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Abstract. Multicriteria location problems have attracted much attention in the last years within the field
of Location Analysis. The central task in their analysis relies on the description of the whole set of non-
dominated solutions with respect to the different criteria. Solutions to this problem in particular situations
are known. In this paper we characterize the solution set of the general convex multicriteria location prob-
lem in two dimensional spaces. These tools allows us to describe in the same way the solution set of
several classical location models as well as many other new problems for which no previous solution was
known.

1. Introduction

One of the problems which has not been satisfactorily solved to date is how to deal with
uncertainty. A large number of problems that we find in the real-world present elements
which escape the control of the decision maker. Often, the parameters used to describe
a problem are obtained from estimations, from measurements that can be wrong, or
from observations that do not fit to the real situations. At times, the problem involves
more than one decision maker and each one of them may have a different criterion. In
other situations, it is impossible to choose only one scenario where the problem can be
formulated, or it is not clear which is the best criterion to optimize, etc.

Recently, a new field of Operations Research called Scenario Analysis has
emerged. This analysis allows us to deal with uncertainty when it is originated, because
there are different instances of the problem which are likely to occur. Therefore, there
exists the necessity of finding a good solution for different criteria (scenarios) rather
than for only one, which leads us to multicriteria problems. Under this perspective, the
solution concept is the set of non-dominated (efficient) solutions.

The development of Multiobjective Programming makes possible the analysis of
these problems, mainly by trying to build the non-dominated solution set of a vector
optimization problem. The Scenario Analysis has been already applied to a wide range
of models in Operations Research, for instance: regression analysis [1], games [10],
robust solutions [14], inventory problems [20].
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In location analysis the complete characterization of the non-dominated solution
set in multicriteria problems has been addressed repeatedly, although it is only partially
solved. The problem can be written, in great generality, as

v-min
(
F1(x), F2(x), . . . , Fk(x)

)
,

where v-min stands for vector minimization and F1(·), . . . , Fk(·) represent the different
criteria.

The problem where each function Fi(·) is the distance to a fixed point ai , measured
with the same norm, is called Point-Objective location problem and was dealt firstly by
Wendell and Hurter [26] for the l2-norm. Later, Durier [7] solved this problem for poly-
hedral gauges. Other references devoted to study modifications of the point-objective
location models are [2,3,5,9,12,16,18,19,27], among others.

The case where the Fi(·) for i = 1, . . . , k are weighted sums of the distances
measured with the l1-norm (Weber problem with the Manhattan norm) was solved by
Hamacher and Nickel [11]. The problem where the functions Fi(·), for i = 1, . . . , k,
are weighted sum of distances measured with any norm was solved by Puerto and Fer-
nández [21,22]. In addition, the quadratic bicriteria location model has been solved by
Ohsawa [17].

Finally, the case where there exists a regional demand and the functions Fi(·) for
i = 1, . . . , k are inf-distance functions (that is, the distance to the closest point of each
demand set) was solved by Rodríguez-Chía [24]. Hence, although the problem has been
studied many times and by different authors, the solutions are only known for particular
cases. In our paper, we give the first geometrical solution for this kind of problems,
where the considered objective functions are only required to be convex and inf-compact.
Despite of the generality of the considered problem, the results obtained in this paper
are easy to understand and the proofs basically rely on Convex Analysis tools. We will
provide examples that illustrate the results, and we will relate these results with the
existing ones, showing that they are particular cases of our analysis.

One of the applications of the solution concept proposed in this paper is that it can
be interpreted as a global sensitivity analysis of location problems. Assume that Fi(·),
i = 1, . . . , k, is the distance function to the ith demand entity. A decision-maker wants
to minimize the total weighted distance to the new facility to be located. However, the
importance (weighted) given to each demand entity is unknown. Thus, the problem to
be considered is

min

{
k∑
i=1

wiFi(x): x ∈ R
2, wi � 0, i = 1, . . . , k

}
. (1)

The set of optimal locations of problem (1) for any choice of weights (w1, . . . , wk)

coincides with the set of weak-Pareto solutions of

v-min
x∈R2

(
F1(x), . . . , Fk(x)

)
. (2)
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This solution set is the one that we characterize geometrically in this paper. Thus, our
solution gives the region of variation of the solutions of any optimization problem of
the form given by (1). Notice that any partial information known about the weights
(w1, . . . , wk) can be incorporated into problem (1). This simply means that in prob-
lem (2) we must consider transformations of the original objective functions. (See [4]
and [15] for further details.)

The paper is organized in four sections. In the second section we present the model
and the notation used throughout. Section 3 contains the main results of the paper. It
reduces the characterization of the non-dominated solution set of the general k-criteria
problem to the three-criteria case for which a geometrical construction is given. For the
sake of readability, the proofs of several technical lemmas are deferred to the appendix.
Finally, section 4 is devoted to the concluding remark.

2. The model

We consider a finite set of convex, inf-compact functions F1(·), . . . , Fk(·), defined on a
bidimensional space X, which represent different criteria or scenarios. Recall that a real
function f (·) is said to be inf-compact if its lower level sets {x ∈ X: f (x) � ρ} are
compact for any ρ ∈ R. Our goal is to find the set of points x ∈ X such that there is no
y ∈ X that improves the value of Fi(x) for all i = 1, . . . , k. Therefore, the formulation
of the problem is:

v-min
x∈X

(
F1(x), . . . , Fk(x)

)
. (3)

We consider as solution set for this problem

WE(F1, . . . , Fk) :=
{
x ∈ X: for each y ∈ X, y �= x, exists Fi(i = 1, . . . , k)

such that Fi(x) � Fi(y)
}
.

Usually, this set is called set of weakly efficient points.
In order to improve the readability of the paper we use the following notation. The

level set of the function F(·) for a value ρ ∈ R is given by

L�(F, ρ) := {
x ∈ X: F(x) � ρ

}
and the strict level set is

L<(F, ρ) := {
x ∈ X: F(x) < ρ

}
.

It should be noted that these two families of sets are convex when the function F(·) is
convex.

In the same way, we define the complement of the strict level set for a value ρ ∈ R

as

L�(F, ρ) := {
x ∈ X: F(x) � ρ

}
,
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and the level curve for a value ρ ∈ R as

L=(F, ρ) := {
x ∈ X: F(x) = ρ}.

For a convex inf-compact function Fi(·) we will use the notation

X ∗(Fi) := argmin
x∈X

Fi(x). (4)

It should be noted that this set is convex by the convexity of Fi(·).
The tangent cone TB(x) to the set B at point x is:

TB(x) := cone(B − x),
where for any set S, S stands for the topological closure of S.

For two functions, Fi(·) and Fj(·), with i, j ∈ {1, . . . , k}, let

I
�
ij (x) :=L�

(
Fi, Fi(x)

) ∩ L�
(
Fj , Fj (x)

)
,

I<ij (x) :=L<
(
Fi, Fi(x)

) ∩ L<
(
Fj , Fj (x)

)
,

I=
ij (x) :=L=

(
Fi, Fi(x)

) ∩ L=
(
Fj , Fj (x)

)
.

For a general closed set A ⊂ X we denote by Bd(A) the boundary of this set, ri(A)
its relative interior and rBd(A) the relative boundary of A. Notice that in the plane the
relative interior (relative boundary) is the entire interior or the interior (interior of the
boundary) with respect a line. Finally, for two points x and y we denote the segment
defined by x and y as xy.

3. Geometrical construction of the solution set

In this section we study problem (3). We will prove that the geometrical structure of
WE(F1, F2, F3) is given by a kind of hull delimited by the chains of bicriteria solu-
tions of any pair of functions Fi , Fj , i, j = 1, 2, 3. This result enables us to obtain
the set WE(F1, . . . , Fk) by union of three-criteria solution sets already characterized.
In order to do that, our first result states a useful characterization of the solution set
WE(F1, . . . , Fk), which will be used later.

Theorem 3.1. It holds that:

x ∈ WE(F1, . . . , Fk) ⇐⇒
k⋂
i=1

L<
(
Fi, Fi(x)

) = ∅.

Proof. If x /∈ WE(F1, . . . , Fk), there exists z ∈ X such that Fi(z) < Fi(x) for each
i = 1, . . . , k, that means,

z ∈
k⋂
i=1

L<
(
Fi, Fi(x)

)
.
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Figure 1. Illustration of example 3.1.

Hence, we obtain that

k⋂
i=1

L<
(
Fi, Fi(x)

) �= ∅.

Since the implications above can be reversed the proof is concluded. �

Remark 3.1. For the case k = 2 the previous result states that the set WE(F1, F2) coin-
cides with tangential cusps between the level curves of functions F1(·) and F2(·) union
with X ∗(F1) ∪ X ∗(F2) (see example 3.1).

Example 3.1 (See figure 1). Let us consider the points a1 = (0, 0), a2 = (10, 0), a3 =
(14, 6) and the functions F1(x) = ‖x − a1‖2, F2(x) = ‖x − a2‖1, F3(x) = ‖x − a3‖1.
By theorem 3.1, WE(F1, F2) is the thick segment defined by a1 and a2 and WE(F2, F3)

is the dark rectangle with a2 and a3 as opposite vertices.

Now, using the previous characterization we are going to obtain a geometrical de-
scription of WE(F1, F2, F3). To this end, three technical lemmas are needed. Their
proofs can be seen in the appendix.

Lemma 3.1. Whenever the statements

(a)
⋂3
i=1 L<(Fi, Fi(x)) = ∅,

(b) I<ij (x) �= ∅, ∀i �= j ∈ {1, 2, 3},
hold for some x ∈ X, then:
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(i) x +⋂3
i=1 TL�(Fi,Fi(x))(x) = {x},

(ii) WE(Fi, Fj ) ∩ (x − (TL�(Fi,Fi(x))(x) ∩ TL�(Fj ,Fj (x))(x))) = ∅, ∀i �= j ∈ {1, 2, 3}.

Lemma 3.2. Whenever
3⋂
i=1

L<
(
Fi, Fi(x)

) �= ∅ for some x ∈ X (5)

then

(i) {0} /∈ ri

(
3⋂
i=1

TL�(Fi,Fi(x))(x)

)
,

(ii) ri

(
3⋂
i=1

TL�(Fi,Fi(x))(x)

)
�= ∅.

Lemma 3.3. If I<ij (x) �= ∅ for some x ∈ X then

I<ij (x) ∩ WE(Fi, Fj ) �= ∅.

Corollary 3.1. If I<ij (x) �= ∅ for some x ∈ X then

ri
(
x + TL�(Fi,Fi(x))(x)

) ∩ ri
(
x + TL�(Fj ,Fj (x))(x)

) ∩ WE(Fi, Fj ) �= ∅.

The next result shows that the 3-criteria solution set is a kind of hull defined by the
different bicriteria solution sets.

Definition 3.1 (See figure 2). The curve z(t), t ∈ [0,∞), with z(0) = x and
limt→∞ ‖z(t)‖ = +∞ separates the sets A and B, with respect to a convex cone �
pointed at x, if

(a) A,B ⊂ �,

(b) there does not exist a continuous curve y(t) ⊂ �, ∀t ∈ [0, 1] with y(0) ∈ A,
y(1) ∈ B such that {z(t): t ∈ (0,+∞)} ∩ {y(t): t ∈ [0, 1]} = ∅.

Remark 3.2. It should be noted that ‖ · ‖, used in the definition above, stands for any
norm in X. Since, all the norms are equivalent in X we can assume without loss of
generality that it is the l2-norm.

Let

WE(2) :=
⋃

i,j∈{1,2,3}
i �=j

WE(Fi, Fj )

be the union of all bicriteria chains for the three considered criteria.
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Figure 2. z(t) separates the sets A and B with respect to the pointed cone at x.

Theorem 3.2.

WE(F1, F2, F3) = encl
(
WE(2)

)
where encl(WE(2)) is the bounded region encircled by WE(2) and WE(2) itself.

Remark 3.3. It is worth noting that the region encl(WE(2)) is well-defined because the
set WE(2) is connected (see [25]). In addition, this region can be equivalently defined,
as the set of points such that if x ∈ encl(WE(2)) \ WE(2) there is no continuous curve
c(t), t ∈ [0,∞), with c(0) = x and limt→∞ ‖c(t)‖ = +∞, such that c(t) /∈ WE(2),
∀t ∈ [0,∞).

Proof. First, we prove that encl(WE(2)) ⊆ WE(F1, F2, F3). Before that, we note that
WE(Fi, Fj ) ⊆ WE(F1, F2, F3) ∀i, j ∈ {1, 2, 3}. Thus, we only have to prove that if
x ∈ encl(WE(2)) \ WE(2) then x ∈ WE(F1, F2, F3). We prove that by contradiction.

If x /∈ WE(F1, F2, F3)we have that
⋂3
i=1 L<(Fi, Fi(x)) �= ∅. Then, by lemma 3.2,

x − ri(
⋂3
i=1 TL�(Fi,Fi(x))(x)) �= {x}. Now, since x ∈ encl(WE(2)) \ WE(2) and x −

ri(
⋂3
i=1 TL�(Fi,Fi(x))(x)) is a cone pointed at x then

S :=
(
x − ri

(
3⋂
i=1

TL�(Fi,Fi(x))(x)

))
∩ WE(2) �= ∅.

Let y ∈ S. Since y ∈ x − ri(
⋂3
i=1 TL�(Fi,Fi(x))(x)) ⊆ ⋂3

i=1 L>(Fi, Fi(x)) then
Fi(x) < Fi(y), i = 1, 2, 3. Therefore, y /∈ WE(F1, F2, F3) ⊇ WE(2) which contradicts
that y ∈ WE(2).

Hence, we have that

encl
(
WE(2)

) ⊆ WE(F1, F2, F3).



188 RODRÍGUEZ-CHÍA AND PUERTO

Figure 3. Case x ∈ WE(F1, F2, F3) \ WE(2).

Now, we prove the reverse inclusion. Let x ∈ WE(F1, F2, F3). We must prove that
x ∈ encl(WE(2)).

First, if there exists a pair i, j ∈ {1, 2, 3} such that I<ij (x) = ∅ then x ∈
WE(Fi, Fj ) ⊆ WE(2).

Second, we consider the case that I<ij (x) �= ∅, ∀i, j ∈ {1, 2, 3}. Since x ∈
WE(F1, F2, F3) then

⋂3
i=1 L<(Fi, Fi(x)) = ∅. Therefore, the conditions of lemmas 3.1

and 3.3 are fulfilled (see figure 3). This implies that

Cij := I<ij (x) ∩ WE(Fi, Fj ) �= ∅. (6)

We must prove that there exists a chain of weakly efficient points for two criteria
surrounding the point x. We prove that by contradiction.

Assume that there exists a continuous curve z(t), t ∈ [0,∞), under the hypothesis
of definition 3.1 such that (see figure 4),

(a) z(t) separates the sets C12 and C13 with respect to the cone x + TL�(F1,F1(x))(x),

(b) {z(t): t ∈ [0,∞)} ∩ WE(2) = ∅.

On the other hand, we have the following four assertions:

A1. X ∗(F1) ⊆ L�(F1, F1(x)) ⊆ x + TL�(F1,F1(x))(x) (by the definition of X ∗(Fi),
see (4)).

A2. TL�(F1,F1(x))(x)∩TL�(Fi,Fi(x))(x) = T
I

�
1i (x)

(x) for i = 2, 3 (by remark 5.3.2 in [13]).



GEOMETRICAL DESCRIPTION 189

Figure 4. z(t) separates the sets C12 and C13 with respect to the cone x + TL�(F1,F1(x))(x).

A3. X ∗(F1)∪C12 ⊆ WE(F1, F2) and WE(F1, F2)∩(x−TI�
12(x)

(x)) = ∅ (by lemma 3.1).

A4. X ∗(F1)∪C13 ⊆ WE(F1, F3) and WE(F1, F3)∩(x−TI�
13(x)

(x)) = ∅ (by lemma 3.1).

Thus, since z(t) separates C12 and C13 in x + TL�(F1,F1(x))(x) as well as X ∗(F1) ⊆
x + TL�(F1,F1(x))(x), one of following three cases must occur:

1. X ∗(F1) is separated from C12 by z(t) in x + TL�(F1,F1(x))(x). Since WE(F1, F2) is a
connected set, it can not cross x − T

I
�
12(x)

(x) and it contains X ∗(F1) ∪ C12 (assertion

A3) we have that WE(F1, F2) ∩ {z(t): t ∈ [0,∞)} �= ∅.

2. X ∗(F1) is separated from C13 by z(t) in x + TL�(F1,F1(x))(x). Since WE(F1, F3) is
a connected set, it can not cross x − T

I
�
13(x)

(x) and it contains X ∗(F1) ∪ C13 (asser-

tions A4) we have that WE(F1, F3) ∩ {z(t): t ∈ [0,∞)} �= ∅.

3. X ∗(F1) ∩ {z(t): t ∈ [0,∞)} �= ∅.

Therefore, any of these three cases contradict the initial hypothesis, since WE(2) ∩
{z(t): t ∈ [0,+∞)} �= ∅.

We can use the same arguments with C12 and C23, as well as C13 and C23 to obtain
that the point x belongs to the region surrounded by the set of weakly efficient points of
the bicriteria problems. �
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Figure 5. Illustration of example 3.2.

As illustration of the result above we show the following example.

Example 3.2. Let us consider three points a1 = (0, 0), a2 = (3,−1) and a3 = (3, 3)
and the functions F1(·), F2(·) and F3(·) such that, for ρ � 0 they have the following
level sets:

L�(F1, ρ)=
{
(x1, x2):

x2
1

4
+ x2

2

9
� ρ

}
,

L�(F2, ρ)=
{
(x1, x2): (x1 − 3)2 + (x2 + 1)2 � ρ

}
,

L�(F3, ρ)=
{
(x1, x2):

(x1 − 3)2

9
+ (x2 − 3)2

4
� ρ

}
.

We can see that these three functions are convex functions, therefore by the previ-
ous result we obtain the geometrical characterization of the set WE(F1, F2, F3); this set
is the shadowed region in figure 5.

Now we are in the right position to show the main result about the geometrical
structure of WE(F1, . . . , Fk).

Theorem 3.3.

WE(F1, . . . , Fk) =
⋃

i,j,l∈{1,...,k}
WE(Fi, Fj , Fl).
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Figure 6. Illustration of example 3.3.

Proof. By theorem 3.1, x ∈ WE(F1, . . . , Fk) if and only if
⋂

1�i�k L<(Fi, Fi(x)) = ∅.
This intersection is empty if and only if there exist i, j, l ∈ {1, . . . , k} such that
L<(Fi, Fi(x)) ∩ L<(Fj , Fj (x)) ∩ L<(Fl, Fl(x)) = ∅ (by Helly’s theorem, see [23])
and this is equivalent to x ∈ WE(Fi, Fj , Fl). Since in any case we have that⋃

i,j,l∈{1,...,k}
WE(Fi, Fj , Fl) ⊂ WE(F1, . . . , Fk)

the result follows. �

Remark 3.4. This result extends previous characterizations in the literature:

• Taking Fi(x) = ‖x − ai‖ with ai ∈ R
2 for i = 1, . . . , k and ‖ · ‖ being an strictly

convex norm or a norm derived from a scalar product, we get proposition 1.3, theo-
rem 4.3 and corollary 4.1 in [9]. The solution set is the convex hull of the points ai
with i = 1, . . . , k. In example 3.3, we illustrate this result.

• Taking Fi(x) = ‖x − ai‖ with ai ∈ R
2 for i = 1, . . . , k and ‖ · ‖ being a polyhedral

gauge we get theorem 6.1 in [7], where the solution set is the union of elementary
convex sets (see [8] for a definition). In example 3.4, we illustrate this result.

• Taking Fi(x) = maxj∈M ωij‖x − aj‖ with aj ∈ R
2 and ωij > 0 for i = 1, . . . , k and

j ∈ M := {1, . . . , m} we get theorem 6.1 in [11], where the solution set is the union
of the solution sets for each two functions. In example 3.5, we illustrate the use of
this result.

Example 3.3 (See figure 6). Let us consider the points a1 = (4, 4), a2 = (18,−11),
a3 = (19, 4) and the functions Fi(x) = ‖x − ai‖2 for i = 1, 2, 3. By theorem 3.2,
WE(F1, F2, F3) is the dark region, which in this case is the convex hull of a1, a2 and a3.
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Figure 7. Illustration of example 3.4.

Example 3.4 (See figure 7). Let us consider the points a1 = (7, 5), a2 = (18, 2.5),
a3 = (22, 6.5) and the functions F1(x) = ‖x − a1‖∞, F2(x) = ‖x − a2‖1 and F3(x) =
‖x − a3‖1. By theorem 3.1, WE(F1, F2) is the thick path joining a1 and a2, WE(F1, F3)

is the thick path joining a1 and a3, and WE(F2, F3) is the dark square with a2 and a3 as
opposite extreme points. Therefore, by theorem 3.2, WE(F1, F2, F3) is the dark region
encircled by the union of the three previous sets and the three sets themselves. Notice
that this region is the union of two full dimensional elementary convex sets.

Example 3.5 (See figure 8). Let us consider the points a1 = (4, 16), a2 = (10, 5),
a3 = (25, 12) and the functions Fi(x) = ‖x − ai‖∞ for i = 1, 2, 3. By theorem 3.1,
WE(F1, F2) = R1, WE(F1, F3) = R2 ∪ R4, WE(F2, F3) = R3 ∪ R4. By theorem 3.2,
WE(F1, F2, F3) = R1 ∪ R2 ∪ R3 ∪ R4. Notice that for this example it holds that
WE(F1, F2, F3) = WE(F1, F2) ∪ WE(F1, F3) ∪ WE(F2, F3).

As a direct consequence of the results of this section we get the following pseudoal-
gorithm.

Input: F1(·), . . . , Fk(·): inf-compact, convex functions.
Output: WE(F1, F2, . . . , Fk).
Steps:

1. Compute the sets WE(Fi, Fj ) ∀i, j ∈ {1, . . . , k}.
2. Compute WE(Fi, Fj , Fl) for all i, j, l ∈ {1, . . . , k}.
3. Compute WE(F1, F2, . . . , Fk) = ⋃

i,j,l∈{1,...,k} WE(Fi, Fj , Fl).

4. END.
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Figure 8. Illustration of example 3.5.

4. Concluding remarks

In this paper we have developed a geometrical characterization of the solution set for a
general multicriteria problem in two-dimension spaces.

It should be noted, that in the literature this problem had been solved for particular
cases, as for instance in the papers by Durier and Michelot [9], Durier [7], Carrizosa
et al. [4], Hamacher and Nickel [11], Ndiaye and Michelot [16] and Ohsawa [17]. The
model studied in this paper includes a large number of classic models of multicriteria
problems as well as many other whose solution were not previously known.

Appendix

Proof of lemma 3.1. The first assertion is equivalent to prove that
⋂3
i=1 TL�(Fi,Fi(x))(x) =

{0}. We prove this fact by contradiction. Assume that there exists y �= 0 such that
y ∈ ⋂3

i=1 TL�(Fi,Fi(x))(x), then four cases may occur:
1. y ∈ ri(TL�(Fi,Fi(x))(x)), i = 1, 2, 3 (see figure 9).

Since y ∈ ⋂3
i=1 ri(TL�(Fi,Fi (x))(x)), there exists λi > 0 such that x + λiy ∈

L<(Fi, Fi(x)) for i = 1, 2, 3. We define λ := min{λ1, λ2, λ3} > 0. Using x ∈⋂3
i=1 L�(Fi, Fi(x)) and the convexity of

⋂3
i=1 L<(Fi, Fi(x)) we have that x + λy ∈⋂3

i=1 L<(Fi, Fi(x)), and this contradicts (a).
2. y ∈ ri(TL�(Fi,Fi(x))(x)), i = 1, 2, and y /∈ ri(TL�(F3,F3(x))(x)).

Then, one of the facets of TL�(F3,F3(x))(x) belongs to
⋂2
i=1 ri(TL�(Fi,Fi(x))(x)).

Hence, we have that
⋂3
i=1 ri(TL�(Fi,Fi (x))(x)) �= ∅ and we are in case 1.
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Figure 9. Case
⋂3
i=1 ri(TL�(Fi,Fi(x))(x)) �= ∅.

3. y ∈ ri(TL�(F1,F1(x))(x)) and y /∈ ri(TL�(Fi,Fi(x))(x)), i = 2, 3.

Then, one of the facets of
⋂3
i=2 TL�(Fi,Fi(x))(x) belongs to ri(TL�(F1,F1(x))(x)).

Moreover, since I<23(x) �= ∅ then

ri

(
3⋂
i=2

TL�(Fi,Fi (x))(x)

)
=

3⋂
i=2

ri
(
TL�(Fi,Fi(x))(x)

) �= ∅.

This implies that

3⋂
i=2

ri
(
TL�(Fi,Fi(x))(x)

) ∩ ri
(
TL�(F1,F1(x))(x)

) �= ∅,

and we are again in case 1.
4. y /∈ ri(TL�(Fi,Fi(x))(x)), i = 1, 2, 3.

We have that y ∈ ⋂3
i=1 TL�(Fi,Fi (x))(x) then y ∈ rbd(TL�(Fi,Fi(x))(x)), i = 1, 2, 3.

Hence, there exists a common facet for the three cones. Since TL�(Fi,Fi(x))(x) and
TL�(Fj ,Fj (x))(x) are convex and

ri
(
TL�(Fi,Fi(x))(x)

) ∩ ri
(
TL�(Fj ,Fj (x))(x)

) �= ∅
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for all i, j ∈ {1, 2, 3}, the cones TL�(Fi,Fi (x))(x) and TL�(Fj ,Fj (x))(x) lie in the
same halfspace generated by the common facet of the three cones. Therefore,⋂3
i=1 ri(TL�(Fi,Fi(x))(x)) is not empty and we are again in case 1.

Now, we prove the second assertion. Let y ∈ T
I

�
ij (x)

(x), then x − y ∈ L�(Fi,

Fi(x))∩L�(Fj , Fj (x)) because x−T
I

�
ij (x)

(x) ⊆ L�(Fi, Fi(x))∩L�(Fj , Fj (x)). Thus,

we have that Fk(x) � Fk(x − y) k = i, j . On the other hand, from (b) and theorem 3.1,
we obtain that x /∈ WE(Fi, Fj ). Hence x−y /∈ WE(Fi, Fj ) and therefore WE(Fi, Fj )∩
(x − T

I
�
ij (x)

(x)) = ∅.

Since

∅ �= I<ij (x)=L<
(
Fi, Fi(x)

) ∩ L<
(
Fj , Fj (x)

)
⊆ ri

(
L�
(
Fj , Fj (x)

)) ∩ ri
(
L�
(
Fj , Fj (x)

))
we have that (see remark 5.3.2 in [13]) TL�(Fi,Fi (x))(x) ∩ TL�(Fj ,Fj (x))(x) = T

I
�
ij (x)

(x)

and the result follows. �

Proof of lemma 3.2. First, since
⋂3
i=1 TL�(Fi,Fi (x))(x) is a pointed cone at 0 then its

relative interior does not contain 0 and (i) is proved.
By (5) we have that

⋂3
i=1 ri(L�(Fi, Fi(x))) �= ∅ then

⋂3
i=1 TL�(Fi,Fi(x))(x) =

T⋂3
i=1 L�(Fi,Fi(x))(x) (see [13]).

On the other hand, since
⋂3
i=1 L�(Fi, Fi(x)) ⊆ x + T⋂3

i=1 L�(Fi,Fi(x))(x) then

∅ �=
3⋂
i=1

L<
(
Fi, Fi(x)

) ⊆ ri

(
3⋂
i=1

L�
(
Fi, Fi(x)

))

⊆ ri
(
x + T⋂3

i=1 L�(Fi,Fi(x))(x)
) = x + ri

(
T⋂3

i=1 L�(Fi,Fi (x))(x)
)
.

Thus, since x /∈ ⋂3
i=1 L<(Fi, Fi(x)) and

3⋂
i=1

L<
(
Fi, Fi(x)

) ⊆ x + ri
(
T⋂3

i=1 L<(Fi,Fi(x))
(x)
)

we conclude that ri(T⋂3
i=1 L�(Fi,Fi(x))(x)) �= ∅ and the result follows. �

Proof of lemma 3.3. The set I<ij (x) is the set of points strictly dominating x. That
means that any y ∈ I<ij (x) verifies Fl(y) < Fl(x), l = i, j . Therefore, WE(Fi, Fj ) ∩
I<ij (x) �= ∅. �

References

[1] E. Carrizosa, E. Conde, F.R. Fernández, M. Muñoz and J. Puerto, Pareto-optimality in linear regres-
sion, Journal of Mathematical Analysis and Applications 190(1) (1995) 129–141.



196 RODRÍGUEZ-CHÍA AND PUERTO

[2] E. Carrizosa, E. Conde, F.R. Fernández and J. Puerto, Efficiency in Euclidean constrained location
problems, Operational Research Letters 14 (1993) 291–295.

[3] E. Carrizosa, E. Conde, F.R. Fernández and J. Puerto, Efficiency in spatial location problems with non
convex constraint, Journal of Global Optimization 6 (1995) 77–86.

[4] E. Carrizosa, E. Conde, F.R. Fernández and J. Puerto, Multicriteria analysis with partial information
about the weighting coefficients, European Journal of Operations Research 81(2) (1995) 291–301.

[5] E. Carrizosa and F. Plastria, A characterization of efficient points in constrained location with regional
demand, Operations Research Letters 19(3) (1996) 129–134.

[6] E. Carrizosa and F. Plastria, A geometrical charaterization of weakly efficient points, Journal of Opti-
mization Theory and Applications 90(1) (1996) 217–223.

[7] R. Durier, On pareto optima, the Fermat–Weber problem and polyhedral gauges, Mathematical Pro-
gramming 47 (1990) 65–79.

[8] R. Durier and C. Michelot, Geometrical properties of the Fermat–Weber problem, European Journal
of Operational Research 20 (1985) 332–343.

[9] R. Durier and C. Michelot, Set of efficient points in a normed space, Journal of Mathematical Analysis
and Applications 117 (1986) 506–528.

[10] F.R. Fernández and J. Puerto, Vector linear programming in zero-sum multicriteria matrix games,
Journal of Optimization Theory and Applications 89(1) (1996) 115–127.

[11] H. Hamacher and S. Nickel, Multicriteria planar location problems, European Journal of Operational
Research 94 (1996) 66–86.

[12] P. Hansen, J. Perreur and J.F. Thisse, Location theory, dominance and convexity: some further results,
Operations Research 28(5) (1980) 1241–1250.

[13] J.B. Hiriart-Urruty and C. Lemaréchal, Convex Analysis and Minimization Algorithms I (Springer,
Berlin, 1993).

[14] P. Kouvelis and G. Yu, Robust Discrete Optimization and Applications (Kluwer Academic, Dordrecht,
1997).

[15] A. Mármol, J. Puerto and F.R. Fernández, The use of partial information on weights in multicriteria
decision problms, Journal of Multicriteria Decision Analysis 7 (1998) 322–329.

[16] M. Ndiaye and C. Michelot, Efficiency in constrained continuous location, European Journal of Op-
erational Research 104(2) (1998) 288–287.

[17] Y. Ohsawa, A geometrical solution for quadratic bicriteria location models, European Journal of Op-
erational Research 114 (1999) 380–388.

[18] R. Pelegrín and F.R. Fernández, Determination of efficient points in multiple-objective location prob-
lems, Naval Research Logistics 35 (1988) 697–705.

[19] F. Plastria, Points efficaces en localisation continue, Cahiers du C.E.R.O. 25 (1983) 229–332.
[20] J. Puerto and F.R. Fernández, Pareto-optimally in classical inventory problems, Naval Research Lo-

gistics 45 (1998) 83–98.
[21] J. Puerto and F.R. Fernández, A convergent approximation scheme for efficient sets of the multicriteria

Weber location problem, TOP 6(2) (1998) 195–204.
[22] J. Puerto and F.R. Fernández, Multicriteria Weber location problems, Journal of the Multicriteria

Decision Analysis 18 (1999) 268–280.
[23] R.T. Rockafellar, Convex Analysis (Princeton University Press, Princeton, 1970).
[24] A.M. Rodríguez-Chía, Advances on the continuous single facility location problem, Ph.D. Thesis,

Universidad de Sevilla, 1998 (in Spanish).
[25] A.R. Warburton, Quasiconcave vector maximization: Connectedness of the sets of Pareto-optimal

and weak Pareto-optimal alternatives, Journal of Optimization Theory and Applications 40(4) (1983)
537–557.

[26] R.E. Wendell and A.P. Hurter, Location theory, dominance and convexity, Operations Research 21
(1973) 314–321.

[27] R.E. Wendell, A.P. Hurter and T.J. Lowe, Efficient points in location problems, AIIE Transactions 9
(1977) 238–246.


