
Continuous Optimization

Generalized invex monotonicity

G. Ruiz-Garz�oon a, R. Osuna-G�oomez b,*, A. Rufi�aan-Lizana b

a Departamento de Estad�ııstica e I.O., Universidad de C�aadiz, E.U.E. Empresariales, Por-vera, 54, 11403, Jerez, Spain
b Departamento de Estad�ııstica e I.O., Universidad de Sevilla, C/Tarfia s/n, 41012 Sevilla, Spain

Received 17 May 2000; accepted 4 October 2001

Abstract

In this paper the generalized invex monotone functions are defined as an extension of monotone functions. A series

of sufficient and necessary conditions are also given that relate the generalized invexity of the function h with the

generalized invex monotonicity of its gradient function rh. This new class of functions will be important in order to

characterize the solutions of the Variational-like Inequality Problem and Mathematical Programming Problem.

� 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

The study of convex and similar functions and

generalized convexity, has been of great impor-

tance in recent years, as can be seen in [1,2,12] or
Schaible [15–18].

The Mathematical Programming Problem is

defined as

ðMPÞ min hðxÞ
s:t: x 2 X ;

where h : X � Rn ! R.

The generalized convexity plays an important

role in the search for optimal conditions for solu-

tions to the Mathematical Programming Problem

(MP).

It is important to be able to fix the convexity of

the model (MP), which is to say that, X � Rn is a

convex set and the objective function h is a convex

function on X, obtaining important results in this

case, like for example:

1. The solution set is convex.

2. A local minimum is a global minimum.

3. A solution of the Karush–Kuhn–Tucker condi-

tions is a minimum.

4. If h is strictly convex then a minimum (if it ex-

ists) is unique.

Some of these properties are shared by kinds of

functions that are more general than the convex

functions, something which has given rise to the

study of generalized convexity and later to that of

generalized monotonicity.

Just as convex functions are characterized by a

monotone gradient, different kinds of generalized

convex functions give rise to gradient maps with
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certain generalized monotonicity properties which

are inherited from generalized convexity of the

underlying function.

In [9] it was proved that the generalized con-

vexity of h was equivalent to the generalized mo-

notonicity of its gradient function rh, as we shall
see later, in Theorem 3.3.

The role of generalized monotonicity of the op-

erator in Variational Inequality Problems (VIPs)

corresponds to the role of generalized convexity of

the objective function in Mathematical Program-

ming Problems.

Given a subset A � Rn and a function F : A �
Rn ! Rn, the classical Variational Inequality Prob-
lem (VIP), is to find a vector �xx 2 A, such that

ðy � �xxÞtF ð�xxÞP 0 8y 2 A:

In the Variational Inequality Problem (VIP)

that includes the Mathematical Programming
Problems (MP) the monotonicity of F ¼ rh, en-
sures significant results, such as:

1. if F is a monotone function then the set of solu-

tions is convex,

2. if F is a strictly monotone (SM) function then a

solution (if it exists) is unique,

3. if F is a strongly monotone (SGM) function
then a solution exists and it is unique.

Moreover, from a computational point of view,

the monotonicity is also fundamental, since if F is

monotone, many algorithms converge towards the

solution. From this, the importance of the study of

generalized monotonicity is evident. In this paper,

just as in the case of convexity, our aim is to find
more general functions that prove the fulfillment

of some of those properties.

In Section 2 we will define the new concepts of

strongly invex functions and strongly pseudo invex

functions, that together with previous definitions

of pseudo invex (PIX) functions or quasi invex

(QIX) functions, enable us to establish the rela-

tionships between the generalized invexity of h and
the invex monotonicity of rh, following Kara-

mardian and Schaible’s model [9], for the convex

case.

In [14] the concept of invex monotone function

appeared, there called g-monotone, as a general-

ization of the concept of monotone function. In

Section 3, we will extend the concept of invex

monotone function and define the pseudo invex

monotone (PIM) function, quasi invex monotone

(QIM) function, and so on.

In Section 4, using the new definitions of invex
and generalized invex monotone functions, we will

connect both concepts and obtain sufficient and

necessary conditions of generalized invex mono-

tonicity.

Variational inequalities arise in models for a

wide class of mathematical, physical, regional,

economic, engineering, optimization and control,

transportation, elasticity and applied sciences,
etc.; see, for example, [3,6,11] and the references

therein.

In Section 5, we will apply generalized invex

monotonicity to calculate the solutions to the

Variational-Like Inequality Problem (VLIP), a

more general problem than the classical Varia-

tional Inequality Problem.

Given a closed and convex set D � Rn and two
continuous functions F : D ! Rn and g : D
 D !
Rn, theVariational-Like InequalityProblem (VLIP)

is to find �xx 2 D, such that

gðx;�xxÞtF ð�xxÞP 0 8x 2 D:

If gðx;�xxÞ ¼ ðx� �xxÞ then ðVLIPÞ ¼ ðVIPÞ.
Specifically, we will prove that it is possible to

establish the existence of the solution to the Vari-

ational-like Inequality Problem, assuming F to be

PIM, a weaker condition than those assumed to

date. We will be able to identify the solutions to

the Variational-Like Inequality Problems with

the solutions of the Mathematical Programming
Problems, under conditions of invexity.

Finally, we will reach the solutions to the Math-

ematical Programming Problems, through those

of the Variational-Like Inequality Problems, using

the generalized invex monotonicity of the func-

tion F.

2. New definitions of invex functions

Invex functions were introduced by Hanson [5],

as a generalization of differentiable convex func-

tions. Let C � Rn be an open set.
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Definition 2.1. The function h : C � Rn ! R dif-

ferentiable is invex (IX) if, 9g : C 
 C ! Rn such

that 8x; y 2 Rn,

hðyÞ � hðxÞP gðy; xÞtrhðxÞ:

These functions are more general than the con-

vex and pseudo convex ones. The type of invex

function is equivalent to the type of function whose

stationary points are global minima. Therefore, if

h has no stationary points, then h is invex.
Other authors like Kanniappan and Pandian

[7], or Kaur and Gupta [10] (where invexity is

designated g-convexity), weaken the concept of

invexity searching for more general functions

that continue verifying the properties of optimal-

ity mentioned previously, for the general convex

functions.

Definition 2.2. A function h : C � Rn ! R differ-

entiable, is said to be

(a) strictly invex (SIX) if 9g : C 
 C ! Rn such

that 8x; y 2 Rn, x 6¼ y,

hðyÞ � hðxÞ > gðy; xÞtrhðxÞ;
(b) pseudo invex (PIX) if 9g : C 
 C ! Rn such

that 8x; y 2 Rn,

gðy; xÞtrhðxÞP 0 ) hðyÞ � hðxÞP 0;

(c) strictly pseudo invex (SPIX) if 9g : C 
 C !
Rn such that 8x; y 2 Rn, x 6¼ y,

gðy; xÞtrhðxÞP 0 ) hðyÞ � hðxÞ > 0;

(d) quasi invex (QIX) if 9g : C 
 C ! Rn such

that 8x; y 2 Rn,

hðyÞ � hðxÞ6 0 ) gðy; xÞtrhðxÞ6 0:

Hanson [5] proved that no distinction exists

between pseudo invexity and invexity when h is a

scalar function.

Trivially, the differentiable convex functions are

invex with gðy; xÞ ¼ y � x 8x; y 2 C, and the same
occurs with the SIX, PIX, SPIX and QIX func-

tions.

Let us generalize the concept of strongly convex

(SGCX) and strongly pseudo convex (SGPCX)

functions, given in [9]:

Definition 2.3. A function h : C � Rn ! R differ-

entiable, is strongly invex (SGIX) if there exists a

function g : C 
 C ! Rn, and a scalar a > 0, such

that 8x; y 2 Rn,

hðyÞ � hðxÞP gðy; xÞtrhðxÞ þ akgðy; xÞk2:

Definition 2.4. A function h : C � Rn ! R dif-

ferentiable, is strongly pseudo invex (SGPIX) if
there exists a function g : C 
 C ! Rn and a scalar

a > 0, such that 8x; y 2 Rn,

gðy; xÞtrhðxÞP 0 ) hðyÞP hðxÞ þ akgðy; xÞk2:

The significance of all of these definitions lies in

that, as in [9], the definitions of the generalized

convexity of h are connected to the generalized

monotonicity of its gradient function rh. With

these new definitions we will establish the rela-
tionships between the generalized invexity of h and

the invex monotonicity of rh.
For differentiable scalar functions h : C � Rn !

R it is easily seen that we can establish the fol-

lowing relationships:

ðIXÞ () ðPIXÞ ) ðQIXÞ
* *

ðSIXÞ ) ðSPIXÞ
* *

ðSGIXÞ ) ðSGPIXÞ

3. New definitions of invex monotone functions

The concept of monotonicity was generated

from the classic definition of monotonicity of a

real function of a real variable w : R ! R.

Definition 3.1. Let us say that a function w is

monotone if it is proved that

ðy � xÞtðwðyÞ � wðxÞÞP 0 8x; y 2 R:

Karamardian [8] introduced another definition

that extends the original concept of monotonicity.

Let C � Rn be a convex open set.
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Definition 3.2. F : C � Rn ! Rn is monotone (M)

on C if 8x; y 2 C,

ðy � xÞtðF ðyÞ � F ðxÞÞP 0:

Karamardian [8] established a relationship be-

tween the generalized convexity of the function

h : C � Rn ! R and the concepts of monotonic-

ity of its gradient function, rh : C � Rn ! Rn,

through the following result.

Theorem 3.1. Let h : C � Rn ! R be differentiable
on an open convex set C. Then, h is convex (CX) on
C () 8x; y 2 C; ðy � xÞt½rhðyÞ � rhðxÞ�P 0.

Then, the above theorem could be expressed

thus:

Theorem 3.2. A differentiable function h on an open
convex set C � Rn is convex () rh is monotone
on C.

This theorem opens the door to the study of

generalized monotonicity bound together with the

study of generalized convexity. The concept of

monotonicity for rh, plays a role equivalent to

that of the convexity of h.
Karamardian and Schaible [9] also introduce

the following definitions:

Definition 3.3. F : C � Rn ! Rn is said to be

(a) strictly monotone (SM) on C if 8x; y 2 C,
x 6¼ y,

ðy � xÞtðF ðyÞ � F ðxÞÞ > 0;

(b) strongly monotone (SGM) on C if 8x; y 2 C,
9b > 0;

ðy � xÞtðF ðyÞ � F ðxÞÞP bky � xk2;
(c) pseudo monotone (PM) on C if 8x; y 2 C;

ðy � xÞtF ðxÞP 0 ) ðy � xÞtF ðyÞP 0;

(d) strictly pseudo monotone (SPM) on C if
8x; y 2 C, x 6¼ y;

ðy � xÞtF ðxÞP 0 ) ðy � xÞtF ðyÞ > 0;

(e) strongly pseudo monotone (SGPM) on C if

8x; y 2 C; 9b > 0,

ðy � xÞtF ðxÞP 0 ) ðy � xÞtF ðyÞP bky � xk2;

(f) quasi monotone (QM) on C if 8x; y 2 C;

ðy � xÞtF ðxÞ > 0 ) ðy � xÞtF ðyÞP 0:

The following table of relations between the

previous definitions of generalized monotonicity

can be established:

ðMÞ ) ðPMÞ ) ðQMÞ
* *

ðSMÞ ) ðSPMÞ
* *

ðSGMÞ ) ðSGPMÞ

In the following result, given in [9], we can see

how the generalized convexity of h can character-

ize itself from the monotonicity of rh, that is,

Theorem 3.3. h is convex (strictly convex, strongly
convex, pseudo convex, strictly pseudo convex, quasi
convex) on C, if and only if, rh is monotone (strictly
monotone, strongly monotone, pseudo monotone,
strictly pseudo monotone, quasi monotone) on C.

In this section, following the line of the previous

theorem, we characterize the invex functions

through the conditions of generalized invex mo-
notonicity of their gradient functions.

In [14] the concept of invex monotone function

appeared, there called g-monotone. We shall ex-

tend the concept of invex monotone (IM) to others

that are more general and we shall relate them to

invex functions.

Definition 3.4. F : X � Rn ! Rn is said to be
(a) invex monotone (IM) on X if 9g : X 
 X !
Rn such that 8x; y 2 X ,

gðy; xÞtðF ðyÞ � F ðxÞÞP 0;

(b) pseudo invex monotone (PIM) on X if

9g : X 
 X ! Rn such that 8x; y 2 X ,

gðy; xÞtF ðxÞP 0 ) gðy; xÞtF ðyÞP 0;

(c) quasi invex monotone (QIM) on X if

9g : X 
 X ! Rn such that 8x; y 2 X ,
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gðy; xÞtF ðxÞ > 0 ) gðy; xÞtF ðyÞP 0;

(d) strictly invex monotone (SIM) on X if
9g : X 
 X ! Rn such that 8x; y 2 X ; x 6¼ y;

gðy; xÞtðF ðyÞ � F ðxÞÞ > 0;

(e) strictly pseudo invex monotone (SPIM) on X
if 9g : X 
 X ! Rn such that 8x; y 2 X ; x 6¼ y;

gðy; xÞtF ðxÞP 0 ) gðy; xÞtF ðyÞ > 0;

(f) strongly invex monotone (SGIM) on X if

9g : X 
 X ! Rn and b > 0 such that 8x; y 2 X ,

gðy; xÞtðF ðyÞ � F ðxÞÞP bkgðy; xÞk2;
(g) strongly pseudo invex monotone (SGPIM)

on X if 9b > 0 and g : X 
 X ! Rn such that

8x; y 2 X ,

gðy; xÞtF ðxÞP 0 ) gðy; xÞtF ðyÞP bkgðy; xÞk2:

Let us observe that a monotone function is a

particular case of an invex monotone function

when gðy; xÞ ¼ y � x 8x; y.
Now we shall see some examples of the earlier

definitions:

Example 3.1. F ðxÞ ¼ x2 is strictly invex monotone

(SIM) over the set X ¼ fx 2 R; xP 0g, with re-
spect to gðy; xÞ ¼ ey � ex, since it is verified that,

9g : X 
 X ! Rn, such that 8x; y 2 X , x 6¼ y;

gðy; xÞtðF ðyÞ � F ðxÞÞ ¼ ðey � exÞðy2 � x2Þ > 0:

Example 3.2.

F ðxÞ ¼ 0 if x6 0;
x if x > 0;

�

is pseudo invex monotone (PIM), with respect to

gðy; xÞ ¼ ey � ex over the set X ¼ R, since it is

verified that 9g : X 
 X ! Rn such that 8x; y 2 X ;

gðy; xÞtF ðxÞP 0 ) gðy; xÞtF ðyÞP 0:

Example 3.3.

F ðxÞ ¼ �x if x6 0;
0 if x > 0;

�
is quasi invex monotone (QIM) with respect to

gðy; xÞ ¼ ey � ex over the set X ¼ R, since it is

verified that 9g : X 
 X ! Rn such that 8x; y 2 X ;

gðy; xÞtF ðxÞ > 0 ) gðy; xÞtF ðyÞP 0:

In accordance with the earlier definitions, the

following table of relations between the different

concepts of generalized invex monotonicity is es-

tablished:

ðIMÞ ) ðPIMÞ ) ðQIMÞ
* *

ðSIMÞ ) ðSPIMÞ
* *

ðSGIMÞ ) ðSGPIMÞ

4. Relationships between the generalized invexity of

h and the generalized invex monotonicity of $h

In this section, we extend the relationships be-

tween the generalized convexity of h and the gen-

eralized monotonicity of J ¼ rh defining a new

type of generalized invex monotone function. We
will connect the generalized invexity of h to the

generalized invex monotonicity of its gradient

function rh through sufficient and necessary

conditions. The following concept will be of im-

portance in these proofs:

Definition 4.1. Let us say that the function

g : X 
 X ! Rn is a skew function if gðx; yÞþ
gðy; xÞ ¼ 0 8x; y 2 X � Rn.

Let C be an open subset of Rn.

Theorem 4.1. If the function h : C � Rn ! R is
invex (IX) on C with respect to function g : C 
 C !
Rn skew, then rh : Rn ! Rn is invex monotone
(IM), with respect to the same g.

Proof. Suppose that h is invex on C, then 9gðx; yÞ 2
Rn such that 8x; y 2 Rn,

hðxÞ � hðyÞ � gðx; yÞtrhðyÞP 0

by changing x for y,

hðyÞ � hðxÞ � gðy; xÞtrhðxÞP 0

because of the skewness of g, and adding these two

inequalities, one has
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gðx; yÞtðrhðxÞ � rhðyÞÞP 0:

Therefore rh is an invex monotone (IM) function
with respect to the same g. �

In the following example we see the necessity of

the hypothesis that g be skew.

Example 4.1. Let h : ½0; p=2Þ ! R, such that

hðxÞ ¼ xþ senx. The function h is invex (IX) on

½0; p=2Þ, with respect to gðy; xÞ ¼ ðseny � senxÞ=
ð1þ cos xÞ, because, 8x; y 2 Rn, it is verified that

y þ seny � x� senx

� seny � senx
1þ cos x

� �
ð1þ cos xÞP 0:

As g is not skew, we can see thatrh is not invex

monotone (IM), since

sen y � senx
1þ cos x

� �
ð1þ cos y � 1� cos xÞ < 0:

In a similar way to Theorem 4.1 it can be

proved that

Theorem 4.2. If the function h : C � Rn ! R is
strictly invex (SIX) on C, with respect to g skew,
then rh : Rn ! Rn is strictly invex monotone (SIM)
with respect to the same g.

The proof of this theorem is the same as that of

Theorem 4.1 changing P for >.

Theorem 4.3. If the function h : C � Rn ! R is
strongly invex (SGIX) on C, with respect to g skew,
then rh : Rn ! Rn is strongly invex monotone
(SGIM) with respect to the same g.

Proof. Suppose that h is strongly invex (SGIX) on

C, then there exists a vectorial function g : C

C ! Rn and a scalar a > 0, such that 8x; y 2 C,

hðyÞ � hðxÞP gðy; xÞtrhðxÞ þ akgðy; xÞk2

by changing x for y, 9b > 0, such that

hðxÞ � hðyÞP gðx; yÞtrhðyÞ þ bkgðx; yÞk2

due to the skewness of g and adding these two

inequalities one has

gðx; yÞtðrhðxÞ � rhðyÞÞP ða þ bÞkgðy; xÞk2:

Therefore rh is strongly invex monotone (SGIM)

with respect to the same g. �

As the invexity and pseudo invexity coincide for

scalar functions, we can prove that

Corollary 4.1. If the function h : C � Rn ! R is
invex (IX) with respect to g skew, then rh : Rn !
Rn is pseudo invex monotone (PIM) on C with re-
spect to the same g.

Proof. From Theorem 4.1 and as invex monoto-

nicity (IM) implies pseudo invex monotonicity

(PIM), the theorem is proved. �

Now, we will establish the relationship that

exists between the strictly pseudo invexity of h and
the strictly PIX monotonicity of rh.

Theorem 4.4. If the function h : C � Rn ! R is
strictly pseudo invex (SPIX) on C, with respect to g
skew, then rh : Rn ! Rn is strictly pseudo invex
monotone (SPIM) on C with respect to the same g.

Proof. Let hðxÞ be strictly pseudo invex (SPIX).
Then 9gðx; yÞ 2 Rn such that 8x; y 2 C; x 6¼ y;

gðx; yÞtrhðyÞP 0 ) hðyÞ < hðxÞ:
We want to show that 9gðx; yÞ 2 Rn such that

8x; y 2 C; x 6¼ y;

gðx; yÞtrhðyÞP 0 ) gðx; yÞtrhðxÞ > 0:

To reduce this to the absurd, suppose that

gðx; yÞtrhðxÞ6 0;

as gðy; xÞ þ gðx; yÞ ¼ 0, then

gðy; xÞtrhðxÞP 0:

As h is (SPIX), we would have hðxÞ < hðyÞ, which
is a contradiction. �

We will reach quasi invex monotonicity starting

from quasi invexity.

Theorem 4.5. If the function h : C � Rn ! R is
quasi invex (QIX) on C with respect to g skew, then
rh : Rn ! Rn is quasi invex monotone (QIM) on C
with respect to the same g.
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Proof. We want to show that 9gðx; yÞ 2 Rn such

that 8x; y 2 C;

gðx; yÞtrhðyÞ > 0 ) gðx; yÞtrhðxÞP 0:

Let h be QIX, then 9gðx; yÞ 2 Rn such that

8x; y 2 C;

hðxÞ6 hðyÞ ) gðx; yÞtrhðyÞ6 0:

Let x; y 2 C; be such that gðx; yÞtrhðyÞ > 0 then
hðxÞ > hðyÞ.

As h is (QIX) one has

gðy; xÞtrhðxÞ6 0:

Due to the skewness of g then gðx; yÞtrhðxÞP
0. �

Just as sufficient conditions are important, so

are necessary conditions. In principle, necessary

conditions are not generally true, so we must es-

tablish certain premises to be able to fix those

conditions.

Theorem 4.6. Let C be an open convex subset of Rn.
Suppose that:
1. rh : Rn ! Rn is strictly pseudo invex monotone

(SPIM) with respect to gðy; xÞ > 0 8x; y 2 C,
2. g is linear function in the first argument and

skew,
then, h : C � Rn ! R is SPIX onC, with respect to g.

Proof. As rh : C � Rn ! Rn is strictly pseudo
invex monotone (SPIM) with respect to g on C,

9g : C 
 C ! Rn such that 8x; y 2 C;

gðy; xÞtrhðxÞP 0 ) gðy; xÞtrhðyÞ > 0:

Let x; y 2 C we define xðkÞ ¼ xþ kðy � xÞ 2 C, for
0 < k < 1.

If

gðxðkÞ; xÞtrhðxÞP 0;

it is implied that

gðxðkÞ; xÞtrhðxðkÞÞ > 0:

As g is skew and g being linear in the first ar-

gument

gðxðkÞ; xÞtrhðxðkÞÞ ¼ ð1� kÞgðx; xÞtrhðxðkÞÞ
þ kgðy; xÞtrhðxðkÞÞ;

then

gðxðkÞ; xÞtrhðxðkÞÞ ¼ kgðy; xÞtrhðxðkÞÞ > 0;

then

rhðxþ kðy � xÞÞ > 0:

So if we integrate the earlier expression between

0 and 1, we would haveZ 1

0

rhðxþ kðy � xÞÞdk > 0;

then

hðyÞ � hðxÞ > 0:

So h is (SPIX) with respect to g on C. �

In the same way it can be proved that

Theorem 4.7. Let C be an open convex subset of Rn.
Suppose that:
1. rh : Rn ! Rn is pseudo invex monotone (PIM)

with respect to gðy; xÞ > 0 8x; y 2 C,
2. g is linear in the first argument and skew,
then, h : C � Rn ! R is PIX or invex ðPIX Þ ¼ ðIX Þ,
on C with respect to g.

Proof. Suppose that rh : C � Rn ! Rn is PIM

with respect to g on C, that is, 9g : C 
 C ! Rn

skew, such that 8x; y 2 C;

gðy; xÞtrhðxÞP 0 ) gðy; xÞtrhðyÞP 0:

As C is a convex set then xðkÞ ¼ xþ kðy � xÞ 2
C 8k 2 ½0; 1�.

If

gðxðkÞ; xÞtrhðxÞP 0;

as rh is (PIM) implies that

gðxðkÞ; xÞtrhðxðkÞÞP 0 8k 2 ½0; 1�:
As g is skew and linear in the first argument

gðxðkÞ; xÞtrhðxðkÞÞ ¼ ð1� kÞgðx; xÞtrhðxðkÞÞ
þ kgðy; xÞtrhðxðkÞÞ;

then

gðxðkÞ; xÞtrhðxðkÞÞ ¼ kgðy; xÞtrhðxðkÞÞP 0:

As k 2 ½0; 1� and gðy; xÞ > 0 8x; y 2 C then
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rhðxþ kðy � xÞÞP 0 8k 2 ½0; 1�:

If we integrate the last expression between 0 and 1,

we haveZ 1

0

rhðxþ kðy � xÞÞdkP 0:

So

hðyÞ � hðxÞP 0;

h is ðPIXÞ ¼ ðIXÞ with respect to g on C. �

As the invex monotonicity (IM) implies the

pseudo invex monotonicity (PIM), we have:

Corollary 4.2. Let C be an open convex subset of
Rn. Suppose that:
1. rh : Rn ! Rn is invex monotone (IM) with re-

spect to gðy; xÞ > 0 8x; y 2 C,
2. g is linear in the first argument and skew,
then h : C � Rn ! R is invex (IX) on C with respect
to g.

5. Application to the resolution of the Variational-

Like Inequality Problem and the Mathematical

Programming Problem

In this section, we will characterize the solutions

to the Variational-Like Inequality Problem (VLIP)

through the generalized invex monotonicity of the
functions that define the problem.

Subsequently, our objective will be to identify

the solutions to the Mathematical Programming

Problems (MP), with those of the Variational-Like

Inequality Problem (VLIP).

In [13], the existence of solutions to the Varia-

tional-Like Inequality Problem (VLIP) is proved,

based on the continuity of the function F : M !
Rn, where M is a convex and compact subset of

Rn. The condition that F be continuous is exces-

sive. So, we can reduce it to F being hemicon-

tinuous, that is, continuous on any linear segment

of M.

Definition 5.1. F is called hemicontinuous if

8u; v 2 D the function t ! vtF ðuþ tvÞ is continu-
ous at 0þ, with 06 t6 1.

In [19], the existence of solutions to the Varia-

tional-Like Inequality Problem (VLIP), are stud-

ied, assuming F to be invex monotone (IM).

In this section, we will prove that it is possible

to establish the existence of solutions to a Varia-

tional-Like Inequality Problem (VLIP), under
weaker hypotheses than those assumed in other

work. In order to do this we need some prior

definitions and lemmas.

In the first place, let us remember the concept of

KKM-function:

Definition 5.2. A function V : Rn ! 2R
n
is called

KKM-function, if for every finite subset fu1;
u2; . . . ; ung of Rn, their convex hull

convðfu1; u2; . . . ; ungÞ �
[n
i¼1

V ðuiÞ:

Lemma 5.1 [4]. Let a nonempty subset A � Rn

and a KKM-function V : A ! 2R
n
. If V ðuÞ is a

compact set 8u 2 A, then\
u2A

V ðuÞ 6¼ ;:

The following lemma will subsequently be used

to prove the existence of solutions to a (VLIP)

problem.

Lemma 5.2. Let C be a nonempty convex set in Rn.
Suppose that:
1. F : C ! Rn is pseudo invex monotone (PIM)

with respect to g and a hemicontinuous function
on C,

2. g : C 
 C ! Rn is a skew function,
3. g is linear in the first argument.
Then u 2 C satisfies

gðv; uÞtF ðuÞP 0 8v 2 C ð1Þ
if and only if it satisfies

gðv; uÞtF ðvÞP 0 8v 2 C: ð2Þ

Proof. ð)Þ Let u 2 C be a solution of (1). Since F
is (PIM) with respect to g, for every v 2 C, we have

gðv; uÞtF ðuÞP 0 ) gðv; uÞtF ðvÞP 0:

ð(Þ Let v; u 2 C and we consider w ¼ tvþ
ð1� tÞu 2 C, with 0 < t < 1. Hence by (2),
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gðtvþ ð1� tÞu; uÞtF ðuþ tðv� uÞÞP 0:

Since g is linear in the first argument and g is skew,
that is, gðu; uÞtF ðuÞ ¼ 0; 8u 2 C, we have

tgðv; uÞtF ðuþ tðv� uÞÞP 0:

Dividing by t,

gðv; uÞtF ðuþ tðv� uÞÞP 0:

Since F is a hemicontinuous function on C, we
may allow t ! 0þ, we obtain

gðv; uÞtF ðuÞP 0 8v 2 C: �

Starting from the hypotheses of the pseudo in-

vex monotonicity (PIM) of F and the linearity of g,
we will prove the following theorem of existence:

Theorem 5.1. Let M be a nonempty, compact and
convex set of Rn, such that
1. F : M ! Rn is PIM with respect to g and a hemi-

continuous function on M,
2. g : M 
M ! Rn is a continuous and skew func-

tion,
3. g linear in the first argument.
Then there exists u0 2 M , such that

gðv; u0ÞtF ðu0ÞP 0 8v 2 M :

Proof. Let the point-to-set function V1 : M ! 2M ,

such that

V1ðvÞ ¼ fu 2 M : gðv; uÞtF ðuÞP 0g 8v 2 M :

First, we prove that V1 is a KKM-function.

Suppose that fv1; v2; . . . ; vng � M ,
Pn

i¼1 ai ¼ 1;
ai P 0; i ¼ 1; . . . ; n, and

v ¼
Xn
i¼1

aivi 62
[n
i¼1

V1ðviÞ:

Then we have

gðvi; vÞtF ðvÞ < 0 )
Xn
i¼1

aigðvi; vÞtF ðvÞ < 0

8i ¼ 1; . . . ; n:

Since g is linear in the first argument,

g
Xn
i¼1

aivi; v

 !t

F ðvÞ ¼
Xn
i¼1

aigðvi; vÞtF ðvÞ < 0;

then

g
Xn
i¼1

aivi;
Xn
i¼1

aivi

 !t

F
Xn
i¼1

aivi

 !
< 0;

which is a contradiction of the assumption of

skewness which demands that

gðv; vÞtF ðvÞ ¼ 0 8v 2 M :

So we derived

conv ðfv1; v2; . . . ; vngÞ �
[n
i¼1

V1ðviÞ

and therefore, V1 is a KKM-function.

Let the point-to-set function V2 : M ! 2M , such

that

V2ðvÞ ¼ fu 2 M : gðv; uÞtF ðvÞP 0g 8v 2 M :

Now we show that V1ðvÞ � V2ðvÞ 8v 2 M .

Let u 2 V1ðvÞ, that is, gðv; uÞtF ðuÞP 0, by the

(PIM) we have

gðv; uÞtF ðvÞP 0;

that is, u 2 V2ðvÞ.
As V1 � V2 and V1 is a KKM-function then V2 is

a KKM-function.

By Lemma 5.2,\
v2M

V1ðvÞ ¼
\
v2M

V2ðvÞ:

Moreover, V2ðvÞ, for every v 2 M , is closed,
since F and g are continuous.

As V2ðvÞ is closed for every v 2 M , and M is a

bounded set, then V2ðvÞ is bounded, hence V2ðvÞ is
compact. By Lemma 5.1\
v2M

V1ðvÞ ¼
\
v2M

V2ðvÞ 6¼ ;:

Hence there exists an u0 2 M such that

gðv; u0ÞtF ðu0ÞP 0 8v 2 M : �

So then, we have been able to prove the exis-

tence of solutions to the Variational-Like In-

equality Problem (VLIP), assuming the PIM of F,
a weaker hypothesis than IM.

We have seen that PIM, assures us of the

existence of a solution to a Variational-Like In-

equality Problem (VLIP), but not the uniqueness
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of such a solution. To achieve this we assume

SPIM.

Corollary 5.1. Let M be a nonempty, compact and
convex subset of Rn, such that
1. F : M ! Rn is strictly pseudo invex monotone

(SPIM) with respect to g and a hemicontinuous
function on M,

2. g : M 
M ! Rn is a continuous and skew func-
tion,

3. g linear in the first argument.
Then there exists unique u0 2 M , such that

gðv; u0ÞtF ðu0ÞP 0 8v 2 M :

Proof. As ðSPIMÞ ) ðPIMÞ and by Theorem

5.1 we have guaranteed the existence of a solution

to (VLIP). Now we prove the uniqueness.

Suppose that (VLIP) has two distinct solutions,
say u0 and u1. Then

gðu1; u0ÞtF ðu0ÞP 0; ð3Þ
and

gðu0; u1ÞtF ðu1ÞP 0 8u0 2 M : ð4Þ

Since F is (SPIM), it follows from (3) that

gðu1; u0ÞtF ðu1Þ > 0 8u0 2 M . Due to the skewness

of g then gðu0; u1ÞtF ðu1Þ < 0, which contradicts

(4). �

Next we will relate the study of the Variational-
Like Inequality Problem (VLIP) to the Mathe-

matical Programming Problem (MP), using invex

sets and functions.

Definition 5.3. Let u 2 H . Then, the set H is said

to be invex at u with respect to g, if, for each

v 2 H , 06 t6 1, uþ tgðv; uÞ 2 H . H is said to be an

invex set with respect to g, if H is invex at each
u 2 H .

Let us consider the Mathematical Programming

Problem (MP), where the set X ¼ H is an invex set.

The following theorem proves that every solution

to a Variational-Like Inequality Problem (VLIP)

is a solution to the associated Mathematical Pro-

gramming Problem (MP).

Theorem 5.2. Let h : H ! R be an invex function
with respect to g, where H be an invex set. The el-
ement u 2 H satisfies the inequality

gðv; uÞtrhðuÞP 0 8v 2 H ; ð5Þ

if and only if, u 2 H is the minimum of the (MP)
problem.

Proof. ð)Þ As h is an invex function it implies

that

hðvÞ � hðuÞP gðv; uÞtrhðuÞP 0 8v 2 H

showing that u 2 H is the minimum of the function
h.

ð(Þ Let u 2 H be a minimum of the function h.
Then, for every v 2 H ; a 2 ð0; 1�; uþ agðv; uÞ 2 H ,

hðuþ agðv; uÞÞ � hðuÞP 0 8v 2 H :

Since h is invex at u 2 H , dividing the above
inequality by a and letting a ! 0þ, we have

gðv; uÞtrhðuÞP 0:

So u 2 H is a solution of (VLIP). �

Therefore, u is one solution to a (VLIP) prob-

lem, if and only if, u is the minimum of the
Mathematical Programming Problem (MP), when

h is invex. Consequently, in invex environments,

the solutions to the VLIP are equivalent to the

minima of (MP).

In the following theorems, we will use the invex

monotonicity to characterize solutions to the

Variational-Like Inequality Problem (VLIP) and,

in so doing, determine the minima of the Mathe-
matical Programming Problem (MP).

Theorem 5.3. Let M be a nonempty, compact and
convex set of Rn, such that
1. F : M ! Rn is PIM with respect to g and a hemi-

continuous function on M,
2. g : M 
M ! Rn is a continuous and skew func-

tion,
3. g linear in the first argument.
So then, every solution u0 2 intðMÞ to the Varia-
tional-Like Inequality Problem (VLIP), will also be
a solution to the associated Mathematical Pro-
gramming Problem (MP).
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Proof. As F is PIM, by Theorem 5.1, u0 2 M is a

solution to the (VLIP) problem. M is a convex set,

so the interior of the same, intðMÞ, is convex and

open. rh is (PIM) and g is linear in the first ar-

gument and skew, so by the necessary (4.7), h is
(PIX) in intðMÞ and therefore invex ðPIXÞ ¼ ðIXÞ.
Using Theorem 5.2, u0 2 intðMÞ is a solution to

the (MP). �

In the above theorem, we have proved that we

can reach the solutions to a MP, through those of

a Variational-Like Inequality Problem, using the

PIM of the function F.
Just as the (PIM) assures us of the existence of a

solution, in the next theorem it is the strictly

pseudo invex monotonicity (SPIM), that assures

us of the uniqueness of said solution.

Theorem 5.4. Let M be a nonempty, compact and
convex set of Rn, such that
1. F : M ! Rn is SPIM with respect to g and a

hemicontinuous function on M,
2. g : M 
M ! Rn is a continuous and skew func-

tion,
3. g linear in the first argument.
So then, if the only solution u0 of the Variational-
Like Inequality Problem (VLIP) belongs to intðMÞ,
it will also be the only solution to the Mathematical
Programming Problem (MP).

Proof. As F is strictly pseudo invex monotone

(SPIM), by Corollary 5.1, u0 2 M is the only so-

lution to the (VLIP) problem. M is a convex set, so

the interior of the same, intðMÞ, is convex and

open. rh is (SPIM) and g is linear in the first ar-

gument and skew, by the necessary condition (4.6),

h is ðSPIXÞ ) ðPIXÞ ¼ ðIXÞ in intðMÞ. If we sup-
pose that u0 2 intðMÞ, then by Theorem 5.2, u0 is
the only solution to the (MP) problem. �

6. Conclusions

In this paper we have defined the concepts of

strongly invex (SGIX) and strongly pseudo invex

(SGPIX) functions, as new types of generalized
invex functions. The concept of generalized mo-

notonicity has been extended to the new ones of

generalized invex monotonicity. Thus, we have

generalized the concept of invex monotone func-

tion and defined the functions PIM, QIM, and so

on. We have managed to prove that there is a re-

lationship between the generalized invexity of the

function h and the generalized invex monotonicity

of the function rh, by way of the necessary and
sufficient conditions. It has been shown that in an

environment of invexity we have identified the so-

lutions to the Variational-Like Inequality Prob-

lem (VLIP) and the Mathematical Programming

Problem (MP). Thanks to pseudo invex monoto-

nicity (PIM) we have been able to prove the exis-

tence of solutions to both problems.
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