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1. Introduction

One of the basic but often difficult tasks in algebraic geometry is to describe
the equations of a given smooth projective varietyX ⊂ IPN in terms of its
intrinsic and extrinsic geometry. In particular no general formula is known for
the number of generators of the homogeneous ideal ofX. Many authors from
classical to nowadays, have therefore concentrated their attention on finding
sufficient conditions forX to be projectively normal, that is such that the natural
restriction mapsH 0(OIPN (j)) → H 0(OX(j)) are surjective for everyj ≥ 0,
for then Riemann-Roch and (often) vanishing theorems answer the question.
In the case of curves many results are known, starting with Castelnuovo’s [Ca]
projective normality of linearly normal curves of genusg and degree at least
2g + 1 (with modern generalization by Mumford [Mu1]) and culminating with
Green’s result [G], that if a linearly normal curve of genusg has degree at least
2g + 1+ p then it satisfies propertyNp [GL2], that is it is projectively normal,
its homogeneous ideal is generated by quadrics, the relations among them are
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generated by linear ones and so on until the p-th syzygy module. In recent years
Mukai interpreted this fact as suggesting that line bundles onX of typeKX⊗An

should satisfy propertyNp for n ≥ p + 4 whenX is a surface (often called
Mukai’s conjecture) and that similar results should hold for higher dimensional
varieties.Againmany results have been proved in this direction.Wemention here
for example the results of Ein and Lazarsfeld [EL] for varieties of any dimension
and the more precise results on syzygies or projective normality of surfaces:
Pareschi [P1] proved Mukai’s conjecture for abelian varieties, Butler [Bu] dealt
with the ruled case, Homma [H1,2] settled Mukai’s conjecture forp = 0 on
elliptic ruled surfaces and Gallego and Purnaprajna [GP1,2] gave several results
onprojective normality and syzygies of elliptic ruled surfaces, surfacesof general
type and Enriques surfaces. The latter case has been the one of interest to us for
at least three reasons. For K3 surfaces it follows by Noether’s theorem and by a
theorem of Saint-Donat [SD] that any linearly normal K3 surface is projectively
normal and its ideal is generated by quadrics and cubics. In this case the general
hyperplane section is a canonical curve which is not too far fromPrym-canonical
curves, like Enriques surface hyperplane sections. One is then naturally led to
wonder if some kind of results of this type also hold for Enriques surfaces. On
the other hand, despite of all the work done, the question of projective normality
of Enriques surfaces had not been settled yet (to our knowledge the best results
are the partial results of Gallego and Purnaprajna [GP1,2]). The third reason was
that we had started the study of projective threefolds whose general hyperplane
section is an Enriques surface, and for our methods it was important to know
projective normality.

Let nowS ⊂ IP g−1 be a smooth linearly normal Enriques surface. As it is
well known (or see Sect. 3) we haveg ≥ 6 and already in the first case there
are explicit examples of non projectively normal Enriques surfacesS ⊂ IP 5,
as by the Riemann-Roch theorem this is equivalent to the fact that the surface
lies on a quadric (the embedding is then called a Reye polarization; these cases
are classified [CD1, Proposition 3.6.4]). On the other hand we have been able to
prove that in fact the above are the only examples.

Theorem (1.1).LetS ⊂ IP g−1 be a linearly normal smooth irreducible Enriques
surface.
(1.2) If g = 6 andOS(1) is a Reye polarization thenS is j -normal for every
j ≥ 3 and its homogeneous ideal is generated by quadrics and cubics;
(1.3) If eitherg ≥ 7 or g = 6 andOS(1) is not a Reye polarization, thenS is
3-regular in the sense of Castelnuovo-Mumford. In particularS is projectively
normal and its homogeneous ideal is generated by quadrics and cubics.

In fact the theoremholds inmany casesalsowhenS is normal; seeRemark (3.10).
The study of the projective normality ofS ⊂ IP g−1 can of course be reduced

to the same for an hyperplane sectionC. In the case of an Enriques surface we
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have degC = 2g − 2 hence, by the theorem of Green and Lazarsfeld [GL2]
(also in [KS]),C is projectively normal unless it has low Clifford index.Whence
it becomes important to study curves with low Clifford index (or gonality) on
an Enriques surface. We do this with the nowadays standard vector bundles
techniques of Green, Lazarsfeld and Tyurin ([GL1], [L], [T]), proving results
that are very close in spirit with the ones of [GL1], [P2], [Re1], [Ma], [Z]. We
choose to state them here as they are of independent interest, since it is in general
useful to know whether various specific curves can lie on an Enriques surface.
Moreover they have applications in the study of projective threefolds whose
general hyperplane section is an Enriques surface [GLM].

We first recall an important result about the Enriques lattice that will be also
used extensively later. LetB be a nef line bundle onS with B2 > 0 and set

Φ(B) = inf {B · E : |2E| is a genus one pencil}.
Then by [CD1, Corollary 2.7.1, Proposition 2.7.1 and Theorem 3.2.1] (or [Co,
2.11]) we haveΦ(B) ≤ [√B2], where[x] denotes the integer part of a real
numberx. In particular ifC ⊂ S is a smooth irreducible curve of genusg ≥ 4
and gonalityk, choosing a genus one pencil calculatingΦ(C), we getg ≥ k2

8 +1.
Wheng is slightly larger we can give some information on the geometry ofC.
Given an integerk ≥ 3 set

f (k) =



6 if k = 3
2k + 1 if 4 ≤ k ≤ 6
k2+ 2k + 5

4
if k ≥ 7

, fa(k) =


2k if 3 ≤ k ≤ 6
k2+ 2k + 5

4
if k ≥ 7

.

Then we have

Theorem (1.4).LetS be a smooth Enriques surface,C ⊂ S a smooth irreducible
curve of genusg and suppose thatC has gonalityk ≥ 3. We have
(1.5) if g > k2

4 + k + 2 thenk is even and everyg1k onC is cut out by a genus
one pencil|2E| onS;
(1.6) if k is even,g = k2

4 + k + 2 and there is no genus one pencil onS cutting
out ag1k onC, then either there exist two genus one pencils|2E1|, |2E2| with
E1 ·E2 = 1 such thatC is numerically equivalent to( k2 + 1)(E1+E2) or there
exist a genus one pencil|2E|, a nodal curveR with E · R = 1, such thatC is
numerically equivalent to( k2 + 1)(2E + R +KS);
(1.7) letCη ∈ |C| be a general element and suppose thatCη has also gonality
k ≥ 3 and that eitherg > f (k) or C is very ample,g > fa(k) and, when
k = 6, g = 13, thatΦ(C) ≥ 4. Thenk is even and everyg1k onCη is cut out
by a genus one pencil|2E| on S unlessk = 6, g = 13 andC is numerically
equivalent to2E1+2E2+2E3, where|2Ei |are genus onepencils andEi ·Ej = 1
for i �= j ;
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(1.8) ifC is very ample andk = 4 theng ≤ 10, and forg = 9,10 the general
elementCη ∈ |C| has gonality at least5;
(1.9) suppose thatC is very ample. Ifg ≥ 18 (respectivelyg ≥ 14) andk = 6
(respectively gon(Cη) = 6) thenS ⊂ IPH 0(OS(C)) contains a plane cubic
curve. The converse holds forC (resp.Cη) for g ≥ 14 (resp.g ≥ 11).

One of the nice consequences of the result of Green and Lazarsfeld in [GL1] is
that a smooth plane curve of degree at least 7 cannot lie on a K3 surface ([Ma],
[Re1]). As the above theorem shows the vector bundle techniques work quite
well to study curves on an Enriques surface having low gonality with respect to
the genus. Therefore it is not surprising that they also allow to study the existence
of curves with given Clifford dimension. We recall that the Clifford index of a
line bundleL on a curveC is Cliff(L) = degL−2h0(L)+2 and that the Clifford
index ofC is defined by Cliff(C) = min{Cliff (L) : h0(L) ≥ 2, h1(L) ≥ 2}. For
most curves the Clifford index is computed by a pencil, but there are exceptional
ones, for example smooth plane curves. In [ELMS] Eisenbud, Lange, Martens
andSchreyer studied curveswhoseClifford index is not computedbyapencil and
defined the Clifford dimension of a curveC by Cliffdim(C) = min{h0(L)− 1 :
Cliff (L) = Cliff (C), h0(L) ≥ 2, h1(L) ≥ 2}.As it turns out curveswithClifford
dimension two are just plane curves, while curveswith higherClifford dimension
are quite sparse (see the conjecture and results in [ELMS]). We have

Corollary (1.10). Let S be a smooth Enriques surface,C ⊂ S a smooth ir-
reducible curve of genusg and suppose thatC has Clifford indexe ≥ 1 and
Clifford dimension at least 2. We have

(1.11) g ≤ e2+ 10e + 29

4
;

(1.12) suppose that eitherg > f (e+ 3) or C is very ample,g > fa(e+ 3) and,
whene = 3, g = 13, thatΦ(C) ≥ 4. Then for the general curveCη ∈ |C| we
have either Cliffdim(Cη) = 1 or Cliff(Cη) �= e, unlesse = 3, g = 13andC is
numerically equivalent to2E1+ 2E2+ 2E3 as in (1.7);
(1.13)S does not contain any curve isomorphic to a smooth plane curve of degree
d ≥ 9;
(1.14) the general curveCη ∈ |C| is not isomorphic to a smooth plane curve of
degree7 and8.

We remark that Zube in [Z] has several claims about plane curves or curves of
higher Clifford dimension on an Enriques surface, but almost all the proofs are
incorrect.

Acknowledgements.The authors wish to thank E. Arrondo and A. Verra for some helpful con-
versations. The second author also wants to thank the Department of Algebra of the Universidad
Complutense de Madrid for the nice hospitality given in the period when part of this research was
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2. Linear systems on curves on Enriques surfaces

The goal in this section will be to study when a line bundle on a given curve lying
on an Enriques surfaceS and calculating the gonality (or the Clifford index) of
the curve is restriction of a line bundle onS. Themethods employed are the usual
vector bundle techniques of Green, Lazarsfeld and Tyurin ([GL1], [L], [T]). We
denote by∼ (respectively≡) the linear (respectively numerical) equivalence of
divisors onS. Unless otherwise specified for the rest of the article we will denote
byE (orE1 etc.) divisors such that|2E| is a genus one pencil onS, while nodal
curves will be denoted byR,R1 etc..We recall that for a divisorD onS we have
D ≡ 0 if and only ifD ∼ 0 orD ∼ KS . We collect what we need in the ensuing

Lemma (2.1).Let S be a smooth irreducible Enriques surface andC ⊂ S a
smooth irreducible curve of genusg. Let |A| be a base-point freeg1k onC, let
FC,A be the kernel of the evaluation mapH 0(A) ⊗ OS → A → 0 and set
E = EC,A = F∗

C,A. ThenE is a rank two vector bundle sitting in an exact
sequence

(2.2) 0→ H 0(A)∗ ⊗OS

φ−→ E → OC(C)⊗ A−1 → 0

and satisfying
(2.3)c1(E) = C, c2(E) = k, ∆(E) = c1(E)2− 4c2(E) = 2g − 2− 4k.
Suppose thatg ≥ 2k + 1. Then there is an exact sequence

(2.4) 0→ M → E → IZ ⊗ L→ 0

whereL,M are line bundles andZ is a zero-dimensional subscheme ofS such
that:
(2.5)C ∼ M +L, k = M ·L+ deg(Z), (M −L)2 = 2g− 2− 4k+ 4deg(Z);
(2.6) |L| is base-component free, nontrivial andL2 ≥ 0;
(2.7) if g > 2k + 1 (respectivelyg = 2k + 1) thenM − L lies in the positive
cone ofS (respectively in its closure) and, in both cases,M · L ≥ L2;
(2.8) ifL2 = 0 andk is the gonality ofC thenL ∼ 2E is a genus one pencil on
S cutting out|A| onC;
(2.9) ifZ = ∅ andH 1(M −L) = 0 then the base locus of|L| is contained inC.
Proof. It is well known that the vector bundlesE as above satisfy (2.2) and
(2.3) ([GL1], [L], [T], [P2]). A standard Chern class calculation shows that (2.4)
implies (2.5). Ifg > 2k + 1 then∆(E) > 0 andE is Bogomolov unstable
([Bo], [L], [R], [Re2]), hence we get (2.4) in this case and the first part of (2.7).
Suppose thatg = 2k + 1 and thatE is H -stable with respect to some ample
divisorH . By a well-known argument (see e.g. [L, proof of Proposition 3.4.1])
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it follows thath0(E ⊗ E∗) = 1 andh2(E ⊗ E∗) = h0(E ⊗ E∗(KS)) ≤ 1 (the
latter because bothE andE(KS) areH -stable with the same determinant). But
the Riemann-Roch theorem givesχ(E ⊗ E∗) = 4, whence a contradiction. This
establishes (2.4). The instability condition means(M − L) · H ≥ 0, hence
M − L lies in the closure of the positive cone ofS. To see (2.6) notice that
h0(OC(C)⊗A−1) = h1(OC(KS)⊗A) �= 0, else by the Riemann-Roch theorem
weget the contradiction 0≤ h0(OC(KS)⊗A) = k−g+1. Sinceh1(OS) = 0we
get by (2.2) thatE is globally generated away froma finite set and so isL by (2.4).
Note thatL is not trivial: In fact by (2.2)wehaveh0(E(−C)) = 0,while ifLwere
trivial thenC ∼ M by (2.5) and (2.4) would implyh0(E(−C)) ≥ h0(OS) = 1.
ThenL2 ≥ 0 by [CD1, Proposition 3.1.4]. Now bothM − L andL lie in the
closure of the positive cone of the Neron-Severi group ofS, hence the signature
theorem implies that(M −L) ·L ≥ 0 ([BPV, VIII.1]), that is (2.7). To see (2.8)
notice that ifL2 = 0 by (2.6) and [CD1, Proposition 3.1.4] we haveL ∼ 2hE
for someh ≥ 1. Also h0(OS(2E − C)) = 0, else by (2.5) and (2.6) we get
0 ≤ (2E − C) · C = L·M

h
− C2 ≤ k

h
− 2g + 2 < 0. Therefore|2E| cuts out a

pencil onC and hence

k = gon(C) ≤ 2E · C = L ·M
h

≤ k

h
≤ k

that is h = 1, L · M = k. In particular we haveh0(OS(−M)) = 0, asL
is nef. By (2.4) we haveh0(E(−M)) ≥ 1 and (2.2) givesh0(L|C ⊗ A−1) ≥
h0(E(−M)) ≥ 1. But we also have degL|C ⊗ A−1 = 0 hence (2.8) is proved.
Under the hypotheses of (2.9) we haveE ∼= L⊕M hence in particular the map
φ of (2.2) clearly drops rank on the base points ofL, that is these points belong
toC. ��
We will apply the above technique to study curves with low gonality on an
Enriques surface. In view of the applications in the forthcoming article [GLM],
we give a result in greater generality than the one needed for the aim of the
present paper.

Proof of Theorem (1.4).Suppose firstg ≥ k2

4 + k + 2. Sincek ≥ 3 we have
g > 2k+1. Let|A| be a (necessarily) base-point freeg1k onC and apply Lemma
(2.1). Setx = M ·L andL2 = 2y. By the Hodge index theorem, (2.5) and (2.7),
we have

(2g − 2− 4k)2y ≤ (M − L)2L2 ≤ ((M − L) · L)2 = (x − 2y)2 ≤ (k − 2y)2

therefore, ify ≥ 1, we getg ≤ k2

4y + k + y + 1 andx ≥ 2y + 1. In particular

y ≤ k−1
2 henceg = k2

4 + k + 2. Thus ifg > k2

4 + k + 2 thenL2 = 0 and we get
(1.5) by (2.8).
Suppose now thatk is even andg = k2

4 + k + 2. By the above argument and
the hypothesis in (1.6) we gety = 1, x = k. Moreover we have equality in
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the Hodge index theorem, hence(M − L)2L ≡ ((M − L) · L)(M − L), that
isM ≡ k

2L andC ≡ ( k2 + 1)L. SinceL2 = 2 by [CD1, Proposition 3.1.4 and
Corollary 4.5.1 of page 243] we have eitherL ∼ E1 + E2 with E1 · E2 = 1 or
L ∼ 2E +R +KS with E ·R = 1 (note that the caseL ∼ 2E +R is excluded
since it has a base component). This proves (1.6).

To see (1.7) let|A| be ag1k onCη. Applying Lemma (2.1) to|A| we get the
decomposition (2.5). By (2.8) we will be done if we prove thatL2 = 0. Suppose
first g > f (k) andL2 ≥ 2. The Hodge index theorem applied toM − L and
L implies that the only case possible isL2 = 2, Z = ∅. Then the base locus
of |L| consists of two points by [CD1, Theorem 4.4.1 and Proposition 4.5.1].
Note thatCη is not hyperelliptic, hence|C| is base-point free andΦ(C) ≥ 2 by
[CD1, Corollary 4.5.1 of page 248 and Proposition 4.5.1]. Now we are going to
prove thatCη must contain the base points of|L|. As this kind of line bundles
are countably many, we get a contradiction.

To see that Bs|L| ⊂ Cη we use (2.9). Suppose thath1(M −L) ≥ 1. By (2.5)
C · (M − L) = 2g − 6− 2k > 0, henceh2(M − L) = 0. Also (M − L)2 =
2g− 2− 4k, henceh0(M −L) = g− 2k+ h1(M −L) ≥ g− 2k+ 1. Note that
g > 2k+ 1 unlessk = 3, g = 7. Therefore|M −L| is not base-component free
unlessk = 3, g = 7, for [CD1, Corollary 3.1.3] impliesh1(M − L) = 0. When
k = 3, g = 7 if |M−L| is base-component free by [CD1, Proposition 3.1.4] we
haveM−L ∼ 2hE andweget the contradiction 2= C ·(M−L) = C ·2hE ≥ 4.
ThereforeM−L ∼ F +MwhereF is the nonempty base component and|M|
is base-component free. In particularh0(M) = h0(M−L) ≥ g−2k+1≥ 2 and
henceh2(M) = 0. If M2 ≥ 2 by [CD1, Corollary 3.1.3] we haveh1(M) = 0
and the Riemann-Roch theorem givesh0(M) = 1+ 1

2M2 ≥ g − 2k + 1, that
isM2 ≥ 2g − 4k. AlsoC ·M ≤ C · (M − L) = 2g − 6− 2k. But the Hodge
index theorem applied toC andM contradicts the inequalities ong. Now by
[CD1, Proposition 3.1.4] we must have thatM ∼ 2hE. Moreover notice that,
unlessk = 3, g = 7, we have(M − L)2 > 0 and in this case the proof of
[CD1, Corollary 3.1.2] impliesh = 1, h1(M − L) = 0. Therefore we are left
with the casek = 3, g = 7 andM ∼ 2hE. Again this is impossible since
2= C · (M − L) = C · F + 2hC · E ≥ 4.

Suppose now thatL2 ≥ 2, C is very ample,g > fa(k) and, whenk =
6, g = 13, thatΦ(C) ≥ 4. Of course we just need to do the case 4≤ k ≤
6, g = 2k + 1. By (2.5) the Hodge index theorem applied toM − L andL
implies that the only cases possible are:L2 = 2, k = 6,degZ = 1; Z = ∅ and
eitherL2 = 2,4 or L2 = k = 6. Moreover whenL2 = k we haveM ≡ L

henceC ≡ 2L and by [CD1, Lemma 3.6.1]Φ(L) ≤ 2; but by hypothesis
3 ≤ Φ(C) = 2Φ(L), henceΦ(L) = 2. If in additionk = 6 then by [CD1,
Proposition 3.1.4 and Proposition 3.6.3] we conclude thatL ≡ E1 + E2 + E3,
henceC ≡ 2E1 + 2E2 + 2E3 as in (1.7) (here we use the fact thatC is very
ample).
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In the caseL2 = 2, k = 6,degZ = 1 we haveM · L = 5, C · L = 7.
By [CD1, Proposition 3.1.4 and Corollary 4.5.1 of page 243] we have either
L ∼ E1 + E2 with E1 · E2 = 1 orL ∼ 2E + R +KS with E · R = 1, and the
hypothesisΦ(C) ≥ 4 givesC · L ≥ 8, a contradiction.

WhenZ = ∅ andL2 = 2,4 we will prove thath1(M −L) = 0 unlessk = 6
andC ∼ 2E1+2E2+2E3 as in (1.7),L ∼ E2+E3. Excluding this exception, if
L2 = 2 orL2 = 4 andΦ(L) = 1, the base locus of|L| consists of two points and,
as above, we will get a contradiction. Set thenL2 = 2y, y = 1,2. SinceZ = ∅
we haveM · L = k, (M − L)2 = 0 by (2.5). Ifk = 4, y = 2 we already know
thath1(M −L) = 0. Suppose now that, in the remaining cases fork, y, we have
h1(M −L) ≥ 1. AsC · (M −L) = 2k−4y > 0 we geth2(M −L) = 0. By the
Riemann-Roch theorem we haveh0(M −L) = 1+h1(M −L) ≥ 2. If |M −L|
is base-component free by [CD1, Proposition 3.1.4] we haveM − L ∼ 2hE1.
Therefore 2k − 4y = C · (M − L) = 2hC · E1 ≥ 6h and we have necessarily
y = h = 1, k = 5,6. If k = 5wehave3= (M−L)·L = 2E1·L, a contradiction.
If k = 6 note that it cannot beL ∼ 2E+R+KS (becauseΦ(C) ≥ 4 gives 8=
C ·L ≥ 9), therefore by [CD1, Proposition 3.1.4 andCorollary 4.5.1 of page 243]
we haveL ∼ E2+E3 withE2 ·E3 = 1. Now 4= (M−L) ·L = 2E1 ·(E2+E3)

impliesE1 ·E2 = E1 ·E3 = 1 (elseE1 ·E2 = 0, E1 ·E3 = 2, but thenE1 ≡ E2

contradictingE2·E3 = 1). ThereforeC ∼ M+L ∼ 2E1+2E2+2E3 as in (1.7).
Suppose now thatM −L ∼ F +M whereF is the nonempty base component
and|M| is base-component free. IfC · F = 1 thenF is a line,F 2 = −2 and
1 = C · F = 2L · F − 2+M · F implies thatM · F is odd and at least 1. In
particular 0= (M − L)2 = −2+M2+ 2M · F ≥ M2.

Going back to the general case, we haveh0(M) = h0(M − L) ≥ 2. If
M2 ≥ 2 we haveC · F ≥ 2 and henceC ·M ≤ 2k − 2− 4y. But the Hodge
index theorem applied toC andM gives a contradiction. ThereforeM2 = 0 and
by [CD1, Proposition 3.1.4] we haveM ∼ 2hE1. AsC ·M is now even we also
getC ·F ≥ 2. From 2k−4y = C · (M−L) = C ·F +2hC ·E1 ≥ 2+2hΦ(C)

we get 1≤ h ≤ k−1−2y
Φ(C)

, again a contradiction.
We are then left with the caseL2 = 4 andΦ(L) = 2. Moreover, as we

have seen above, we haveM · L = k, Z = ∅, (M − L)2 = 0 andh1(M −
L) = h1(M − L + KS) = 0 (the latter because the proof ofh1(M − L) = 0
depends only on the numerical class ofM−L and the first because the exception
C ≡ 2E1+ 2E2 + 2E3 does not occur whenL2 = 4). Recall that we have also
proved that, whenk = 4, thenM ≡ L,C ≡ 2L. Observe now that it cannot be
k = 5, elseC · (M −L) = 2. But thenh2(M −L) = 0 andh0(M −L) = 1, by
the Riemann-Roch theorem. This is not possible since then|M − L| contains a
conic, but for a conicF ⊂ S the only possibleF 2 are−2,−4,−8.

Suppose thenk = 4,6. First we prove thatH 1(−M) = 0. By [CD1, Proposi-
tion 3.1.4 andTheorem4.4.1]|L| is base-point free andH 1(L) = H 1(L+KS) =
0 by [CD1,Corollary 3.1.3]. LetD ∈ |L| be a generalmember. ThenD is smooth
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irreducible of genus 3 and the exact sequence

0→ OS(M − L+KS)→ OS(M +KS)→ OD(M +KS)→ 0

shows thatH 1(−M) = H 1(M+KS) = 0 if k = 6 sinceM ·D = 6> 2g(D)−2.
If k = 4 we haveH 1(−M) = 0 sinceM ≡ L. SimilarlyH 1(M) = 0.

Thenh0(L) = h0(L|Cη
) = 3. Note now that by (2.2) and (2.4) we have

h0(L|Cη
⊗ A−1) = h0(E(−M)) ≥ 1. The linear system|L| defines a surjective

morphismφL : S → IP 2 of degree 4 by [CD1, Theorem 4.6.3]. Let∆ ∈
|L|Cη

⊗A−1| be an effective divisor onCη of degree 4. For everyB ∈ |A|we have
∆+B ∈ |L|Cη

|, hence we can find a lineLB ⊂ IP 2 such thatφL(∆+B) ⊂ LB .
Butwecanalso findB ′ ∈ |A| such thatLB �= LB ′ , henceφL(∆)must beapoint in
IP 2, that is either∆ = φ−1L (φL(x)) for somex ∈ S such that dimφ−1L (φL(x)) = 0,
or∆ is contained on a one-dimensional fiber ofφL. We will therefore be done if
we show thatCη does not contain any scheme-theoretic zero-dimensional fiber
of φL nor shares four points with any one-dimensional fiber ofφL, for everyL
as above.

Note that the second case does not occur ifk = 4 because we haveC ≡ 2L,
henceL is ample and base-point free, therefore all the fibers ofφL are zero-
dimensional.

Consider now the incidence correspondence

JL = {(x,H) : dimφ−1L (φL(x)) = 0, φ−1L (φL(x)) ⊂ H } ⊂ S × |C|,
together with its two projectionsπi .We claim that dimπ−11 (x) ≤ g−4 for every
x ∈ S such that dimφ−1L (φL(x)) = 0. Of course this gives dimJL ≤ g − 2 and
π2 is not dominant.As the possibleL are at most countably many we get the first
result needed.

Now let W = φ−1L (φL(x)) be zero-dimensional and letD,D′ ∈ |L| be
two general divisors passing throughx so thatW = D ∩ D′ andπ−11 (x) =
IPH 0(IW/S(C)). In the exact sequence

0→ ID/S(C)→ IW/S(C)→ IW/D(C)→ 0

we haveID/S(C) = M, henceh0(ID/S(C)) = k − 1, h1(ID/S(C)) = 0.
Also h0(IW/D(C)) = h0(OD(C − W)) = h0(M|D). But for k = 6 we have
h1(M|D) = 0, while fork = 4 we geth1(M|D) ≤ 1, henceh0(M|D) ≤ k−1 and
h0(IW/S(C)) ≤ g − 3.

We now deal with the case of one-dimensional fibers. We have thenk = 6.
Let G be any effective divisor onS such thatL · G = 0,G2 ≤ −2. Setx =
C · G = M · G ≥ 1,G2 = −2y, y ≥ 1. The Hodge index theorem applied
toM and−3xL + 2G gives the inequality 2y ≥ x2. In particular ifG2 = −2
thenC · G = 1. This fact implies that there is no nodal curveR such that
L · R = 0, h0(L− 2R) ≥ 2 because thenC · (L− 2R) = 8, (L− 2R)2 = −4,
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hence certainlyL− 2R ∼ F1 +M has a base componentF1 and|M| is base-
component free,h0(M) = h0(L − 2R) ≥ 2. As usual eitherM ∼ 2hE, but
this gives the contradiction 8= C · (L − 2R) = C · F1 + 2hC · E ≥ 9, or
M2 ≥ 2, C ·M ≤ 7. By the Hodge index theorem applied toC andM we get
M2 = 2, C ·M = 7. By [CD1, Proposition 3.1.4 and Corollary 4.5.1 of page
243] we have eitherM ∼ E1 + E2 with E1 · E2 = 1 orM ∼ 2E + R + KS

with E ·R = 1, and the hypothesisΦ(C) ≥ 4 givesC ·M ≥ 8, a contradiction.
Let now F be a scheme-theoretic one-dimensional fiber ofφL, with irre-

ducible componentsFi ’s. ThenL · Fi = 0 for everyi and the Hodge index
theorem shows thatF 2 ≤ −2, F 2

i = −2. Letz = φL(F ) ∈ IP 2 and take a pencil
of linesLt throughz. Thenφ∗L(Lt) = F + Dt ∈ |L| for some divisorsDt . In
particularh0(L − F) ≥ 2. This shows that all theFi ’s occur with multiplicity
one inF , elseh0(L− 2Fi) ≥ 2, which we have have proved impossible.

If F is connected thenpa(F ) ≥ 0, henceF 2 = −2 and, as we have seen
above,C · F = 1, the desired result. Now by [CD1, proof of Lemma 4.6.3
and Corollary 4.3.1] we see that a fiber ofφL must be connected unlessL ∼
2E + R1 + R2 +KS with E · R1 = E · R2 = 1, R1 · R2 = 0. In the latter case
settingG = R1 + R2 we getx ≤ 2. ButC is very ample, hencex = 2 and we
have equality in the Hodge index theorem, that is 2M ≡ 3L−R1−R2 and then
C ≡ 5E+ 2R1+ 2R2. But in this case any nodal curveR different fromR1 and
R2 is not contracted byφL, elseL ·R = 0, henceE ·R = R1 ·R = R2 ·R = 0,
but thenC ·R = 0, a contradiction. Therefore the only curves contracted byφL

in this case areR1 andR2 andC · R1 = C · R2 = 1.
Alternatively we can avoid the use of [CD1, proof of Lemma 4.6.3 andCorol-

lary 4.3.1] in the following way. IfF has a unique irreducible componentR, by
the above we haveF = R andC · F = 1. If not let R1, R2 be two distinct
irreducible components ofF . As (R1+R2)

2 ≤ −2 we have 0≤ R1 ·R2 ≤ 1. Set
G = R1 + R2. If R1 · R2 = 1 thenG2 = −2 henceC ·G = 1, a contradiction.
ThereforeR1 · R2 = 0 and, as above, we get 2M ≡ 3L − R1 − R2 and then
2C ≡ 5L− R1− R2. Now if R is another irreducible component ofF we have
R · L = R · R1 = R · R2 = 0, henceC · R = 0, a contradiction. Therefore
F = R1+ R2 andC · F = 2. The proof of (1.7) is then complete.

Now (1.8) follows from (1.5) and (1.7) since, ifC is very ample it cannot be
2E · C = 4, otherwiseE is a conic, in contradiction withE2 = 0. Similarly for
(1.9), since (1.5) and (1.7) giveE ·C = 3, that isE is a plane cubic. On the other
hand if there is a plane cubicE thenC · E = 3 and by [CD1, Theorem 3.2.1,
Proposition 3.1.2 and Proposition 3.1.4] the system|2E| is a genus one pencil
which cuts out ag16 onC. Then (1.5) and (1.7) imply that the gonality is 6.��
Remark (2.10).In the caseC very ample andk = 5, g ≥ 11 a more precise
result holds. In fact the above proof shows that there exists a countable family
{Zn, n ∈ N} of zero dimensional subschemesZn ⊂ S of degree two, such that
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if C ′ ∈ |C| does not containZn for everyn, then gon(C ′) ≥ 6. This remark will
be useful in [GLM].

Wenowdealwith theexistenceof curvesonanEnriquessurfacewith lowClifford
dimension.

Proof ofCorollary (1.10).Bya result ofCoppensandMartens [CM,Theorem2.3]
we havek = gon(C) = e + 3 and there is a one dimensional family ofg1k ’s.
Let |A| be a generalg1k . Of course|A| cannot be cut out by a line bundle onS.
Whenceg ≤ e2+10e+29

4 by (1.5). Similarly (1.12) follows by (1.7). Finally (1.13)
and (1.14) are easy consequences of (1.11), (1.12) by taking into account the fact
that a smooth plane curve of degreed ≥ 5 has Clifford dimension 2 and Clifford
indexd − 4. ��

3. Clifford index and projective normality of curves on Enriques surfaces

We henceforth letS ⊂ IP g−1 be a smooth linearly normal Enriques surface and
C be a general hyperplane section ofS of genusg. Note that necessarilyg ≥ 6
since, asC is very ample, we have 3≤ Φ(C) ≤ [√2g − 2].

We start the study of projective normality with a special case that appears to
escape the vector bundlemethods of Sect. 2 and needs to be done in another way.
In fact we do not know if this case really occurs (see also Remark (3.9)).

Lemma (3.1).LetS ⊂ IP 9 be a smooth linearly normal Enriques surface such
that its general hyperplane sectionC is isomorphic to a smooth plane sextic.
ThenS is 2-normal, that isH 1(IS(2)) = 0.

Proof.Of course we haveg = 10 andC2 = 18 hence 3≤ Φ(C) ≤ 4. We first
exclude the caseΦ(C) = 3. To this end let|2E| be a genus one pencil such that
C · E = 3. SetL = 2E,M = C − 2E. Observe thatC · L = 6, C ·M = 12,
henceH 2(M) = H 0(−M) = 0 and there is an exact sequence

0→ OS(−M)→ OS(L)→ OS(L)|C → 0

whence we will be done if we prove that

(3.2) H 1(−M) = 0

for then|L|C | is a base-point free completeg16 onC, but this is not possible on a
smooth plane sextic, as any suchg16 is contained in the linear series cut out by the
lines (this is a well-known fact, see for example [LP]). To see (3.2) first notice
that sinceM2 = 6 by theRiemann-Roch theoremh0(M+KS) ≥ 4. Suppose first
thatM +KS is base-component free. Then it is nef, hence so isM and therefore
(3.2) follows by [CD1, Corollary 3.1.3]. Otherwise setM+KS ∼ F +Mwhere
F is the nonempty base component and|M| is base-component free. Note that
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h0(M) = h0(M + KS) ≥ 4 henceh2(M) = 0. By [CD1, Proposition 3.1.4]
we have eitherM ∼ 2hE1 or M2 > 0. In the first case notice that the proof
of [CD1, Corollary 3.1.2] givesh = 1, (M + KS)

2 = 2, a contradiction. If
M2 > 0, sinceM is nef we geth1(M) = 0 by [CD1, Corollary 3.1.3], hence
4≤ h0(M) = 1+ 1

2M2, that isM2 ≥ 6. The Hodge index theorem gives then
C ·M ≥ 11, whence necessarilyC ·M = 11, C · F = 1,M2 = 6. But thenF
is a line,F 2 = −2 andM2 = 6 givesF ·M = 1. Therefore(M+KS) ·F = −1
andH 1((M+KS)|F ) = 0. On the other handH 1(M+KS−F) = H 1(M) = 0
which, together with the previous vanishing, implies (3.2) by Serre duality. We
now supposeΦ(C) = 4 and let|2E| be a genus one pencil such thatC ·E = 4.
We are going to prove first that there are three possible cases forC:

C ∼ 2E + E1+ E2 with E · E1 = E · E2 = 2, E1 · E2 = 1;(3.3)

C ∼ 2E + E1+ E2+ F with E · E1 = E · F = E1 · E2 = E1 · F = 1,(3.4)

E · E2 = 2, F · E2 = 0;
C ∼ 2E + E1+ E2+ R1+ R2 with E · E1 = E · E2 = E1 · E2(3.5)

= E · R1 = E · R2 = E1 · R2 = E2 · R1 = 1,

E1 · R1 = E2 · R2 = R1 · R2 = 0

where|2E1|, |2E2| are genus one pencils,F,R1, R2 are nodal curves.
SettingL = 2E,M = C − 2E we haveC ·M = 10,M2 = 2 andh2(M) =

0, h0(M) ≥ 2 by the Riemann-Roch theorem. First suppose thatM is base-
component free. Then by [CD1, Proposition 3.1.4 and Corollary 4.5.1 of page
243] we have that eitherM ∼ E1+E2 orM ∼ 2E1+R+KS whereE1 ·E2 =
E1 · R = 1. We start by excluding the second case. In fact then 10= C ·M =
2C ·E1+C ·R andC ·R ≥ 1, C ·E1 ≥ 4 (recall the hypothesisΦ(C) = 4) imply
4= C ·E1 = 2E ·E1+1, a contradiction. IfM ∼ E1+E2, by the sameargument
wemust have, without loss of generality, eitherC ·E1 = 4, C ·E2 = 6 orC ·E1 =
C · E2 = 5. The first case is not possible since then 4= C · E1 = 2E · E1+ 1.
Therefore 5= C ·E1 = 2E ·E1+1, that isE ·E1 = 2, similarlyE ·E2 = 2 and
we are in case (3.3). Now suppose thatM has a nonempty base componentF and
setM ∼ F +M, with |M| base-component free andh0(M) = h0(M) ≥ 2.We
claim that in this caseM2 = 2. If not, as above we get that eitherM ∼ 2E1 or
M2 ≥ 4. In the latter case, since 10= C ·F+C ·M, we haveC ·M ≤ 9 and the
Hodge index theorem impliesM2 = 4, C ·M = 9, C ·F = 1 and as aboveF 2 =
−2, F ·M = 0 (fromM2 = 2). But then 1= C ·F = 2E ·F−2, a contradiction.
If M ∼ 2E1 by 10= C · F + 2C · E1 we must haveC · F = 2, C · E1 = 4.
Now F is a conic (possibly non reduced),F 2 can be only−2,−4 or−8 and
2 = M2 = F 2 + 4F · E1 impliesF 2 = −2, F · E1 = 1. But this contradicts
4= C · E1 = 2E · E1+ 1. Now let us consider the caseM2 = 2. Again either
M ∼ E1+E2 orM ∼ 2E1+R+KS withE1 ·E2 = E1 ·R = 1. In the second
casewe have 10= C ·M = C ·F+C ·M andC ·M = 2C ·E1+C ·R ≥ 9 hence
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C ·E1 = 4, C ·R = 1, C ·M = 9, C · F = 1, F 2 = −2 andF ·M = 1 (from
M2 = 2). Also 1= F ·M = 2E1 ·F +R ·F impliesR �= F , hence necessarily
E1 ·F = 0 (recall thatE1 is nef since 2E1 is). NowC ∼ 2E+2E1+R+F +KS

and we get the contradiction 4= C ·E1 = 2E ·E1+ 1. If M ∼ E1+E2, since
C ·F+C ·M = 10, without loss of generality we can assume that eitherC ·E1 =
C ·E2 = 4 orC ·E1 = 4, C ·E2 = 5. First we prove that ifC ·E1 = 4, C ·E2 = 5
we are in case (3.4). In fact thenC ·F = 1, F 2 = −2 andF ·M = 1. The latter
gives 1= F ·E1+F ·E2 hence 0≤ F ·E1 ≤ 1 and the first impliesE ·F = 1.
FromC·E1 = 4weget 3= 2E·E1+F ·E1 henceE·E1 = F ·E1 = 1, F ·E2 = 0.
Finally C · E2 = 5 givesE · E2 = 2 and we are in case (3.4). It remains to see
that, ifC · E1 = C · E2 = 4, then we are in case (3.5). To this end notice that
C · F = 2 andF is a conic. Recall that 2= M2 givesF 2 + 2F · M = 0. If
F = 2R, withR a line, thenF 2 = −8, R ·M = 2 and 1= C ·R = 2E ·R−2,
a contradiction. IfF is irreducible or union of two distinct meeting lines then
F 2 = −2, F ·M = 1, but this contradicts 2= C · F = 2E · F − 1. Therefore
F must be union of two disjoint linesR1, R2 andF 2 = −4, F ·M = 2. Hence
(E1+E2) ·R1+ (E1+E2) ·R2 = 2 and in particular 0≤ (E1+E2) ·R1 ≤ 2.
On the other hand by 1= C ·R1 = 2E ·R1+ (E1+E2) ·R1− 2 we must have
(E1+E2) ·R1 = 1 andE ·R1 = 1 and similarly(E1+E2) ·R2 = E ·R2 = 1.
FromC · E = C · E1 = C · E2 = 4 we have thenE · E1 + E · E2 = 2,3 =
2E · E1 + R1 · E1 + R2 · E1,3 = 2E · E2 + R1 · E2 + R2 · E2. It follows that
0 ≤ E ·Ei ≤ 1, i = 1,2. If E ·E1 = 0 thenE ≡ E1 but this contradicts the first
of the three equalities above. Similarly we cannot haveE · E2 = 0. Therefore
E · E1 = E · E2 = 1, R1 · E1 + R2 · E1 = R1 · E2 + R2 · E2 = 1, and again
0 ≤ E1 · R1 ≤ 1. SwappingR1 with R2 we can assumeE1 · R1 = 0 and we get
E1 ·R2 = 1, E2 ·R1 = 1 (from (E1+E2) ·R1 = 1),E2 ·R2 = 0, hence we are
in case (3.5).

Finally we prove that the linear systems (3.3), (3.4) and (3.5) are 2-normal.
In all cases we will apply the following easy

Claim (3.6).WriteC ∼ B1 + B2 with |B1|, |B2| base-point free linear systems
such thatH 1(B1) = H 2(B1 − B2) = H 1(2B2) = H 2(2B2 − B1) = 0. Then
S is 2-normal, that is the multiplication mapH 0(OS(C)) ⊗ H 0(OS(C)) →
H 0(OS(2C)) is surjective.

Proof of Claim (3.6). This is similar to [GP1, Lemma 2.6]. We have a diagram

H 0(OS(B1))⊗H 0(OS(B2))⊗H 0(OS(C))→ H 0(OS(C))⊗H 0(OS(C))

↓ id⊗ µ ↓
H 0(OS(B1))⊗H 0(OS(B2+ C))

ν−→ H 0(OS(2C))

where the mapsµ, ν are surjective by Castelnuovo-Mumford and Claim (3.6) is
proved.
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We now setBi = E +Ei, i = 1,2 in case(3.3). To see thatB1 is base-point
free notice that certainlyB1 is nef andB2

1 = 4, hence by [CD1, Proposition 3.1.6]
B1 has no base component unlessB1 ∼ 2E′ + R with |2E′| a genus one pencil,
R a nodal curve andE′ · R = 1. In that caseE′ · E + E′ · E1 = 1 hence
eitherE′ · E = 0, E′ · E1 = 1 but thenE′ ≡ E,E′ · E1 = 2 or E′ · E1 =
0, E′ · E = 1 but thenE′ ≡ E1, E

′ · E = 2. Now by [CD1, Proposition 3.1.4
and Theorem 4.4.1]B1 is base-point free unlessΦ(B1) = 1, which we have
just excluded. SimilarlyB2 is base-point free. MoreoverH 1(B1) = 0 by [CD1,
Corollary 3.1.3].AlsoB1−B2 = E1−E2 andC ·(E2−E1+KS) = 0 whence if
H 2(B1−B2) = H 0(E2−E1+KS)

∗ �= 0, thenE2 ∼ E1+KS , but this contradicts
E1 · E2 = 1. Now 2B2 is nef,(2B2)

2 = 16 hence as usualH 1(2B2) = 0. Also
C·(E1−E−2E2+KS) = −9henceH 2(2B2−B1) = H 0(E1−E−2E2+KS)

∗ =
0 and we are done with case (3.3). We now proceed similarly in the other two
cases. In case(3.4) setB1 = E +E2, B2 = E +E1+F . Note that bothB1 and
B2 are nef (sinceF is irreducible). Now exactly by the same argument of case
(3.3)B1 is base-point free andH 1(B1) = 0. As forB2, if there exists a genus
one pencil|2E′| such thatE′ ·B2 = 1 thenE′ ·E +E′ ·E1+E′ · F = 1 hence
eitherE′ · E = 1, E′ · E1 = E′ · F = 0 andE′ ≡ E1 but thenE′ · F = 1,
or E′ · E1 = 1, E′ · E = E′ · F = 0 andE′ ≡ E but thenE′ · F = 1, or
E′ · F = 1, E′ · E = E′ · E1 = 0 andE′ ≡ E ≡ E1 but thenE · E1 = 0.
HenceB2 is base-point free. NowB1− B2 = E2− E1− F andC · (E1+ F −
E2 + KS) = 0 whence ifH 2(B1 − B2) = H 0(E1 + F − E2 + KS)

∗ �= 0,
thenE1 + F ∼ E2 + KS , but this givesE2

2 = 1. Also 2B2 is nef,(2B2)
2 = 16

hence as usualH 1(2B2) = 0. SinceC · (E2 − E − 2E1 − 2F + KS) = −9
we getH 2(2B2 − B1) = H 0(E2 − E − 2E1 − 2F + KS)

∗ = 0 and we are
done with case (3.4). In case(3.5) setB1 = E + E1+ R2, B2 = E + E2+ R1.
Again bothB1 andB2 are nef and let us show that they are base-point free and
H 1(B1) = 0. In fact if there exists a genus one pencil|2E′| such thatE′ ·B1 = 1
thenE′ ·E+E′ ·E1+E′ ·R2 = 1 hence eitherE′ ·E = 1, E′ ·E1 = E′ ·R2 = 0
andE′ ≡ E1 but thenE′ ·R2 = 1, orE′ ·E1 = 1, E′ ·E = E′ ·R2 = 0 andE′ ≡ E

but thenE′ ·R2 = 1, orE′ ·R2 = 1, E′ ·E = E′ ·E1 = 0 andE′ ≡ E ≡ E1 but
thenE · E1 = 0. HenceB1 is base-point free and so isB2 by symmetry. Now
B1−B2 = E1+R2−E2−R1 andC · (E2+R1−E1−R2+KS) = 0 whence if
H 2(B1−B2) = H 0(E2+R1−E1−R2+KS)

∗ �= 0, thenE2+R1 ∼ E1+R2+KS ,
but this gives(E2+R1) ·R1 = 0, a contradiction. Also 2B2 is nef,(2B2)

2 = 16
hence as usualH 1(2B2) = 0. SinceC · (E1+R2−E−2E2−2R1+KS) = −9
we getH 2(2B2 − B1) = H 0(E1 + R2 − E − 2E2 − 2R1 + KS)

∗ = 0 and we
are done with case (3.5). ��
In the case of a Reye polarization of genus 6we do not have projective normality,
howeverwe can still decidej -normality forj ≥ 3 and the generation of the ideal.
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Lemma (3.7).Let S ⊂ IP 5 be a linearly normal smooth irreducible Enriques
surface embedded with a Reye polarization. ThenS is j -normal for everyj ≥ 3
and its homogeneous ideal is generated by quadrics and cubics.

Proof.By definitionS lies on a quadric inIP 5. In fact by [CD2] (as mentioned
in Sect. 1 of [DR]) the quadric must be nonsingular and, under its identification
with the Grassmann varietyG = G(1,3), S is equal to the Reye congruence
of some web of quadrics. We apply then the results of Arrondo-Sols [ArSo].
SettingQ for the universal quotient bundle onG, by [ArSo, 4.3] we have an
exact sequence

(3.8) 0→ S2Q∗ → O⊕4
G
→ IS/G(3)→ 0

whenceH 1(IS/G(3)) = 0 (sinceH 1(OG) = H 2(S2Q∗) = 0 by [ArSo, 1.4] or
Bott vanishing) and then of courseH 1(IS/IP 5(3)) = 0. It follows thatIS/IP 5 is
4-regular in the sense of Castelnuovo-Mumford and hence in particular
H 1(IS/IP 5(j)) = 0 for everyj ≥ 3. To see the generation of the homogeneous
ideal

⊕
j≥0

H 0(IS/IP 5(j)) it is again enough to show that the multiplication maps

H 0(OG(1))⊗H 0(IS/G(j))→ H 0(IS/G(j +1)) are surjective for everyj ≥ 3.
The latter in turn follows by the Euler sequence ofG ⊂ IP 5 from the vanishing
H 1(Ω1

IP 5|G
⊗ IS/G(j)) = 0 for everyj ≥ 4. Tensoring (3.8) withΩ1

IP 5|G
(j − 3)

we see that we just needH 1(Ω1
IP 5|G

(j − 3)) = H 2(S2Q∗ ⊗Ω1
IP 5|G

(j − 3)) = 0.
The first follows by the Euler sequence and the second by tensoring the Euler
sequence withS2Q∗ and [ArSo, 1.4] (or Bott vanishing). ��
We are now ready to prove the main result of this article.

Proof of Theorem (1.1).By Lemma (3.7) we have to prove (1.3). Notice that
we just need to show thatH 1(IS(2)) = 0 because the other two vanishings
H 2(IS(1)) = H 1(OS(1)) = 0 andH 3(IS) = H 2(OS) = 0 are already given.
The other conclusions of the theorem all follow by Castelnuovo-Mumford reg-
ularity ([Mu2, page 99], [EG, Theorem 1.2]). The caseg = 6 being already
mentioned in the introduction and the casesg = 7,8 being handled in the ap-
pendix, we suppose henceforthg ≥ 9. Let nowC be a general hyperplane section
ofS.Of course, asS is linearly normal, it is equivalent to prove thatC is 2-normal,
as it can be readily seen from the exact sequence

0→ IS/IP g−1(1)→ IS/IP g−1(2)→ IC/IP g−2(2)→ 0.

Sinceh1(OS) = 0weknow thatC is linearlynormalandwecanapply [GL2,The-
orem 1] (or [KS]), that is we need to show that deg(C) ≥ 2g+1−2h1(OC(1))−
Cliff (C). Now OC(1) ∼= ωC(KS) hence deg(C) = 2g − 2, h1(OC(1)) =
h0(OC(KS)) = 0. Therefore we will be done if we show that Cliff(C) ≥ 3.
Notice that by [CD1, Theorem 4.5.4]C is not hyperelliptic, that is Cliff(C) ≥ 1.
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As it is well knownCliff(C) = 1 if and only if either gon(C) = 3 orC is isomor-
phic to a smooth plane quintic. The latter have genus 6 and the first are excluded
by (1.5). Again we know that Cliff(C) = 2 if and only if either gon(C) = 4 or
C is isomorphic to a smooth plane sextic. The latter being done in Lemma (3.1)
we are left with the case gon(C) = 4 which is excluded by (1.8). ��
Remark (3.9).In the case of genus 9 whenC ∼ 2L + KS the line bundleL
is not very ample, hence the results of [BEL], [AnSo], do not apply. Moreover
note that this case is exactly below the application of Theorem 2.14 of [GP2]
(where it is requiredL2 ≥ 6; note that this hypothesis ismissing both in Theorem
0.3 and in Corollary 2.15 of [GP2] because of a misprint). In the case of genus
10 we suspect, but have been unable to prove, that there is no Enriques surface
embedded inIP 9 so that the general hyperplane section is isomorphic to a smooth
plane sextic. By introducing the vector bundleE associated to ag15 we can only
prove that we have a contradiction ifh1(E ⊗ E∗) �= 0. It is likely that the case
h1(E ⊗ E∗) = 0 can be done using the characterization of exceptional bundles
of Kim [K].

Remark (3.10).It is not difficult to see that the proof of Theorem (1.1) holds,
with simple modifications, in many cases, also for normal Enriques surfaces.
Precisely we have that a globally generated line bundleL on an Enriques surface
S with L2 = 2g − 2 andΦ(L) ≥ 3 (that is when the imageφL(S) is normal
[CD1, Theorem 4.6.1]) is normally generated in the following cases:g = 6 and
L is not a Reye polarization;g = 9 or g ≥ 11; g = 10 and the general curve
C ∈ |L| is not isomorphic to a smooth plane sextic.
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Appendix

Angelo Felice Lopez·Alessandro Verra

In this note we complement the result of Giraldo-Lopez-Mu˜noz on the question
of projective normality of Enriques surfaces by proving the following

Theorem (A.1). For g = 7,8 let S ⊂ IP g−1 be a linearly normal smooth
irreducible Enriques surface. ThenS is 3-regular in the sense of Castelnuovo-
Mumford. In particularS is projectively normal and its ideal is generated by
quadrics and cubics.

We denote by∼ (respectively≡) the linear (respectively numerical) equivalence
of divisors onS. Unless otherwise specified we will denote byE (or E1 etc.)
divisors such that|2E| is a genus one pencil onS, while nodal curves will be
denoted byR,R1 etc..

Our first task will be to use a deep result about lattices [CD] to characterize
the possible linear systems forg = 7,8.

Lemma (A.2).LetC be a hyperplane section ofS. For g = 7we have

(A.3) C ∼ 2E + F +KS

where|2E| is a genus one pencil,F is an isolated curve withE ·F = 3, F 2 = 0.

Angelo Felice Lopez, Alessandro Verra
Dipartimento di Matematica, Universit`a di Roma Tre, Largo San Leonardo Murialdo 1, 00146
Roma, Italy (e-mail:{lopez, verra}@matrm3.mat.uniroma3.it)
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For g = 8 the possible linear systems are:

C ∼ 2E + E1+ E2+KS withE · E1 = E1 · E2 = 1,(A.4)

E · E2 = 2;
C ∼ 2E + 2E1+ R withE · E1 = E · R = E1 · R = 1;(A.5)

C ∼ 2E + 2E1+ R +KS withE · E1 = E · R = E1 · R = 1;(A.6)

C ∼ 2E + 2E1+ R1+ R2 withE · E1 = E · R2(A.7)

= E1 · R1 = R1 · R2 = 1,

E · R1 = E1 · R2 = 0;
C ∼ 2E + 2E1+ R1+ R2+KS withE · E1 = E · R2(A.8)

= E1 · R1 = R1 · R2 = 1,

E · R1 = E1 · R2 = 0;
C ∼ 2E + E1+ E2+ R1+ R2+KS withE2 ≡ E,(A.9)

E · E1 = E · R1 = E · R2 = 1,

E1 · R1 = E1 · R2 = R1 · R2 = 0;

C ∼ 2E + E1+ E2+ R +KS withE · E1 = E · E2(A.10)

= E · R = E1 · E2 = E2 · R = 1

E1 · R = 0,

where|2E|, |2E1| and|2E2| are genus one pencils,R,R1, R2 are nodal curves.

Proof of Lemma (A.2). By [CD, Corollary 2.7.1, Proposition 2.7.1 and The-
orem 3.2.1] (or [Co, 2.11]) we know that if we setΦ(C) = inf {C · E :
|2E| is a genus one pencil} then 3≤ Φ(C) ≤ [√2g − 2], where[x] denotes
the integer part of a real numberx. Hence in our caseΦ(C) = 3 and there is a
genus one pencil|2E| such thatC ·E = 3.We setM = C− 2E+KS . Suppose
first thatg = 7. We haveM2 = 0, C ·M = 6 henceh2(M) = 0, h0(M) ≥ 1.
Note that|M| cannot be base-component free, else by [CD, Proposition 3.1.4]
we haveM ∼ 2hE1. But thenC ∼ 2E + 2hE1 + KS and this contradicts
C · E = 3. Set thenM ∼ F + M whereF is the nonempty base component
and|M| is base-component free. Note thath0(M) = h0(M) ≥ 1. We are go-
ing to prove thatM is trivial. In fact if not then by [CD, Proposition 3.1.4]
eitherM ∼ 2hE1 or M2 > 0. In the first case we get the contradiction
6= C ·M = C · F + 2hC ·E1 ≥ 7 sinceC · F ≥ 1, C ·E1 ≥ 3. In the second
case by 6= C ·M = C · F + C ·M we getC ·M ≤ 5 and the Hodge index
theorem gives 12M2 ≤ (C ·M)2 ≤ 25 henceM2 = 2, C ·M = 5, C ·F = 1,
that isF is a line andF 2 = −2.AlsoM2 = 0 givesF ·M = 0. By [CD, Propo-
sition 3.1.4 and Corollary 4.5.1 of page 243] we have that eitherM ∼ E1+E2

or M ∼ 2E1 + R + KS with E1 · E2 = E1 · R = 1 (note that the case
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M ∼ 2E1+R is excluded since it has a base component). Now the first case is
excluded by 5= C ·M = C ·E1+C ·E2 ≥ 6, while the second is excluded by
5= C ·M = 2C ·E1+C ·R ≥ 7. Therefore forg = 7 we see that (A.3) holds.

We now consider the caseg = 8. We haveM2 = 2, C · M = 8 hence
h2(M) = 0, h0(M) ≥ 2. If |M| is base-component freeby [CD,Proposition3.1.4
and Corollary 4.5.1 of page 243] we have that eitherM ∼ E1 + E2 or M ∼
2E1 + R + KS with E1 · E2 = E1 · R = 1. In the first case we have 8=
C · M = C · E1 + C · E2 hence eitherC · E1 = 3, C · E2 = 5 and we get
case (A.4) orC · E1 = C · E2 = 4, but this is not possible since it gives that
4= C ·E1 = 2E ·E1+ 1. In the second case from 8= 2C ·E1+C ·R we get
C ·E1 = 3, C ·R = 2. The latter impliesE ·R = 1, the firstE ·E1 = 1 andwe get
case (A.5). Nowsuppose instead thatM ∼ F+MwhereF is the nonempty base
component and|M| is base-component free. Note thath0(M) = h0(M) ≥ 2.
By [CD, Proposition 3.1.4 and Corollary 3.1.2] we have that eitherM ∼ 2E1

or M2 > 0. In the first case we claim that we get the linear systems (A.6) and
(A.8).

To see this note that 8= C ·M = C · F + 2C · E1 gives as usualC · F =
2, C · E1 = 3. In particularF is a conic and hence the possible values ofF 2

are−2,−4,−8. On the other hand from 2= M2 = F 2 + 4F · E1 we get
F 2 = −2, F · E1 = 1. NowC · F = 2 impliesE · F = 1 andC · E = 3 gives
E · E1 = 1. If F is irreducible we get case (A.6). IfF = R1 + R2 is union of
two meeting lines then 1= C · Ri, i = 1,2 gives 1= E · Ri + E1 · Ri . Also
1 = E · F = E · R1 + E · R2 hence without loss of generality we can assume
E · R1 = 0 and thereforeE · R2 = 1, E1 · R1 = 1, E1 · R2 = 0 and we are in
case (A.8).

Now supposeM2 > 0. We have 8= C · F + C ·M henceC ·M ≤ 7 and
the Hodge index theorem gives 14M2 ≤ (C ·M)2 ≤ 49, therefore necessarily
M2 = 2, C ·M = 6,7. If C ·M = 7 it follows thatC · F = 1, that isF is a
line andF 2 = −2. AlsoM2 = 2 givesF ·M = 1. By [CD, Proposition 3.1.4
and Corollary 4.5.1 of page 243] we have that eitherM ∼ E1 + E2 or M ∼
2E1 + R + KS with E1 · E2 = E1 · R = 1. If M ∼ E1 + E2 without loss of
generality we can assumeC · E1 = 3, C · E2 = 4. Now 1= E1 · F + E2 · F
hence 0≤ F · E1 ≤ 1 and fromC · F = 1 we getE · F = 1. AlsoC · E1 = 3
gives 2E · E1 + F · E1 = 2 and it cannot beE · E1 = 0, F · E1 = 2, therefore
we haveE · E1 = 1, F · E1 = 0, E2 · F = 1 andC · E2 = 4 givesE · E2 = 1.
This is now case (A.10).

WhenM ∼ 2E1 + R + KS we must haveC · E1 = 3, C · R = 1. Now
1 = F ·M = 2E1 · F + R · F givesE1 · F = 0, R · F = 1. AlsoC · F = 1
impliesE ·F = 1;C ·R = 1 impliesE ·R = 0 andC ·E1 = 3 givesE ·E1 = 1.
Thus we get case (A.7).

Finally we deal with the caseC · M = 6, C · F = 2 andF is a conic. It
cannot beM ∼ 2E1 + R + KS , else 6= 2C · E1 + C · R ≥ 7. HenceM ∼
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E1+E2, C ·E1 = C ·E2 = 3. FromM2 = 2wegetF 2+2F ·M = 0. IfF 2 = −2
thenF ·M = 1, but this contradicts 2= C ·F = 2E ·F −1. If F = 2R withR a
line, thenF 2 = −8 andR ·M = 2, but this contradicts 1= C ·R = 2E ·R−2.
It remains the caseF = R1 + R2 with R1, R2 two lines andR1 · R2 = 0. Now
F 2 = −4henceF ·M = 2, that is(E1+E2)·R1+(E1+E2)·R2 = 2. Inparticular
0 ≤ (E1+E2)·R1 ≤ 2.On theother hand1= C·R1 = 2E·R1−2+(E1+E2)·R1

implies(E1+E2) ·R1 = E ·R1 = 1 and similarly(E1+E2) ·R2 = E ·R2 = 1.
From 3= C · E = E · E1 + E · E2 + 2 we deduce, without loss of generality
E·E2 = 0, E ≡ E2, E·E1 = E2·R1 = E2·R2 = 1and thenE1·R1 = E1·R2 = 0
and we are in case (A.9). ��
Before proving the theorem we record the following easy ad hoc modification
of Green’sH 0-Lemma to the case of Gorenstein curves (this is inspired by the
work of Franciosi [F]).

Lemma (A.11).LetD be a Gorenstein curve,L,M be two base-point free line
bundles onD. Suppose that either

h0(ωD ⊗M−1⊗ L) = 0, or(A.12)

h0(ωD ⊗M−1⊗ L) = 1, h0(L) = 4 and there is an(A.13)

irreducible componentZ

ofD such that Im{H 0(D,ωD⊗M−1⊗L)→ H 0(Z, (ωD⊗M−1⊗L)|Z)} �= 0
andH 0(D,L)→ H 0(Z,L|Z) is injective,
then the multiplication mapH 0(L)⊗H 0(M)→ H 0(L⊗M) is surjective.

Proof of Lemma (A.11). Given any pair of line bundlesA,B onD, we define in
the usual way ([G], [L], [F]) the Koszul cohomology groupsKp,q(D,A,B) =
Kerdp,q/Imdp+1,q−1 wheredp,q : ∧p

H 0(B)⊗H 0(A⊗Bq)→ ∧p−1
H 0(B)⊗

H 0(A⊗B(q+1)). Then the Lemma is equivalent to the vanishingK0,1(D,M,L)
= 0. Note that the duality theorem [G, Theorem 2.c.6] holds also in this set-
ting (see [F]) and givesK0,1(D,M,L) ∼= Kr−1,1(D,ωD ⊗ M−1,L)∗, where
h0(L) = r + 1. Under hypothesis (A.12) we have clearlyKr−1,1(D,ωD ⊗
M−1,L) = 0. If (A.13) holds we haver = 3 and if we denote byσ a generator
ofH 0(ωD⊗M−1⊗L), by hypothesis we can choose general pointsPj ∈ Z,1≤
j ≤ 4 and a basis{s1, . . . , s4} of H 0(L) such thatsi(Pj ) = δij , σ (Pj ) �= 0 for
all i, j . Now if α = ∑

1≤i<j≤4
si ∧ sj ⊗ (λijσ ) ∈ Kerd2,1 whereλij ∈ C, then

0= d2,1(α) =
∑

1≤i<j≤4
[sj ⊗ (siλijσ )− si ⊗ (sjλijσ )]

whence the four equations

σ(−λ12s2− λ13s3− λ14s4) = 0; σ(λ12s1− λ23s3− λ24s4) = 0
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σ(λ13s1+ λ23s2− λ34s4) = 0; σ(λ14s1+ λ24s2+ λ34s3) = 0.

Evaluating at the pointsPj ’s we getλij = 0 for all i, j , henceα = 0. ��
Proof of Theorem (A.1). LetC be a general hyperplane section ofS. Notice that
we just need to show thatH 1(IS(2)) = 0 because the other two vanishings
H 2(IS(1)) = H 1(OS(1)) = 0 andH 3(IS) = H 2(OS) = 0 are already given.
To prove the desired vanishing we setE′ = E+KS , whereE is the plane cubic
of Lemma (A.2) and choose a general divisorF ∈ |C − E − E′|. In particular
C ′ = E ∪ E′ ∪ F is a hyperplane section ofS. We are going to show that

(A.14) h0(IC′/IP g−2(2)) =
{
3 if g = 7
7 if g = 8

.

Of course (A.14) suffices since by semicontinuity we geth0(IC/IP g−2(2)) ≤{
3 if g = 7
7 if g = 8

henceh1(IC/IP g−2(2)) = 0 by the Riemann-Roch theorem and the

same holds forS. First we prove

(A.15) h1(OS(C − E − E′)) = 0.

In case (A.3) it follows by the Riemann-Roch theorem sinceh0(OS(F )) =
1, F 2 = 0. Notice now that in all cases (A.4) through (A.10) we have that
(C − E − E′)2 = 2. In cases (A.4), (A.5) and (A.6) in factC − E − E′ is nef,
hence (A.15) follows by [CD, Corollary 3.1.3]. In cases (A.7) and (A.8) we have
(C −E −E′) ·R2 = −1 henceh1(OR2(C −E −E′)) = 0; moreoverC −E −
E′−R2 is nef and(C−E−E′−R2)

2 = 2, henceh1(OS(C−E−E′−R2)) = 0
by [CD, Corollary 3.1.3], therefore we get (A.15) by the exact sequence

0→ OS(C − E − E′ − R2)→ OS(C − E − E′)→ OR2(C − E − E′)→ 0.

In case (A.9) we have(C−E−E′) ·R2 = −1, (C−E−E′−R2) ·R1 = −1 and
C−E−E′−R1−R2 is nef,(C−E−E′−R1−R2)

2 = 2 hence, as above, we get
(A.15). Similarly in case (A.10) we have(C−E−E′) ·R = −1, C−E−E′−R

is nef,(C − E − E′ − R)2 = 2, hence again (A.15) is proved.
Notice now thatC · (C −E −E′) > 0 henceh2(OS(C −E −E′)) = 0 and

the Riemann-Roch theorem together with (A.15) implies

(A.16) h0(OS(C − E − E′)) = h0(OS(F )) =
{
1 if g = 7
2 if g = 8

.

Another consequence of (A.15) that will be used later is thath1(OS(2C − E −
E′)) = 0, as it canbeeasily checkedby restricting toC. SinceC ·(2C−E−E′) =
4g−10> 0, (2C−E−E′)2 = 8(g−4)we also geth2(OS(2C−E−E′)) = 0
andh0(OS(2C − E − E′)) = 4g − 15 by the Riemann-Roch theorem. Denote
now by< E >,< E′ > theIP 2’s that are linear spans of the two plane cubics
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E,E′. By (A.16) we deduce< E > ∩ < E′ >= ∅ henceh0(IE∪E′/IP g−2(2)) =
h0(I<E>∪<E′>/IP g−2(2)) =

{
9 ifg = 7
16 ifg = 8

. Also from the exact sequence

0→ OS(C)→ OS(2C − E − E′)→ OF (2C − E − E′)→ 0

and what we proved above, we get thath0(OF (2C − E − E′)) =
{
6 if g = 7
9 if g = 8

.

Now by the exact sequence

0→ IC′/IP g−2(2)→ IE∪E′/IP g−2(2)→ OF (2C − E − E′)→ 0

we see that (A.14) will follow once we show that the map

rF : H 0(IE∪E′/IP g−2(2))→ H 0(OF (2C − E − E′))

is surjective. To this end consider the natural restrictionmapsr : H 0(IE/IP g−2(1))
→ H 0(OF (C−E)), r ′ : H 0(IE′/IP g−2(1))→ H 0(OF (C−E′)) and the diagram

H 0(IE/IP g−2(1))⊗H 0(IE′/IP g−2(1)) −→ H 0(IE∪E′/IP g−2(2))
↓ r ⊗ r ′ ↓ rF

H 0(OF (C − E))⊗H 0(OF (C − E′))
µ−→ H 0(OF (2C − E − E′)).

SinceC−E−F ∼ E+KS we haveh1(OS(C−E−F)) = 0 and it follows that
h1(IE∪F/IP g−2(1)) = 0, hencer and similarlyr ′ are surjective (in fact isomor-
phisms). Therefore we just need to prove that the multiplication mapµ above is
surjective. We apply now Lemma (A.11). To see thatL andM are base-point
free we use the exact sequence

(A.17) 0→ OS(C − E − F)→ OS(C − E)→ OF (C − E)→ 0.

Sinceh1(OS(C−E−F)) = 0we just need to show thatOS(C−E) is base-point
free. The latter follows by applying [CD, Proposition 3.1.6, Proposition 3.1.4 and
Theorem 4.4.1]. In fact a quick inspection of cases (A.3) through (A.10) shows
thatC −E is nef and thatΦ(C −E) �= 1 (in case (A.3) use also the fact thatC

is very ample). Similarly forOF (C − E′).
Now if g = 7 we are in case (A.3) and we show that (A.12) holds. We have

ωF ⊗M−1⊗ L ∼= OF (F ) hence (A.12) holds sinceh0(OS(F )) = 1.
Wheng = 8wewill see that thehypotheses (A.13)hold.Firsth0(OS(F )) = 2

by (A.16), henceh0(ωF ⊗ M−1 ⊗ L) = h0(OF (F )) = 1 and we can choose
its generatorσ to beτ|F whereτ ∈ H 0(OS(F )). To computeh0((C − E)|F )
first notice thath0(OS(C − E − F)) = 1. SinceC · (C − E) = 11 we get
h2(OS(C − E)) = 0; moreoverC − E is nef, (C − E)2 = 8 and therefore
h1(OS(C − E)) = 0 (by [CD, Corollary 3.1.3]),h0(OS(C − E)) = 5 by the
Riemann-Roch theorem.Theexact sequence (A.17) thengivesh0(OF (C−E)) =
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4. Now applying [CD, Proposition 3.1.4] and [CD, Proposition 3.1.6] in case
(A.4), [CD, Corollary 3.1.4] in case (A.5), we see thatF is irreducible in these
cases, hence (A.13) holds. In case (A.6) we haveF = R ∪ Z with Z general
in |2E1|. As τ|R = 0 (R is a base component) we getσ|Z = τ|Z �= 0. Moreover
(C − E − Z) · R = −1 henceh0((C − E)|R(−Z)) = 0 and (A.13) holds.

In the remaining cases (A.7) through (A.10) we will just limit ourselves to
indicate the componentZ to be chosen and leave the easy verification of (A.13)
to the reader. We chooseZ to be a general divisor in|2E1 + R1 + KS | in case
(A.7), |2E1| in case (A.8) and|E1+ E2| in cases (A.9) and (A.10). ��
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