy, one may think that the
condition of Cesaro hypercyelicity is stronger than hypercvelicity. T this sec-
Hon we will apply Theorem 2.4 to unilateral and bilateral welghted shifts.
We show that any Ces&ro—hypercyclic unilateral weighted shift is hyper-
~vclieswhile for the bilateral weighted shifts this is not the case: there are
vperators that are not hypercyclic but their Cesaro means are hypercyclie.

Let {2 }us0 be the canonical basis of ﬁQ(Z+). If {wn},lzl is a bounded
~cquence in C\ {0}, then the unilateral backward weighted shift T : ¢2 —, 42
> defined by

Te, =whe, 1. n 21, Tey=0.
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Since the properties of hypercyclicity and Cesaro hypercyclicity are invariant
under similarity, we can suppose that the weights are positive (see [Sh,
Prop. 1]). Analogously ¢?(Z) denotes the Hilbert space of bilateral sequences
which are 2-summable, and let {e,, },cz be the canonical basis of £2(Z). If
{wn}nez i1s a bounded sequence in C \ {0} the bilateral weighted shift is
defined by

Ten = wpen—1.

As in the case of the unilateral shift we can suppose that the weights are
positive.

The hypercyclicity of unilateral and bilateral shifts has been studied in
several works (see [Gr], [MS], [Ro], [Sal-3]). The basic tool to check if an
operator is hypercyclic is the Hypercyclicity Criterion. This criterion is a
sufficient condition for hypercyclicity that was discovered by Carol Kitai in
her 1982 unpublished thesis (see [Ki]). It was rediscovered later by Gethner
and Shapiro (see [GeS]).

HypercycLICITY CRITERION. Let {T,} be a sequence of bounded op-
erators on a separable Banach space B. Suppose that there exists a strictly
increasing sequence {ny} of positive integers for which there are

(a) a dense subset X C B such that ||T,,, x|l — 0 for every x € X
(b) a dense subset Y C B and a sequence of mappings Sy : Y — Y such
that T, Sy = identity on Y. and ||Sry|| — O for every y € Y.

Then the sequence {T,, } is hypercyclic, that is, there exists a vector
x € B such that {T,,, x} is dense in B.

Observe that if a sequence {T,,} of operators satisfies the criterion for a
sequence {ny} then it satisfies it for any subsequence {ry} C {n;}. Hence if
a sequence {T),} satisfies the criterion for {n;} then {7, } is hypercyclic for
any subsequence {ry} C {ns}: when this phenomenon happens the sequence
{T,} is said to be hereditarily hypercyclic. The Hypercyclicity Criterion and
hereditary hypercyclicity are equivalent for the sequence of iterates T;, = T"
of a single operator (see [Bes|).

From [Sa2. Theorem 2.8] it is not difficult to deduce that a unilateral
weighted backward shift is hypercyelic if and only if there is an increasing
sequence {ny} of positive integers such that

Nk
(3.1) lim Witq = OC

k—oc -
i=1

for each non-negative integer g. Moreover in [LM2] it is shown that any
hypercyclic unilateral shift T satisfies the Hypercyclicity Criterion (that is,
the sequence T, = T" satisfies it).
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PROPOSITION 3.1. Let T be a unilateral weighted backward shift with
weight sequence {wy, }y>1. Then T has hypercyclic Cesaro means if and only
if there exists an increasing sequence {ny} of positive integers such that

ny
Wi,
lim —H“l 1=
k—x ny

for each non-negative integer q.

Proof. Assume that T is Cesaro-hyvpercyclic. Let ¢ be a non-negative
integer and = = quo ¢;. Given = > (. since T is Cesaro-hypercyclic. there
exist a vector » = 21:1 rje; and n large enough (n > 2q) such that

(3.2) |l — 2] <=
and
TI?
(3.3) {—z—:‘<5.
In 1

Condition (3.2) follows from the fact that the set of hypercyclic vectors for
a hypercvelic sequence is a dense Gy set (see [GoS, Theorem 1.2]). From
(3.2) we see that [r;| <=zfor j >gand jr; = 1| <zfor 0 < j<gq.

From (3.3). it follows that

EELES e T | e

o

for 0 < s < ¢. Therefore. if we take into account that |z, ,| < = (n > 2q).
it follows that
} Hz—l Wits

1—-+¢
>

for 0 < s < q. and this proves the necessity.

Conversely. suppose that there exists an increasing sequence {ny } of pos-
itive integers such that limg_ n;] H:il wi.q = > for each non-negative
integer ¢. It is sufficient to show that the sequence T}, = T"'" /n;, satisfies the
Hypereyelicity Criterion. Indeed. take X = Y = linear span{e, }, >o. Since
T"ey = 0 for n large. we have T, — 0 pointwise on X. Define the sequence
of linear mappings Sy as

n

—1
‘Skeq = Nk ( H u'z+q> €qg+ny -

=1

Observe that T} Sy, is the identity on Y and since ng ([[/%, w;) ' — 0 for each
g, we have S, — 0 pointwise on Y. Hence n™!T" satisfies the Hyvpercyclicity
Criterion and therefore T is Cesaro-hvpercvclic, which vields the desired
result. m



Operators with hypercyclic Cesdro means 207

REMARK 3.2. The proof above actually gives more, namely, every uni-
lateral weighted backward shift with hypercyclic Cesaro means is hereditar-
ily Cesaro-hypercyclic, that is. there exists an increasing sequence {n;} of
positive integers such that for any subsequence {ri} € {n4}, the sequence
M, (T) is hypercyclic.

Proposition 3.1 together with the result of Salas (see condition (3.1) in
this section) yield the following corollary.

COROLLARY 3.3. Every Cesaro-hypercyclic unilateral weighted shift is
hypercyclic.

From [Sa2, Theorem 2.1] we know that a bilateral weighted backward
shift is hypercyclic if and only if there exists a sequence {ny} of positive
integers such that for any integer .

7 1y —1

(3.4) k’lEI:}cHu'q+i =oc and klgrolc H w,—; = 0.
i=1 §=0

In order to characterize when a bilateral backward shift is Cesaro-hyperevelic

we follow the techniques used in [Sal.2] and [MS]. The details are left to the

reader.

PROPOSITION 3.4. Let T be a bilateral weighted shift with weight se-
quence {w, byez. Then T is Cesaro-hypercyclic if and only if there cxists an
increasing sequence {ny,} of positive integers such that for any integer q.

T 1y —1
) A TI . W
lim Lﬁ =2 and  lm HL”——"—‘ = ().
b= 1y k- n.

REMARK 3.5. As in Remark 3.2. Proposition 3.1 can he strengthened
as follows: every Cesaro-hyperevelic hilateral weighted shift is hereditarily
Cesaro-hyperevelic.

EXAMPLE 3.6. The bilateral backward shift T defined by the weight se-

quence
(1 ifn<o
Y2 e

ts not hypercyclic. but it is Cesaro-hypercyclic.
-1 : , L
Proof. Observe that [ w, _; is constant. therefore by Salas™ theorem
(see condition (3.4) in this section) T is not hypercyclic. On the other hand
observe that

-1 , :
15, wy-i C [l g { 2" /n if g > 0,

- = and - = 29 Ipif g < 0.

Therefore by Proposition 3.4 the operator T is Cesaro-hypercyclic. u
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4. Existence of Cesaro-hypercyclic operators on separable Ba-
nach spaces. In [An] and [Be], S. Ansari and L. Bernal, solving inde-
pendently a question posed by Rolewicz (see [Ro)), showed that for any
separable Banach space B there exists a hypercyclic operator 7 on B. In
the present section we will show that any separable Banach space admits a
Cesaro-hypercyclic operator.

The crucial fact in this section is to show the following result:

THEOREM 4.1. Let T be a unilateral weighted backward shift defined on
(2(Z7), with a positive weight sequence {wy, bu>1, and let v be a positive
integer. Then the operator sequence 7

(I + T)’H,
n’
satisfics the Hypercyclicity Criterion.

Theorem 1.1 contains Theorem 3.3 of [Sa2] and Proposition 4.3 of [LM1].
The proof of Theorem 1.1 is easier than that of Proposition 4.3 of [LM1]
thanks to the following version of the Iypercyclieity Criterion which appears
in [GoS] and [Le, Theorem 2].

THeOREM A. Let {T,} be a sequence of commuting bounded operators.
The sequence {T,,} satisfies the Hypercyclicity Criterion if and only if for
any two non-void open sets U,V and any open neighborhood W of the origin.
there crists a positive integer n such that

T, U)W D and T,ONV)NV # 0.

The proof of Theorem 4.1 uses techniques of [Sa2] to prove that T+ T
is hypereyelic whenever T is a weighted backward shift with positive weights.
We will also need a lemma whose proof is a suitable modification of Lermma
3.2 in [Sa2|.

LEMMA B. Fiz a positive integer v. Let Cy, = (cij(n)) be the ok % 2k

matriz with
1 n
¢iiln)=— ).
.,I( ) nr <21‘ {, 1 . ’1>

Let By, = (b(n)) be a column vector such that bi(n) is a rational function
in n of degree at most ok _ iy where i = 1,....2% Then for n large
enough we have det C,, # 0 and there exists a solution X,, = (x;(n)) of the
equation B, = C, X, and the entries xi(n) satisfy le;(n)] < P/n', where P
15 a constant.

Now we have all the ingredients to establish the proof of Theorem 4.1.

Proof of Theorem 4.1. In accordance with Theorem A, let 4.V be two
non-void open sets and W an open neighborhood of the origin. We can



——
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suppose that there exists a dense set in (2(Z") having the form D = {z; =

271
Do Zig€iij €LT}
Since D is dense and U is open, we can choose 2z € UN D for some
positive integer k, that is, 2z = le 51 zi k€. We add to the vector z; a
k
suitable vector z = Z? 1 Zi€2h 4,1 to be determined afterwards, with the

same length as z;, and we try to solve the following system:

n 281 2k
(4.1) <<[;LTT)< Z Zj k€5 + Z$i€2k+i_1)vep> =0

j=0 i=1
with p=0,...,2% — 1. Recall that

8 .
Tme, — [l Wisom ifm <,
) 0 otherwise,

and observe that the matrix of the system (4.1) is the 2% x 2% matrix D =
(d; ;) with entries

1 2k +i—1
dij = n’<2k+J~1) H Ws:

Then
2k

det D = (war s )2 711 det ©
7

j=—2k41

where C' = ¢ijand ¢;; =n"" (2A+TJ l) By applying Lemma B, it follows
that if n is large enough, the system (4.1) is solvable, and the solution
satisfies |x;] < P/n* for some constant P. Since

n 2F-1 2k ok p—1
I+1n 1 AP
: nr ) ( Z Z5.k€5 +Z$i€2k+i~1> = Z (Z <j)TJ>xpezk+phl.

=0 i=1 p=1 *j=0
it follows that

[ Z Zﬂkeﬁzﬂ’ewz IE i:( ()i )
=

where L is another constant. That is, there exists a positive integer ng such
that if n > nj then there exists a vector z(n) (with small norm) such that

u+1"

(4.2) 2k +z(n) €U and (2 +z(n)) € W,
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that is,

I+1T" i
(—7)(1/{) NW#Q  ifn>ng.
"
On the other hand let z, = Z?:ﬁl zjre; be a vector in W N D and let
ol )

y = Zj:?)l yjie; be a vector in V N 'D. We can suppose without loss of
generality that & > [. Again we add to z; one vector with the same “length”

as 2 and we consider the linear system of equations

28 1 2t
o (I+1)"
(-1.3) <-I?’—( Z Zjk€j + Z ('l'zf’zk-w'fl) —Yi.ep ) = 0
3=0 1=1
with p = 0...., 2 — 1. Observe that the coefficient matrix of the system

(1.3) is the 28 x 2% matrix D = (d;.;) with entries

1 n 21’4—J71
dij = n_r (Qk b i> H Uy,
s=1
and the free term of (4.3) is B,, = (b,(n)). where b;(n) is a rational function
in n of degree at most 28 — ¢ — r. Therefore applving again Lemima B it
follows that if n is large enough, the svstem (4.3) has a solution, and this
~olution satisfies |x;| < P/n' for some constant P. Since

ok Ak ok

(1 + 1) A= 2 1 /%2 /n

o < Z N J‘”Z Ti€ok i1 ) —Uyr= ;Z < Z < > T‘1> Tp€ok iy 1.
J=0 1e=1 p=1 > j=0 J

it follows that

. 2/\‘ —1 2#

i ([ + T)n . \[

‘ Jj=0 i=1

ok 1
2 P
1 n 4 L
< — 1T Meapll < ==
= o ; Rl =
n ; j n
p=1 J=0
where L is a new constant. Hence, if n is large enough there exists a vector
* o o
(1) (with small norm) such that

[ T T
zp +ax(n) €W and (—i%—)—(z;\. +x(n)) € V.
r
Therefore by (4.2) if n is large enough. we have
(I+1T)" (I+1T)
n" n’
As a consequence of the latter, by Theorem A, (I + T')"/n" satisfies the
Hyvpercyelicity Criterion, and the proof is complete. =

UNW D and W)Yny # 0.
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REMARK 4.2. (a) The proof of Theorem 4.1 can be adapted for *(Z*)
with 1 <p < x.

(b) Observe that Theorem 4.1 implies in particular that the operator I+
T'. where T is any unilateral weighted backward shift. is Cesaro-hyperevelic.

Let B be a separable complex Banach space and let {w, }. {22} e two se-
quences in B and B* respectively. Recall that {n. 28} is a bounded biorthog-
onal system if both sequences are bounded. T3 (Xm) = Opam and the linear
span of {x,} is dense in B. As application of the Hahn- Banach theorem
one can show that any separable Banach space admits a bounded biorthog-
onal system (sce [LT, Theorem L.4.f]). Therefore in B we can consider the

subspace
X

>
X = { E apity s a, € C. E ja,, | < x}.
n=0 n=(

which is a Banach space endowed with the norm

> B
H Z (1,,,.'1*71”1 = Z [y

n=0 n=()
In fact X is isomorphic to 4(Z*) by the isomorphism J : ¢! — X, defined
by Je, = r,. where {en} is the standard unit vector basis of /ﬁ”l(Z*), Let
T, : 1 — (" be a sequence of bounded linear operators. A sequence of
operators T, : B — B is said to be a quasi-extension of {T}if T, X, =
JT,J 1.

Finally we need to show that dense subsets in X1 are densc in B. For
this, it is sufficient to show that the identity map (X[} - [1) — (B.] - 1)
Is continuous. But this follows easily because of the boundedness of the
sequence {x,}:

> vl <3 Janl -l £ A0S ] = Mijas,
n=0

n==(0 n==()

THEOREM 4.3, Fvery separable Banach space admits a Cesaro-hypercye-
lic operator.

Proof. Let {t,,} be any sequence of positive numbers with Z:’;l ty < 1,
and let j\(l) =
the operator T is bounded. Now we consider the operator 747 on B. Observe
that it is a quasi-extension of the operator I + T, where T is the weighted
hackward shift defined in ¢! by Tey =0 and Te, = ¢, €n_1.

By Theorem 4.1 and Remark 4.2(a), I + T is Cesaro-hypercyclic on (1
On the other hand let .J : ¢! — X, be the natural isomorphism. Since
(+ f)}Xl = J(I+T)J~1 it follows that if x is a Cesaro-hypercyclic vector
for I+ T then .Jx is a Cesaro-hypercvelic vector for ([A + f)lXL But if the

Yomotui1h (r)r,. Since the sequence {27} is hounded,
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orbit {(%)n(‘r)} is dense in X, for some z, then it is also dense in B.
Therefore I + T is a Cesaro-hypercyclic operator on B. m

5. The norm closure of the class of Cesaro-hypercyclic opera-
tors. In this section we provide a spectral description of the closure of the
class of all Cesaro-hypercyclic operators on Hilbert spaces.

Let H be a separable Hilbert space and denote by HC(H) the class of
all hypercyclic operators and by C'H(H) the class of all Cesaro-hypercyclic
operators. We already know that the two classes are different. However, we
will show that their closures in the operator norm topology coincide. In
[Hel] Herrero provides a spectral description of the norm closure, HC(H),
of the class HC'(H). The class of all Cesaro-hypercyclic operators C'H(H)
1s invariant under similarity, and therefore it can be analyzed with the ap-
proximation machinery developed in [Hel, 3]. By means of Theorem 2.4,
we will show that the techniques used in [He2] can be applied to obtain an
analogous result for the class CH(H).

The spectrum of an operator T is the set o(T) = {A € C: T — A is
not invertible}. If K(H) denotes the ideal of all compact operators acting on
H, then the Calkin algebra is the quotient space L(H)/K(H). If T € L(H),
the canonical projection of T onto £(H)/K(H) will be denoted by T. The
essential spectrum of T is 0,(T) = a(f). Let T™ denote the adjoint of T.
Recall that T ¢ L(H) is called semi-Fredholm if ran T is closed and the index
Ind(T) = dim(Ker(T)) — dim(Ker(7™)) is finite. The set g,.1-(T") denotes the
semi-Fredholm domain of T, that is, the set of all complex numbers A such
that T'— A is semi-Fredholm. Finally. we denote by ow (T) the Weyl spectrum
of T' (that is. of complex numbers A such that T — X is not a semi-Fredholin
operator of index 0) and by oy(T) the set of all normal eigenvalues of T
(that is, of isolated points of o(T) which are not in 0.(T)). The spectral
description of C'H(H) is the following:

THEOREM 5.1. The class CH(H) consists of those operators T € L(H)
salisfying the conditions:

(1) ow(T) U ID is connected:
(2) oo(T) = 0: and
(3) Ind(T" = X) > 0 for all X € p_(T).

An essential step in the proof of Theorem 5.1 is the following result.

PROPOSITION 5.2. Assume that T is a Cesaro-hypercyclic operator. Then

(i) op(T™) = 0
(i) Ind(T — X\) > 0 for all X € p.x(T):
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(iii) ow (T) = o(T); and
(iv) o(T) U OD is a connected set.

Proposition 5.2 states that CH(H) C {T € L(H) : T satisfies (1)—(3)}.
On the other hand using the continuity properties of the Riesz—Dunford
functional calculus and the stability properties of the semi-Fredholm oper-
ators (see [Hel, Chapter 1], [Ka, Chapter 4]), we deduce that the class of
operators satisfying (1)-(3) of Theorem 5.1 is a closed set in the operator
norm topology. Therefore Proposition 5.2 shows that

(5.1) CH(H) C {T € L(H) : T satisfies (1)-(3)}.

Proof of Proposition 5.2. Observe that (i) was proved in Proposition 2.2.
On the other hand using the basic properties of semi-Fredholm operators
(the reader is referred to the classical book of Kato [Ka, Chapter IV]) we
see that (ii) and (iii) are consequences of (i).

As in [Ki], note that if an operator T is Cesaro-hypercyclic and it is the
direct sumn of two operators Ty & 15 = T acting on H; & Hs, then each
compression T; is Cesaro-hypercyclic on H;, i = 1,2. If ¢(T) includes a
connected component ¢ that is contained in I and if H, and H, are the
Riesz spectral invariant subspaces of T associated with ¢ and o(T") \ o with
o(T|Hy) = o and o(T|Hy) = o(T)\ o, it follows easily that ||(T|H) x| — 0
as n — oc, in particular |[n~Y(T|H)"x|| — 0 for each € H;. And this
contradicts the Cesaro hypercyclicity of T|H;.

Now let us prove that ¢(T) cannot include a closed subset ¢ ¢ C\ D.
Since a sequence {7}, } of invertible operators is hypercyclic if and only if the
sequence {171} of the corresponding inverses is also hypercyclic (see [GoS.
p. 234]), for every operator T' that is Cesaro-hypercyclic and invertible, the
sequence {nT "} is hypercyclic. Suppose that o(T') includes a closed subset
o © C\ D. Let T} be the operator associated to o in the Riesz spectral
decomposition theorem and H; be the invariant subspace corresponding to
T;. Observe that T} is invertible and o(7,1) € D so |7y x| — 0 exponen-
tially as n — ~c, for each € Hy. Thercfore [[nTy "x|| — 0 for each r € Hy,
which contradicts the fact that 77 is Cesaro-hypercyclic on ;. =

In order to prove the reverse inclusion in (5.1), it is necessary to con-
struct some models. That is, given an operator T satisfying (1)-(3). we must
construct a Cesaro-hypercyclic T. such that |T — T;|| < . Herrero showed
that given an operator satisfving (1)-(3). there exists a hypercyclic operator
T. such that ||T — T.|| < =. Following the proof of D. A. Herrero (see [He2.
Proposition 2.4 and Theorem 2.1]) and taking into account Theorem 2.4 one
can show that the model constructed therein is also a Cesaro-hypercyclic op-
erator. Hence, this proves the reverse inclusion in (5.1) and thus the proof
of Theorem 5.1 is finished.
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6. Final remarks

L. Infinite-dimensional subspaces of Cesaro-hypercyclic vectors. In [LM2]
it is shown that the existence of an infinite-dimensional subspace of hyper-
cyclic vectors for an operator T basically depends on the essential spectrum
of T'. For the Cesaro-hypercyclic case an analogous result can be obtained
with some rearrangements in the proofs.

THEOREN. Let T a bounded operator on a separable Banach space B.

(a) If M, (T) satisfies the Hypercyclicity Criterion and the essential spec-
trum of T intersects the closed unit disk. then T has an infinite-dimensional
closed subspace whose non-zero elements are Cesaro-hypercyclic for T.

(b) If the essential spectrum of T does not intersect the closed unit disk
then all closed subspaces of Cesaro-hypercyclic vectors for T have a finite
dimension.

2. T an analogous way we can define the notion of Cesaro supercyclicity.
An operator T on a separable Banach space B is Cesdro-supercyclic if there
exists a vector x such that the set {A\M, (T)x :n € N. A € C} is dense in B.
Using the techniques of Section 2 and some ideas which appear in [MS] one
can prove that Cesaro supercyclicity is equivalent to supercyclicity.

3. Finally, as we can see in Dunford’s theorem. condition (b) is not used
along the work. It would be interesting to know the role that condition (bh)
plays in the hyvpercyelic setting.
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