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1. Introduction

One of the basic but often difficult tasks in algebraic geometry is to describe
the equations of a given smooth projective varigtyc PV in terms of its
intrinsic and extrinsic geometry. In particular no general formula is known for
the number of generators of the homogeneous ideal.dflany authors from
classical to nowadays, have therefore concentrated their attention on finding
sufficient conditions foX to be projectively normal, that is such that the natural
restriction mapsH°(Opn (j)) — H%(Ox(j)) are surjective for every > 0,

for then Riemann-Roch and (often) vanishing theorems answer the question.
In the case of curves many results are known, starting with Castelnuovo’s [Ca]
projective normality of linearly normal curves of gengsand degree at least

2g + 1 (with modern generalization by Mumford [Mul]) and culminating with
Green's result [G], that if a linearly normal curve of gersusas degree at least

2g + 1+ p then it satisfies property, [GL2], that is it is projectively normal,

its homogeneous ideal is generated by quadrics, the relations among them are
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generated by linear ones and so on until the p-th syzygy module. In recent years
Mukai interpreted this fact as suggesting that line bundleX oftype Ky ® A"

should satisfy propertyv, forn > p + 4 whenX is a surface (often called
Mukai’s conjecture) and that similar results should hold for higher dimensional
varieties. Again many results have been proved in this direction. We mention here
for example the results of Ein and Lazarsfeld [EL] for varieties of any dimension
and the more precise results on syzygies or projective normality of surfaces:
Pareschi [P1] proved Mukai’s conjecture for abelian varieties, Butler [Bu] dealt
with the ruled case, Homma [H1,2] settled Mukai’s conjecturegfoe 0 on
elliptic ruled surfaces and Gallego and Purnaprajna [GP1,2] gave several results
on projective normality and syzygies of elliptic ruled surfaces, surfaces of general
type and Enriques surfaces. The latter case has been the one of interest to us fo
at least three reasons. For K3 surfaces it follows by Noether's theorem and by a
theorem of Saint-Donat [SD] that any linearly normal K3 surface is projectively
normal and its ideal is generated by quadrics and cubics. In this case the genera
hyperplane section is a canonical curve which is not too far from Prym-canonical
curves, like Enriques surface hyperplane sections. One is then naturally led to
wonder if some kind of results of this type also hold for Enriques surfaces. On
the other hand, despite of all the work done, the question of projective normality
of Enriques surfaces had not been settled yet (to our knowledge the best results
are the partial results of Gallego and Purnaprajna [GP1,2]). The third reason was
that we had started the study of projective threefolds whose general hyperplane
section is an Enriques surface, and for our methods it was important to know
projective normality.

Let nowS c IP¢~! be a smooth linearly normal Enriques surface. As it is
well known (or see Sect. 3) we hage> 6 and already in the first case there
are explicit examples of non projectively normal Enriques surfaces IP°,
as by the Riemann-Roch theorem this is equivalent to the fact that the surface
lies on a quadric (the embedding is then called a Reye polarization; these cases
are classified [CD1, Proposition 3.6.4]). On the other hand we have been able to
prove that in fact the above are the only examples.

Theorem (1.1).LetS c IP¢~! be alinearly normal smooth irreducible Enriques
surface.

(1.2) If g = 6 and O5(1) is a Reye polarization thefi is j-normal for every

j = 3and its homogeneous ideal is generated by quadrics and cubics;

(1.3) If eitherg > 7 or g = 6 and O4(1) is not a Reye polarization, theshis
3-regular in the sense of Castelnuovo-Mumford. In particufas projectively
normal and its homogeneous ideal is generated by quadrics and cubics.

Infact the theorem holds in many cases also whismormal; see Remark (3.10).
The study of the projective normality 6f C P4~ can of course be reduced
to the same for an hyperplane sectionin the case of an Enriques surface we
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have deg¢ = 2¢ — 2 hence, by the theorem of Green and Lazarsfeld [GL2]
(also in [KS]),C is projectively normal unless it has low Clifford index. Whence
it becomes important to study curves with low Clifford index (or gonality) on
an Enrigues surface. We do this with the nowadays standard vector bundles
techniques of Green, Lazarsfeld and Tyurin ([GL1], [L], [T]), proving results
that are very close in spirit with the ones of [GL1], [P2], [Rel], [Ma], [Z]. We
choose to state them here as they are of independent interest, since itis in genere
useful to know whether various specific curves can lie on an Enriques surface.
Moreover they have applications in the study of projective threefolds whose
general hyperplane section is an Enriques surface [GLM].

We first recall an important result about the Enriques lattice that will be also
used extensively later. Lét be a nef line bundle of with B?> > 0 and set

@ (B) =inf{B - E : |2E| is a genus one pengil

Then by [CD1, Corollary 2.7.1, Proposition 2.7.1 and Theorem 3.2.1] (or [Co,
2.11]) we have®(B) < [v/B2], where[x] denotes the integer part of a real
numberx. In particular ifC c § is a smooth irreducible curve of gengs> 4

and gonalityk, choosing a genus one pencil calculating"), we getg > % +1.
Wheng is slightly larger we can give some information on the geometr§ .of
Given an integek > 3 set

6 if k=3 )
. 2k f3<k<6
)2 +1 if4<k<6 R - =
FO =1 4242615 k)= K A2KES L
Tlfkg? 4

Then we have

Theorem (1.4).LetS be a smooth Enriques surface,c S a smooth irreducible
curve of genug and suppose that has gonalityk > 3. We have

a5 ifg > % + k + 2 thenk is even and every? on C is cut out by a genus
one penci|2E| on S;

(1.6) ifkis eveng = % + k + 2 and there is no genus one pencil Srcutting
out ag,} on C, then either there exist two genus one pendiB, |, |2E5| with
E1- E; = 1such thatC is numerically equivalent t()g + 1)(E1 + E>) or there
exist a genus one pendf2E|, a nodal curveR with E - R = 1, such thatC is
numerically equivalent t¢5 + 1)(2E + R + K);

(1.7) letC, € |C| be a general element and suppose thiathas also gonality
k > 3 and that eitherg > f(k) or C is very ampleg > f,(k) and, when
k =6,¢g =13 that®(C) > 4. Thenk is even and every,} on C, is cut out
by a genus one pend2E| on S unlessk = 6, ¢ = 13 and C is numerically
equivalentt®E,+2E,+2E3, where|2E;| are genus one pencilsailg)- E; = 1
fori # j;
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(1.8) if C is very ample and = 4 theng < 10, and forg = 9, 10the general
elementC, € |C| has gonality at leass;

(1.9) suppose that is very ample. Iff > 18 (respectivelyg > 14) andk = 6
(respectively gofC,) = 6) thenS c IPH%(Os(C)) contains a plane cubic
curve. The converse holds for(resp.C,) for g > 14 (resp.g > 11).

One of the nice consequences of the result of Green and Lazarsfeld in [GL1] is
that a smooth plane curve of degree at least 7 cannot lie on a K3 surface ([Ma],
[Rel]). As the above theorem shows the vector bundle techniques work quite
well to study curves on an Enriques surface having low gonality with respect to
the genus. Therefore it is not surprising that they also allow to study the existence
of curves with given Clifford dimension. We recall that the Clifford index of a
line bundleL on a curveC is Cliff (L) = degL —24°(L) + 2 and that the Clifford
index of C is defined by CliftC) = min{Cliff (L) : h°(L) > 2, h*(L) > 2}. For

most curves the Clifford index is computed by a pencil, but there are exceptional
ones, for example smooth plane curves. In [ELMS] Eisenbud, Lange, Martens
and Schreyer studied curves whose Clifford index is not computed by a pencil and
defined the Clifford dimension of a cureby Cliffdim(C) = min{h°(L) — 1 :

Cliff (L) = CIiff (C), h°%(L) > 2, h*(L) > 2}. Asitturns out curves with Clifford
dimension two are just plane curves, while curves with higher Clifford dimension
are quite sparse (see the conjecture and results in [ELMS]). We have

Corollary (1.10). Let S be a smooth Enriques surfac€, c S a smooth ir-
reducible curve of genug and suppose thaf' has Clifford indexe > 1 and
Clifford dimension at least 2. We have

<e2+10e+29
g ——;
4

(1.12) suppose that eithgr> f(e + 3) or C is very ampleg > f,(e + 3) and,
whene = 3, g = 13, that®(C) > 4. Then for the general curv€, € |C| we

have either CliffdindC,) = 1 or Cliff(C,) # e, unlesse = 3, g = 13andC is
numerically equivalent t@E, + 2E, + 2Ez asin (1.7);

(1.13)S does not contain any curve isomorphic to a smooth plane curve of degree
d>09;

(1.14) the general curv€, € |C| is not isomorphic to a smooth plane curve of
degreer and8.

(1.11)

We remark that Zube in [Z] has several claims about plane curves or curves of
higher Clifford dimension on an Enriques surface, but almost all the proofs are
incorrect.
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2. Linear systems on curves on Enriques surfaces

The goal in this section will be to study when a line bundle on a given curve lying
on an Enriques surfacgand calculating the gonality (or the Clifford index) of
the curve is restriction of a line bundle 8nThe methods employed are the usual
vector bundle techniques of Green, Lazarsfeld and Tyurin ([GL1], [L], [T]). We
denote by~ (respectively=) the linear (respectively numerical) equivalence of
divisors onS. Unless otherwise specified for the rest of the article we will denote
by E (or E; etc.) divisors such thaRE]| is a genus one pencil a8y while nodal
curves will be denoted bR, R; etc.. We recall that for a divisdp on S we have

D =0ifandonlyif D ~ 0 or D ~ K. We collect what we need in the ensuing

Lemma (2.1).Let S be a smooth irreducible Enriques surface afidc S a
smooth irreducible curve of genygs Let|A| be a base-point freg} on C, let
Fec.4 be the kernel of the evaluation map’(4) ® Os — A — 0 and set
& = Eca = F{ 4 Thenf is a rank two vector bundle sitting in an exact
sequence

2.2) 0 HYA)Y @05 25 £ - Oc(C)@ At — 0

and satisfying
(2.3)c1(E) =C, (&) =k, AE) = c1(E)? — beo(E) = 2g — 2 — 4k.
Suppose thag > 2k + 1. Then there is an exact sequence

(2.4) O-M—-E€—-TJ,00L—0

whereL, M are line bundles and is a zero-dimensional subschemeSauch
that:

(25 C~M+L, k=M -L+deqgZ), (M —L)>=2g—2— 4k +4deq Z);
(2.6)|L| is base-component free, nontrivial and > 0;

(2.7) if g > 2k + 1 (respectivelyg = 2k + 1) thenM — L lies in the positive
cone ofS (respectively in its closure) and, in both casgs; L > L?;

(2.8) if L? = 0 andk is the gonality ofC thenL ~ 2E is a genus one pencil on
S cutting out|A| onC;

(2.9)ifZ = yand H*(M — L) = Othen the base locus ¢f | is contained inC.

Proof. It is well known that the vector bundles as above satisfy (2.2) and
(2.3) (JGL1], [L], [T], [P2]). A standard Chern class calculation shows that (2.4)
implies (2.5). Ifg > 2k + 1 thenA(£) > 0 and€& is Bogomolov unstable
([Bo], [L], [R], [Re2]), hence we get (2.4) in this case and the first part of (2.7).
Suppose thag = 2k + 1 and that€ is H-stable with respect to some ample
divisor H. By a well-known argument (see e.qg. [L, proof of Proposition 3.4.1])
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it follows that2°(£ @ £*) = 1 andh?(€ ® £*) = h°%(E @ £*(Ks)) < 1 (the
latter because botf and&(Ks) are H-stable with the same determinant). But
the Riemann-Roch theorem gives€ ® £*) = 4, whence a contradiction. This
establishes (2.4). The instability condition means — L) - H > 0, hence
M — L lies in the closure of the positive cone 8f To see (2.6) notice that
h(Oc(C)®A™Y) = hY(Oc(Ks)® A) # 0, else by the Riemann-Roch theorem
we get the contradiction & h1%(O¢ (Ks)®A) = k—g+1. Sincei}(Os) = Owe
get by (2.2) thaf is globally generated away from afinite set and soliy (2.4).
Note thatL is not trivial: In fact by (2.2) we havi®(£(—C)) = 0, while if L were
trivial thenC ~ M by (2.5) and (2.4) would imply°(£(—C)) > h°(Oy) = 1.
ThenL? > 0 by [CD1, Proposition 3.1.4]. Now boti — L andL lie in the
closure of the positive cone of the Neron-Severi grouf,dfence the signature
theorem implies thatM — L) - L > 0 ([BPV, VIII.1]), that is (2.7). To see (2.8)
notice that if L2 = 0 by (2.6) and [CD1, Proposition 3.1.4] we hakie~ 2hE
for someh > 1. Also h°(Og(2E — C)) = 0, else by (2.5) and (2.6) we get
0<(E-C)-C=%"_C?2<%—2¢+2<0.Thereford2E| cuts outa
pencil onC and hence

L -

<

k
k=gonC) <2E-C = gzgk

3‘ ‘

that ish = 1,L - M = k. In particular we havéi®(Og(—M)) = 0, asL
is nef. By (2.4) we havé°(£(—M)) > 1 and (2.2) givesi®(Lic ® A71) >
h%(E(—M)) > 1. But we also have ddgc ® A~! = 0 hence (2.8) is proved.
Under the hypotheses of (2.9) we ha/& L & M hence in particular the map
¢ of (2.2) clearly drops rank on the base pointd.othat is these points belong
toC. O

We will apply the above technique to study curves with low gonality on an
Enriques surface. In view of the applications in the forthcoming article [GLM],
we give a result in greater generality than the one needed for the aim of the
present paper.

Proof of Theorem (1.4)Suppose firsg > "742 + k + 2. Sincek > 3 we have

g > 2k +1. Let|A| be a (necessarily) base-point figleon C and apply Lemma
(2.1). Setx = M - L andL? = 2y. By the Hodge index theorem, (2.5) and (2.7),
we have

(2g —2—4k)2y < (M — L)’L?> < (M — L) - L)* = (x — 2y)* < (k — 2y)?

therefore, ify > 1, we getg < % +k+y+21andx > 2y + 1. In particular
y < ";21 henceg = §+k+2.Thus ifg > §+k+2thenL2 = 0 and we get
(1.5) by (2.8). ,

Suppose now thdt is even ang = "7 + k + 2. By the above argument and
the hypothesis in (1.6) we get = 1, x = k. Moreover we have equality in
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the Hodge index theorem, hent® — L)°L = (M — L) - L)(M — L), that
isM = ’%L andC = (’g + 1)L. SinceL? = 2 by [CD1, Proposition 3.1.4 and
Corollary 4.5.1 of page 243] we have eithler~ E; + E; with E; - E; = 1 or
L ~ 2E + R + Kg with E - R = 1 (note that the cask ~ 2E + R is excluded
since it has a base component). This proves (1.6).

To see (1.7) letA| be ag{ on C,. Applying Lemma (2.1) tdA| we get the
decomposition (2.5). By (2.8) we will be done if we prove that= 0. Suppose
first g > f(k) andL? > 2. The Hodge index theorem applied — L and
L implies that the only case possiblefi§ = 2, Z = ¢. Then the base locus
of |L| consists of two points by [CD1, Theorem 4.4.1 and Proposition 4.5.1].
Note thatC, is not hyperelliptic, hencgC| is base-point free an@ (C) > 2 by
[CD1, Corollary 4.5.1 of page 248 and Proposition 4.5.1]. Now we are going to
prove thatC,, must contain the base points |df|. As this kind of line bundles
are countably many, we get a contradiction.

To see thatBd.| C C, we use (2.9). Suppose that(M — L) > 1. By (2.5)
C-(M—L)=2¢g—6—2k > 0,henceh?(M — L) = 0. Also(M — L)*> =
2g —2— 4k, henceh®(M — L) = g — 2k +h'(M — L) > g — 2k + 1. Note that
g > 2k+1unlessk = 3, g = 7. Thereforg M — L| is not base-component free
unlessk = 3, g = 7, for [CD1, Corollary 3.1.3] impliea*(M — L) = 0. When
k=3,¢g=7if [M — L|is base-component free by [CD1, Proposition 3.1.4] we
haveM — L ~ 2h E and we get the contradiction2 C-(M—L) = C-2hE > 4.
ThereforeM — L ~ F + M whereF is the nonempty base component and|
is base-component free. In particubdM) = hi°(M —L) > g—2k+1 > 2and
henceh?(M) = 0. If M? > 2 by [CD1, Corollary 3.1.3] we have'(M) =0
and the Riemann-Roch theorem givé$M) = 1+ M2 > g — 2k + 1, that
isM?>2¢g —4k.AlsoC- M < C - (M — L) =2g — 6 — 2k. But the Hodge
index theorem applied t@ and M contradicts the inequalities gn Now by
[CD1, Proposition 3.1.4] we must have th&t ~ 2k E. Moreover notice that,
unlessk = 3,g = 7, we have(M — L)? > 0 and in this case the proof of
[CD1, Corollary 3.1.2] implies: = 1, (M — L) = 0. Therefore we are left
with the caseék = 3,¢g = 7 and M ~ 2hE. Again this is impossible since
2=C-M—-L)=C-F+2hC-E >A4.

Suppose now thak? > 2, C is very ample,g > f,(k) and, whenk =
6,g = 13, thatdo(C) > 4. Of course we just need to do the casecdk <
6, g = 2k + 1. By (2.5) the Hodge index theorem applieddb— L and L
implies that the only cases possible até:= 2,k = 6,degZ = 1; Z = ¥ and
either.2 = 2,4 or L2 = k = 6. Moreover when.?2 = k we haveM = L
henceC = 2L and by [CD1, Lemma 3.6.1¢ (L) < 2; but by hypothesis
3 < ®(C) = 20(L), henced (L) = 2. If in additionk = 6 then by [CD1,
Proposition 3.1.4 and Proposition 3.6.3] we conclude that E; + E, + E3,
henceC = 2E; + 2E, + 2E3 as in (1.7) (here we use the fact thatis very
ample).
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In the caselL.? = 2,k = 6,degZ = 1we haveM - L = 5,C-L = 7.

By [CD1, Proposition 3.1.4 and Corollary 4.5.1 of page 243] we have either
L~E +E,withE,-E;=10rL ~2E+ R+ Kgwith E- R =1, and the
hypothesisp (C) > 4 givesC - L > 8, a contradiction.

WhenZ = @ andL? = 2, 4 we will prove that:*(M — L) = O unlessk = 6
andC ~ 2E,+2E,+2E3zasin(1.7)L ~ E,+ E3. Excluding this exception, if
L? =2o0rL? = 4and® (L) = 1, the base locus ¢f.| consists of two points and,
as above, we will get a contradiction. Set theh= 2y, y = 1, 2. SinceZ =
we haveM - L =k, (M — L)? = 0 by (2.5). Ifk = 4, y = 2 we already know
thath'(M — L) = 0. Suppose now that, in the remaining casesfor, we have
h'(M —L) > 1.AsC-(M — L) = 2k — 4y > Owe geth>(M — L) = 0. By the
Riemann-Roch theoremwe hav®M — L) = 1+ h*(M — L) > 2. I1f [M — L|
is base-component free by [CD1, Proposition 3.1.4] we hidve L ~ 2hE;.
Therefore 2 —4y = C - (M — L) = 2hC - E; > 6h and we have necessarily
y=h=1k=5,6.1fk =5wehave3= (M—L)-L = 2E;-L,acontradiction.

If kK = 6 note that it cannot be ~ 2E + R + K (because& (C) > 4 gives 8=

C-L > 9), therefore by [CD1, Proposition 3.1.4 and Corollary 4.5.1 of page 243]
we havelL ~ E,+ EswWith E;- Es =1.Nowd= (M —L)-L = 2E1-(E>+ E3)
impIiesEl -Ey=FE{-E3=1 (E|SeE1 -Ey, = 0, E, - E3= 2, but thenEl =F
contradictingt,- E3 = 1). ThereforeC ~ M+ L ~ 2E14+2E,+2E3asin(1.7).
Suppose now tha¥ — L ~ F + M whereF is the nonempty base component
and| M| is base-component free.df - F = 1 thenF is a line, F? = —2 and
1=C-F=2L-F -2+ M- Fimplies thatM - F is odd and at least 1. In
particular 0= (M — L)? = =2+ M?+2M - F > M?

Going back to the general case, we h&feM) = (M — L) > 2. If
M? > 2 we haveC - F > 2 and henc& - M < 2k — 2 — 4y. But the Hodge
index theorem applied 6 and. M gives a contradiction. Therefoyet> = 0 and
by [CD1, Proposition 3.1.4] we havel ~ 2hE;. AsC - M is now even we also
getC-F>2.FromZ—-4y=C-(M—L)=C-F+2hC-E1>2+2h®(C)
wegetl<h < %, again a contradiction.

We are then left with the case? = 4 and®(L) = 2. Moreover, as we
have seen above, we hav¢ - L = k,Z = ¢, (M — L)?> = 0 andh*(M —
L) = h*(M — L + K5) = 0 (the latter because the prooff(M — L) = 0
depends only on the numerical clasgf L and the first because the exception
C = 2E; + 2E» + 2E3 does not occur wheh? = 4). Recall that we have also
proved that, whe = 4, thenM = L, C = 2L. Observe now that it cannot be
k =5, elseC- (M — L) = 2. Butthemi?(M — L) = 0andh®(M — L) =1, by
the Riemann-Roch theorem. This is not possible since [ther L| contains a
conic, but for a conid® C S the only possibleg=? are—2, —4, —8.

Suppose theh = 4, 6. First we prove thall1(—M) = 0. By [CD1, Proposi-
tion 3.1.4 and Theorem 4.4.1} | is base-pointfree anbl (L) = HY(L+K5) =
Oby[CD1, Corollary 3.1.3]. LeD € |L| be ageneral member. Thénis smooth
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irreducible of genus 3 and the exact sequence
0— Os(M—L+K5)—> Os(M+K5)—> OD(M—|—K5)—> 0

showsthaH(—M) = HY(M+Ks) = 0ifk = 6sinceM-D = 6 > 2g(D)—2.
If k = 4 we haveH'(—M) = 0 sinceM = L. Similarly H*(M) = 0.

Thenr®(L) = h%(L;c,) = 3. Note now that by (2.2) and (2.4) we have
hO(Lic, ® A™Y) = h®(E(—M)) > 1. The linear systenfL| defines a surjective
morphism¢; : S — IP? of degree 4 by [CD1, Theorem 4.6.3]. Let e
ILic, ® A~1| be an effective divisor o, of degree 4. For ever§ € |A| we have
A+ B € |Lic,|, hence we can find a lines C IP? such thatp, (A + B) C Lg.
Butwe canalsofin®’ € |A|suchthal.g # Lg/, hencep, (A) mustbe apointin
IP?,thatis eithert = ¢, *(¢, (x)) for somex € S suchthatding; (¢, (x)) = 0,
or A is contained on a one-dimensional fibekgf We will therefore be done if
we show thatC,, does not contain any scheme-theoretic zero-dimensional fiber
of ¢, nor shares four points with any one-dimensional fibep gffor every L
as above.

Note that the second case does not occkr=f 4 because we have = 2L,
henceL is ample and base-point free, therefore all the fiberg,ofire zero-
dimensional.

Consider now the incidence correspondence

Jp = {(x, H) : dimg; *(¢r(x)) = 0, ¢, (¢ (x)) C H} C S x |C],

together with its two projections;. We claim that dinfrl‘l(x) < g —4forevery
x € S such that dimbL‘l(qsL(x)) = 0. Of course this gives dith < g — 2 and
7 is not dominant. As the possibleare at most countably many we get the first
result needed.

Now let W = ¢L_1(¢L(x)) be zero-dimensional and lé, D’ € |L| be
two general divisors passing throughso thatW = D N D’ and J'rl_l(x) =
IPH(Jy,s(C)). In the exact sequence

0— jD/S(C) —> jw/s(C) —> jW/D(C) —- 0

we haveJp,;s(C) = M, henceh®(Jp,s(C)) = k — 1, h*(Tp/s(C)) = O.
Also h°(Ty,p(C)) = h°%(Op(C — W)) = h®(M|p). But for k = 6 we have
hY(Mp) = 0, while fork = 4 we geth!(M|p) < 1, hencé:®(M,p) < k—1and
hO(Jws(C)) < g — 3.

We now deal with the case of one-dimensional fibers. We haveitheré.
Let G be any effective divisor o§ such thatL - G = 0, G> < —2. Setx =
C-G=M-G >1G?2= —-2y,y > 1. The Hodge index theorem applied
to M and—3xL + 2G gives the inequality 2 > x2. In particular ifG? = —2
thenC - G = 1. This fact implies that there is no nodal curkesuch that
L-R=0,h%L - 2R) > 2 because the@ - (L — 2R) =8, (L — 2R)? = —4,
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hence certainly. — 2R ~ F; + M has a base componeh{ and| M| is base-
component frees°(M) = h°(L — 2R) > 2. As usual eitheM ~ 2hE, but
this gives the contradiction & C - (L —2R) = C - F; + 2hC - E > 9, or
M? > 2,C- M < 7. By the Hodge index theorem applied@cand M we get
M? =2,C- M =7.By[CD1, Proposition 3.1.4 and Corollary 4.5.1 of page
243] we have eithemM ~ E; + E; with Ey - E; =1 0orM ~ 2E + R + Ky
with £ - R = 1, and the hypothesi(C) > 4 givesC - M > 8, a contradiction.

Let now F be a scheme-theoretic one-dimensional fibeppf with irre-
ducible component$;’'s. ThenL - F; = 0 for everyi and the Hodge index
theorem shows that? < —2, F2 = —2. Letz = ¢, (F) € IP? and take a pencil
of lines L, throughz. Then¢; (L,) = F + D, € |L| for some divisorsD,. In
particularh®(L — F) > 2. This shows that all thé&;'s occur with multiplicity
oneinF, elseh®(L — 2F;) > 2, which we have have proved impossible.

If F is connected thep,(F) > 0, henceF? = —2 and, as we have seen
above,C - F = 1, the desired result. Now by [CD1, proof of Lemma 4.6.3
and Corollary 4.3.1] we see that a fiber@f must be connected unlegs~
2E 4+ R{+ R+ Kswith E- Ry =E-R> =1, R.- R> = 0. In the latter case
settingG = R; + R, we getx < 2. ButC is very ample, hence = 2 and we
have equality in the Hodge index theorem, that# Z 3L — R; — R, and then
C = 5E + 2R;1 + 2R,. But in this case any nodal curvedifferent fromR; and
R is not contracted by, , elseL - R =0,henceE-R=R;-R=R,-R =0,
but thenC - R = 0, a contradiction. Therefore the only curves contracted by
in this case ar®, andR, andC - Ry =C - R, = 1.

Alternatively we can avoid the use of [CD1, proof of Lemma 4.6.3 and Corol-
lary 4.3.1] in the following way. IfF has a unique irreducible componétitby
the above we havé = R andC - F = 1. If not let Ry, R, be two distinct
irreducible components d@f. As (R, + R»)?> < —2we have 0< R;- R, < 1. Set
G = R1+ R,. If R, - R, = 1thenG? = —2 henceC - G = 1, a contradiction.
ThereforeR, - R, = 0 and, as above, we ged2 = 3L — R; — R, and then
2C = 5L — R; — R,. Now if R is another irreducible component Bfwe have
R-L=R-Ri=R-Ry, =0, henceC - R = 0, a contradiction. Therefore
F = R1+ Ry, andC - F = 2. The proof of (1.7) is then complete.

Now (1.8) follows from (1.5) and (1.7) since,(@f is very ample it cannot be
2E - C = 4, otherwiseE is a conic, in contradiction witlk? = 0. Similarly for
(1.9), since (1.5) and (1.7) give- C = 3, thatisE is a plane cubic. On the other
hand if there is a plane cubi€ thenC - E = 3 and by [CD1, Theorem 3.2.1,
Proposition 3.1.2 and Proposition 3.1.4] the syst@m| is a genus one pencil
which cuts out &2 on C. Then (1.5) and (1.7) imply that the gonality is 6.0

Remark (2.10)In the caseC very ample anck = 5,¢g > 11 a more precise
result holds. In fact the above proof shows that there exists a countable family
{Z,,n € N} of zero dimensional subschemgg c S of degree two, such that



On the projective normality of Enriques surfaces 145

if C' € |C| does not contaitx,, for everyn, then goC”") > 6. This remark will
be useful in [GLM].

We now deal with the existence of curves on an Enriques surface with low Clifford
dimension.

Proof of Corollary (1.10)By aresult of Coppens and Martens [CM, Theorem 2.3]
we havek = gon(C) = e + 3 and there is a one dimensional family gifs.
Let|A| be a generag,}. Of courseg/A| cannot be cut out by a line bundle 6n

Whenceg < ez*%*” by (1.5). Similarly (1.12) follows by (1.7). Finally (1.13)

and (1.14) are easy consequences of (1.11), (1.12) by taking into account the fact
that a smooth plane curve of degekte 5 has Clifford dimension 2 and Clifford
indexd — 4. O

3. Clifford index and projective normality of curves on Enriques surfaces

We henceforth le§ c P4~ be a smooth linearly normal Enriques surface and
C be a general hyperplane sectionSodf genusg. Note that necessarily > 6
since, a< is very ample, we have 3 @ (C) < [/2¢ — 2].

We start the study of projective normality with a special case that appears to
escape the vector bundle methods of Sect. 2 and needs to be done in another way
In fact we do not know if this case really occurs (see also Remark (3.9)).

Lemma (3.1).LetS c IP° be a smooth linearly normal Enriques surface such
that its general hyperplane sectid@n is isomorphic to a smooth plane sextic.
Thens is 2-normal, that is7*(Js(2)) = 0.

Proof. Of course we havg = 10 andC? = 18 hence 3< @(C) < 4. We first
exclude the cas@ (C) = 3. To this end lef2E| be a genus one pencil such that
C.-E=3.SetL =2E,M =C —2E.ObservethaC - L =6,C - M = 12,
henceH?(M) = H°(—M) = 0 and there is an exact sequence

0— Os(=M) - Og(L) = Os(L)jc = 0
whence we will be done if we prove that
(3.2 HY(-M)=0

for then|L,c| is a base-point free complegg on C, but this is not possible on a
smooth plane sextic, as any sughs contained in the linear series cut out by the
lines (this is a well-known fact, see for example [LP]). To see (3.2) first notice
that sinceM? = 6 by the Riemann-Roch theoréi®(M + K s) > 4. Suppose first
thatM + K is base-component free. Then it is nef, hence 96 end therefore
(3.2) follows by [CD1, Corollary 3.1.3]. Otherwise sdt+ Kg ~ F + M where

F is the nonempty base component and| is base-component free. Note that
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(M) = hO%(M + Ks) > 4 henceh?(M) = 0. By [CD1, Proposition 3.1.4]
we have eithetM ~ 2hE; or M? > 0. In the first case notice that the proof
of [CD1, Corollary 3.1.2] gives: = 1, (M + K5)? = 2, a contradiction. If
M? > 0, sinceM is nef we geti!(M) = 0 by [CD1, Corollary 3.1.3], hence
4 < h°(M) = 1+ 3M?, thatisM? > 6. The Hodge index theorem gives then
C - M > 11, whence necessarity- M = 11, C - F = 1, M? = 6. But thenF
isaline,F?2 = —2 andM? = 6 givesF - M = 1. ThereforgM + Kg)- F = —1
andH((M + Ky)r) = 0. Onthe other hanB#*(M + K3 — F) = H}(M) =0
which, together with the previous vanishing, implies (3.2) by Serre duality. We
now suppose@ (C) = 4 and let|2E| be a genus one pencil such tldat £ = 4.
We are going to prove first that there are three possible casés for

(33)C~2E+E +E;WithE -Ey=E-E,=2,E, - E» =1;

34)C~2E+4+Ei+E;+FWthE-Ey=E-F=E,-E;=E;-F=1,
E-E2=2,F-E2=0;

(35)C~2E+E1+Ey+Ri+RyWthE -Ey=E-E,=E; - E,
=FE-Ri=E-Ry=E1-Ry=E>-R;1 =1,
Ei1-Ri=E;-R;,=R1-R;=0

where|2E1|, |2E,| are genus one pencil8, R1, R, are nodal curves.
SettingL = 2E, M = C — 2E we haveC - M = 10, M? = 2 andh?(M) =
0, hi°(M) > 2 by the Riemann-Roch theorem. First suppose Mais base-
component free. Then by [CD1, Proposition 3.1.4 and Corollary 4.5.1 of page
243] we have that eithel ~ E;+ E,orM ~ 2E1+ R+ KgwhereE; - E; =
E; - R = 1. We start by excluding the second case. In fact thee=10 - M =
2C-E1+C-RandC-R > 1, C-E; > 4 (recall the hypothesi® (C) = 4) imply
4=C-E, =2E-E;+1,acontradiction. IM ~ E{+ E5, by the same argument
we must have, without loss of generality, eitiietE; = 4, C-E, = 60rC-E, =
C - E; = 5. The first case is not possible since thee € - E; = 2E - E1 + 1.
Therefore 5= C-E; =2E-E,+1,thatisE - E; = 2, similarlyE - E;, = 2 and
we are in case (3.3). Now suppose thahas a nonempty base compong&rand
setM ~ F + M, with | M| base-component free ahB(M) = (M) > 2. We
claim that in this casé1? = 2. If not, as above we get that eith&t ~ 2E; or
M? > 4.Inthe latter case, since 89 C - F +C - M, we haveC - M < 9and the
Hodge index theorem implie$t? = 4,C-M =9, C-F = 1and as aboveé? =
—2, F-M =0 (fromM? = 2).Butthen 1= C-F = 2E-F —2, acontradiction.
fM~2E,byl0=C-F+2C-E;wemusthavel - F =2,C - E; = 4.
Now F is a conic (possibly non reducedy? can be only—2, —4 or —8 and
2 = M? = F? 4+ 4F . E; implies F2 = —2, F - E; = 1. But this contradicts
4=C.E,=2E-E;+ 1. Now let us consider the cagel> = 2. Again either
M~E{+E;orM ~2E1+R+KswithE1-E> = E1-R = 1. Inthe second
casewehavel8& C-M =C-F+C-MandC-M =2C-E;+C-R > 9hence
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C - Ey=4C-R=1,C-M=9,C-F=1,F?>=-2andF - M =1 (from
M?=2).Alsol= F-M =2E;,-F+R-FimpliesR # F, hence necessarily
E1-F = 0(recallthatt, is nefsince Z; is). NowC ~ 2E+2E;+ R+ F + K
and we get the contradiction4 C - E; =2E - E; + 1. If M ~ E; + E>, since
C-F+C-M =10, withoutloss of generality we can assume that eithéf; =
C-E;,=40rC-Ey=4,C-E, =5.Firstwe provethati€-E, =4,C-E, =5
we are in case (3.4). Infacttheh- F = 1, F> = —2 andF - M = 1. The latter
givesl=F-E;+ F-E;hence0< F-E; < 1andthefirstimplief - F = 1.
FromC-E, =4weget3=2E-E1+F-E1henceE-Ey, = F-E; =1, F-E, = 0.
Finally C - E; = 5 givesE - E, = 2 and we are in case (3.4). It remains to see
that, if C - E; = C - E; = 4, then we are in case (3.5). To this end notice that
C - F = 2 andF is a conic. Recall that 2= M? givesF2 4+ 2F - M = 0. If
F = 2R, with R aline, thenf? = -8, R- M =2and1=C-R=2E-R -2,
a contradiction. IfF is irreducible or union of two distinct meeting lines then
F?2= -2 F- M =1, butthis contradicts 2 C - F = 2E - F — 1. Therefore
F must be union of two disjoint lineRy, R, andF? = —4, F - M = 2. Hence
(E1+ E3) - Ri+ (E1+ E5) - R, = 2 and in particular 6< (E1+ E2) - Ry < 2.
Onthe otherhand by % C - Ry = 2E - R1 + (E1 + E3) - Ry — 2 we must have
(E1+ E2)-Ri=1andE - Ry = 1 andsimilarly(E; + E2) - R, = E - R, = 1.
FromC-E=C-E,=C-E,=4wehavethert -E{+ E-E>; =2,3=
2E -E1+R{-E1+Ry-E{,3=2E -E>+ Ry- E>+ R, - Es. It follows that
O<E-E; <1 i=12.If E-E,=0thenE = E, but this contradicts the first
of the three equalities above. Similarly we cannot hAveE, = 0. Therefore
E-Ey.=FE-E;,=1R,-E1+ Ry, - E1 = Rl-Ez-i—Rz-Ez:l,andagain
0 < E;- R, < 1. SwappingR; with R, we can assumeg; - R; = 0 and we get
Ei-R,=1E,-R=1(from(Ey+ E;)-R,=1),E,- R, =0, hence we are
in case (3.5).

Finally we prove that the linear systems (3.3), (3.4) and (3.5) are 2-normal.
In all cases we will apply the following easy

Claim (3.6). Write C ~ B1 + B, with | B1|, | B2| base-point free linear systems
such thatH*(B,) = H?(B1 — B,) = H*(2B,) = H?(2B, — B1) = 0. Then
S is 2-normal, that is the multiplication magi®(Os(C)) ® H°(O4(C)) —
H°(Os(20)) is surjective.

Proof of Claim (3.6) This is similar to [GP1, Lemma 2.6]. We have a diagram

H%(Os(B1) ® H%(O5(B2) ® H(Os(C)) — H%(Os(C)) ® HY(Os(C))

Lid® \!
HO(Os(By)) ® H'(Os(B2+C)) - H%0s(20))

where the mapg, v are surjective by Castelnuovo-Mumford and Claim (3.6) is
proved.
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We now setB; = E + E;,i =1, 2incasg3.3). To see thaB; is base-point
free notice that certainlp; is nef andB? = 4, hence by [CD1, Proposition 3.1.6]
B, has no base component unldss~ 2E’ + R with |2E’| a genus one pencil,
R anodal curve and®’ - R = 1. Inthatcaset’ - E + E' - E; = 1 hence
eitherE' -E =0, E'-E; =1butthenE' = E,E'-E1 =20rE - E; =
O,E' - E =1hbutthenE’ = E;, E' - E = 2. Now by [CD1, Proposition 3.1.4
and Theorem 4.4.1B, is base-point free unlesg(B;) = 1, which we have
just excluded. SimilarlyB, is base-point free. Moreoveéf'(B;) = 0 by [CD1,
Corollary 3.1.3]. AlsaB; — B, = E; — E;andC - (E; — E1 + Ks) = Owhence if
H?(B1—B,) = H(E,— E1+Kj)* # 0,thenE, ~ E;+Kg, butthis contradicts
E1- E» = 1. Now 2B5 is nef,(2B,)? = 16 hence as usu#f1(2B,) = 0. Also
C-(E1—E—2E>+Ks) = —9hencei?(2B,—B1) = HY(E1—E—2E>+K)* =
0 and we are done with case (3.3). We now proceed similarly in the other two
cases. Incasg.4) setB, = E + E», B, = E + E; + F. Note that bothB; and
B, are nef (sincer is irreducible). Now exactly by the same argument of case
(3.3) By is base-point free an#l1(B;) = 0. As for By, if there exists a genus
one pencil2E’| suchthatt’ - B, = 1thenE’'- E4+ E'- E1+ E’'- F = 1 hence
eitherE' - E =1 E -E1 =FE -F =0andE' = E; butthenE’' - F = 1,
orE'-Ei1=1E -E=FE -F=0andE’ = E butthenE' - F =1, or
E-F=1E -E=E - -Ei=0andE' = E = E, butthenE - E; = 0.
HenceBs; is base-point free. Now; — B, = E; — E1 — FandC - (E;+ F —
E» + Kg) = 0 whence ifH?(B1 — By) = H%E1+ F — E» + Kg)* # 0,
thenEy + F ~ E; + Kj, but this givesE? = 1. Also 2B, is nef,(2B,)? = 16
hence as usuaf*(2B,) = 0. SinceC - (E; — E — 2E; — 2F + Kg) = —9
we getH?(2B, — B1) = H°(E, — E — 2E, — 2F + K5)* = 0 and we are
done with case (3.4). In ca$8.5) setBy = E + E1 + Ry, B, = E + E> + R;.
Again bothB; and B, are nef and let us show that they are base-point free and
HY(B1) = 0. In fact if there exists a genus one pen2it’| such thatt’ - By = 1
thenE’-E+E -E1+E -R,=1henceeitheE’"-E =1, E'-E{i=E -R, =0
andE’ = E;butthenE’"-R, =1,0rE’-E;1 =1, E'‘-E =E'-R,=0andE’' = E
butthenE’-Ry =1,0rE' Ry, =1, E'-E=FE -E,=0andE' = E = E; but
thenE - E; = 0. HenceB; is base-point free and so B, by symmetry. Now
Bi—B,=Ei+R,—E>;—R;andC-(E;+ R;— E1— R, + K5) = Owhence if
H?(By—B,) = H%(Ep+Ri—E1—Ro+K5)* # 0,thenE,+Ry ~ E1+Ro+Ks,
but this gives E» + R1) - R1 = 0, a contradiction. Also B, is nef,(2B,)? = 16
hence as usu#f1(2B,) = 0. SinceC - (E1+ Ry — E —2E>— 2R+ Kg) = —9
we getH?(2B, — B1) = HY(E1+ R, — E — 2E, — 2R, + Kg)* = 0 and we
are done with case (3.5). |

In the case of a Reye polarization of genus 6 we do not have projective normality,
however we can still decidenormality forj > 3 and the generation of the ideal.
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Lemma (3.7).Let S C IP® be a linearly normal smooth irreducible Enriques
surface embedded with a Reye polarization. Thénj-normal for everyj > 3
and its homogeneous ideal is generated by quadrics and cubics.

Proof. By definition S lies on a quadric inP°. In fact by [CD2] (as mentioned

in Sect. 1 of [DR]) the quadric must be nonsingular and, under its identification
with the Grassmann variet§ = G(1, 3), S is equal to the Reye congruence
of some web of quadrics. We apply then the results of Arrondo-Sols [ArSo].
Setting Q for the universal quotient bundle dg, by [ArSo, 4.3] we have an
exact sequence

(3.8) 0— S%20* - (’)84 — Js,6(3) — 0

whenceH(Js,;(3)) = 0 (sinceH (Og) = H?(52Q*) = 0 by [ArSo, 1.4] or

Bott vanishing) and then of cours‘él(js/ﬂos(3)) = 0. It follows thatJ, ps is

4-regular in the sense of Castelnuovo-Mumford and hence in particular

Hl(Js/,Ps(j)) = 0 for everyj > 3. To see the generation of the homogeneous

ideal @ H(Js,ps(j)) it is again enough to show that the multiplication maps
j=0

H%Og (1) ® H°(Js/c(j)) — H°(Js/c(j + 1)) are surjective for every > 3.

The latter in turn follows by the Euler sequenceGt- IP° from the vanishing

Hl(.Q[}DS‘G ® Js,c(j)) = 0 for every; > 4. Tensoring (3.8) witlﬁ?,}us‘G (j—3)

we see that we just neerdl(szlgs‘@(j —3)) = H3(5%0*® .Qllpsm}(j —-3)=0.
The first follows by the Euler sequence and the second by tensoring the Euler
sequence witl§?Q* and [ArSo, 1.4] (or Bott vanishing). |

We are now ready to prove the main result of this article.

Proof of Theorem (1.1)By Lemma (3.7) we have to prove (1.3). Notice that
we just need to show tha#'(Js(2)) = 0 because the other two vanishings
H?(Js(1)) = HYOg(1)) = 0 andH3(J5) = H?*(Os) = 0 are already given.
The other conclusions of the theorem all follow by Castelnuovo-Mumford reg-
ularity ([Mu2, page 99], [EG, Theorem 1.2]). The case= 6 being already
mentioned in the introduction and the cages: 7, 8 being handled in the ap-
pendix, we suppose hencefogih» 9. Let nowC be a general hyperplane section
of S. Of course, a$ is linearly normal, itis equivalent to prove th@afs 2-normal,

as it can be readily seen from the exact sequence

O —> jS/]pg—l(l) —> jS/]Pg—l(Z) —> jC/]pg—Z(Z) —> O

Sincer!(Og) = 0we knowthat is linearly normal and we can apply [GL2, The-
orem 1] (or [KS]), that is we need to show that €y > 2g +1—2h1(O¢ (1)) —
Cliff (C). Now O¢(1) = wc(Ks) hence de(C) = 2g — 2, h1(Oc(1)) =
h°(Oc(Ks)) = 0. Therefore we will be done if we show that C{iff) > 3.
Notice that by [CD1, Theorem 4.5.4]is not hyperelliptic, that is CIiffC) > 1.
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As itis well known CIiff(C) = 1 if and only if either goiC) = 3 orC is isomor-

phic to a smooth plane quintic. The latter have genus 6 and the first are excluded
by (1.5). Again we know that CIitiC) = 2 if and only if either goiC) = 4 or

C is isomorphic to a smooth plane sextic. The latter being done in Lemma (3.1)
we are left with the case go@i) = 4 which is excluded by (1.8). |

Remark (3.9)In the case of genus 9 when ~ 2L + K the line bundleL

is not very ample, hence the results of [BEL], [AnSo], do not apply. Moreover
note that this case is exactly below the application of Theorem 2.14 of [GP2]
(where itis required.? > 6; note that this hypothesis is missing both in Theorem
0.3 and in Corollary 2.15 of [GP2] because of a misprint). In the case of genus
10 we suspect, but have been unable to prove, that there is no Enriques surface
embedded iP° so that the general hyperplane section is isomorphic to a smooth
plane sextic. By introducing the vector bundl@ssociated to a2 we can only
prove that we have a contradictionit (£ ® £*) # 0. Itis likely that the case
h'(€ ® £%) = 0 can be done using the characterization of exceptional bundles
of Kim [K].

Remark (3.10)It is not difficult to see that the proof of Theorem (1.1) holds,
with simple madifications, in many cases, also for normal Enriques surfaces.
Precisely we have that a globally generated line bugdda an Enriques surface

S with £? = 2¢g — 2 and® (L) > 3 (that is when the image, (S) is normal
[CD1, Theorem 4.6.1]) is normally generated in the following cages:6 and

L is not a Reye polarizatiory = 9 org > 11; ¢ = 10 and the general curve

C € |L£] is not isomorphic to a smooth plane sextic.
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Appendix

Angelo Felice Lopez Alessandro Verra

In this note we complement the result of Giraldo-Lopezrdu®dn the question
of projective normality of Enriques surfaces by proving the following

Theorem (A.1).For g = 7,8 let S C IP$~! be a linearly normal smooth
irreducible Enriques surface. Thehis 3-regular in the sense of Castelnuovo-
Mumford. In particularS is projectively normal and its ideal is generated by
guadrics and cubics.

We denote by~ (respectively=) the linear (respectively numerical) equivalence
of divisors onS. Unless otherwise specified we will denote By(or E; etc.)
divisors such thal2E| is a genus one pencil of, while nodal curves will be
denoted byR, R; etc..

Ouir first task will be to use a deep result about lattices [CD] to characterize
the possible linear systems fgpr= 7, 8.

Lemma (A.2).Let C be a hyperplane section 6f For g = 7 we have

(A.3) C~2E+F+Kg

where|2E| is a genus one pencik; is an isolated curve witlk - F = 3, F2 = 0.
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For ¢ = 8the possible linear systems are:

(A4) C~2E+Ei+E;+KsWthE-Ey=E;-E;=1,
E-E,=2;

(A5) C~2E+2E;+RWthE-Ei,=E-R=E;-R=1;

(A6) C~2E+2E,+R+KsWthE-Ey=E-R=E,-R=1;

A7) C~2E+2E;+Ri+R;WthE-E;=E-R;
=FEi-Ri=R1-Ry=1,
E-Rih=E;-R,=0;

(A8) C~2E+2Ei+Ri+Ry+KsWithE-E;=E- R,
=FE1-Ri=R;-Ry=1,
E-Ri=Ei-Ry=0;

A9 C~2E+Ei+E>;+Ri+Ry+KsgwithE;, =E,
E-Ei1=E-Ri=E-Ry=1,
Ei-Ri=Ei-Ry=R;-R,=0;

(A.10) C~2E+E;+E+R+KsWthE-E;=E-E
—E-R=E - E,=E,-R=1
E1-R=0,

where|2E|, |2E4| and|2E;| are genus one pencil®, R, R, are nodal curves.

Proof of Lemma (A.2)By [CD, Corollary 2.7.1, Proposition 2.7.1 and The-
orem 3.2.1] (or [Co, 2.11]) we know that if we sét(C) = inf{C - E :
|2E| is a genus one pengithen 3< &(C) < [/2¢g — 2], where[x] denotes
the integer part of a real number Hence in our casé@(C) = 3 and there is a
genus one pencjRE| suchthalC - E = 3. We setM = C — 2E + K. Suppose
first thatg = 7. We haveM? = 0, C - M = 6 henceh?(M) = 0, h'°%(M) > 1.
Note that|M| cannot be base-component free, else by [CD, Proposition 3.1.4]
we haveM ~ 2hE,. But thenC ~ 2E + 2hE; + K and this contradicts
C - E = 3. Setthenm ~ F + M whereF is the nonempty base component
and| M| is base-component free. Note th&(M) = h°(M) > 1. We are go-
ing to prove thatM is trivial. In fact if not then by [CD, Proposition 3.1.4]
either M ~ 2hE; or M? > 0. In the first case we get the contradiction
6=C-M=C-F+2hC-E,>7sinceC-F >1,C-E; > 3.Inthe second
caseby6=C-M =C-F + C- M we getC - M < 5 and the Hodge index
theorem gives 1212 < (C - M)? < 25henceM? =2,C- M =5,C-F =1,
thatisF is aline andF? = —2. AlsoM? = 0 givesF - M = 0. By [CD, Propo-
sition 3.1.4 and Corollary 4.5.1 of page 243] we have that eiler E; + E>
orM ~ 2E; + R + Kg with E; - E; = E; - R = 1 (note that the case
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M ~ 2E1 + R is excluded since it has a base component). Now the first case is
excludedby5=C- M =C-E;+C- E, > 6, while the second is excluded by
5=C-M=2C-E1+C-R > 7. Therefore fog = 7 we see that (A.3) holds.

We now consider the case = 8. We haveM? = 2,C - M = 8 hence
h?(M) = 0, h°(M) > 2.1f|M|is base-component free by [CD, Proposition 3.1.4
and Corollary 4.5.1 of page 243] we have that either~ E; + E, or M ~
2E1 + R + Kg with E; - E;, = E; - R = 1. In the first case we have &
C-M=C-E;+C-E;henceeitheC - E; = 3,C - E; = 5 and we get
case (A.4) orC - E; = C - E, = 4, but this is not possible since it gives that
4=C-E;=2E-E;+ 1. Inthe second case froms82C - E; + C - R we get
C-E; =3,C-R = 2.Thelatterimplie& - R = 1, thefirstt - E; = 1 and we get
case (A.5). Now suppose instead that~ F + M whereF is the nonempty base
component andiM | is base-component free. Note thdt M) = (M) > 2.
By [CD, Proposition 3.1.4 and Corollary 3.1.2] we have that eithér~ 2E;
or M? > 0. In the first case we claim that we get the linear systems (A.6) and
(A.8).

To see thisnotethat& C-M = C - F + 2C - E; givesas usual’ - F =
2,C - E; = 3. In particularF is a conic and hence the possible valuesg-éf
are —2, —4, —8. On the other hand from 2 M? = F? 4+ 4F . E; we get
F?2=-2 F.-E;=1.NowC - F =2impliesk - F =1 andC - E = 3 gives
E - E; = 1. If Fisirreducible we get case (A.6). K = R1 + R, is union of
two meeting linesthen &= C - R;,i = 1,2 gives 1= E - R; + E1 - R;. Also
1=FE-F =E- R+ E - R, hence without loss of generality we can assume
E - R,y =0andthereforé&& - R =1, E;- R, =1 E;- R, =0and we are in
case (A.8).

Now supposeV? > 0. We have 8= C - F + C - M henceC - M < 7 and
the Hodge index theorem gives MP < (C - M)? < 49, therefore necessarily
M2=2C - M=6,7.1fC- M = 7 itfollows thatC - F = 1, thatiSF is a
line andF? = —2. Also M? = 2 givesF - M = 1. By [CD, Proposition 3.1.4
and Corollary 4.5.1 of page 243] we have that eithér~ E; + E, or M ~
2E; + R+ Kgwith E,- E; = E;-R = 1. If M ~ E; + E, without loss of
generality we can assunte- E; = 3,C-E; =4.Nowl1l=E;- F+ E>- F
henceO< F-E; <landfromC-F =1wegetE-F =1.AlsoC-E; =3
givesZE - E,+ F-Ey=2anditcannotb& - E; =0, F - E; = 2, therefore
wehaveE -E, =1, F-E1=0,E,-F =1andC - E; =4 givesE - E, = 1.
This is now case (A.10).

WhenM ~ 2E; + R + Kg we must haveC - E; = 3,C - R = 1. Now
1=F - M=2E;,-F+R-FgivesE;-F=0,R-F =1.AlsoC-F =1
implies-F =1;C-R =1impliest-R =0andC - E, = 3givesE - E; = 1.
Thus we get case (A.7).

Finally we deal with the cas€ - M = 6,C - F = 2 andF is a conic. It
cannot beM ~ 2E; + R + K5, else 6=2C - E1 +C - R > 7. HenceM ~
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E1+E,, C-E1 = C-Eo = 3.FromM? = 2we getF2+2F - M = 0.I1f F2 = -2
thenF- M = 1, butthiscontradicts2 C-F =2E-F—-1.If F = 2RwithR a
line, thenF2 = —8 andR - M = 2, but this contradicts & C-R = 2E - R — 2.

It remains the cas& = R; + R» with R4, R> two lines andR; - R, = 0. Now
F?2 = —4henceF-M = 2,thatis(E1+E>)-R1+(E1+E>)-R, = 2. Inparticular

0 < (E1+E»)-Ry < 2.0ntheotherhand%x C-R; = 2E-R1—2+(E1+E>5) Ry
implies(Ey1+ E>)- Ry = E-Ry = 1andsimilarly(E1 + E>) - Ry = E- Ry = 1.
From3=C.-E = E-E;+ E - E; + 2 we deduce, without loss of generality
E-E;=0,E=E),E-E1=E>»Ry=E> Ry = 1andtherE1-R1 =FE1R,=0
and we are in case (A.9). |

Before proving the theorem we record the following easy ad hoc modification
of Green'sH?-Lemma to the case of Gorenstein curves (this is inspired by the
work of Franciosi [F]).

Lemma (A.11).Let D be a Gorenstein curve, M be two base-point free line
bundles onD. Suppose that either

(A12) hWP(wp@M1®L)=0, or
(A.13) h%wp @ M1 ® L) =1, h°(L) = 4and there is an
irreducible component

of D such that IM{H%(D, wp @M 1RL) — HYZ, (wp @M IRL)2)} #0
andH°(D, £) — H°(Z, L) is injective,
then the multiplication map/°(£) ® Ho(M) — H°(L ® M) is surjective.

Proof of Lemma (A.11)Given any pair of line bundled, 5 on D, we define in
the usual way ([G], [L], [F]) the Koszul cohomology groufgs , (D, A, B) =
Kerd, ,/Imd, 1, 1 whered, , : \” H(B)® HXA®BY) — N\ T H(B)®
HO(A® BY*Y). Then the Lemma is equivalent to the vanishitgy (D, M, L)
= 0. Note that the duality theorem [G, Theorem 2.c.6] holds also in this set-
ting (see [F]) and giveko1(D, M, L) = K,_11(D, wop ® M™1, L)*, where
h°(L) = r + 1. Under hypothesis (A.12) we have clealty_11(D, wp ®
M1 L) = 0. If (A.13) holds we have = 3 and if we denote by a generator
of H%(wp ® M~1® L), by hypothesis we can choose general paitits Z, 1 <
j < 4andabasigsi, ..., sa} of HO(L) such thats; (P;) = 8, o (P;) # O for
alli, j.Nowifa = ) s As; ® (Aijjo) € Kerdy 1 wherel;; € C, then

1<i<j<4

O=doa(@) = Y [5® (shijo) — i ® (551ij0)]

1<i<j<4

whence the four equations

0 (—A1252 — A1353 — A1454) = 0; 0 (A1251 — A23s3 — Aoasg) =0
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0 (A1351 + A23s2 — A3as4) = 0; 0 (R1as1 + A2452 + Azasz) = 0.
Evaluating at the point®;’s we get;; = 0 for all i, j, hencex = 0. |

Proof of Theorem (A.1) et C be a general hyperplane sectionSofNotice that
we just need to show tha(J5(2)) = 0 because the other two vanishings
H?(Js(1)) = HYO3(1)) = 0 andH3(J5) = H?*(Os) = 0 are already given.
To prove the desired vanishing we #t= E + K, whereE is the plane cubic
of Lemma (A.2) and choose a general divigor |C — E — E’|. In particular
C’' = E U E' U F is a hyperplane section ¢f We are going to show that

- ifg=7
(A.14) hO(JC’/lPE’*Z(z)) = {7 if g= 8"

Of course (A.14) suffices since by semicontinuity we g%(UC/Wz(Z)) <

3ifg=
! 7Tifg=
same holds foS. First we prove

! hencehl(Jc/,Pg_z(z)) = 0 by the Riemann-Roch theorem and the

(A.15) h(Og(C — E—E)) =0.

In case (A.3) it follows by the Riemann-Roch theorem sin€0g(F)) =

1, F2 = 0. Notice now that in all cases (A.4) through (A.10) we have that
(C — E — E")?> =2.Incases (A.4), (A.5) and (A.6) in fact — E — E' is nef,
hence (A.15) follows by [CD, Corollary 3.1.3]. In cases (A.7) and (A.8) we have
(C—E —E')- Ry = —1henceh (O, (C — E — E’)) = 0; moreovelC — E —
E'—RyisnefandC —E —E'—R»)? = 2, hencé*(Os(C—E—E'—Ry)) =0

by [CD, Corollary 3.1.3], therefore we get (A.15) by the exact sequence

0> Os(C—E—E —Ry) > Os(C—E—E')—> Op,(C—E—E')— 0.

Incase (A.9)wehaveC —E—E')-R, = -1, (C—E—E'—R)-R; = —1and
C—E—E —Ri—Ryisnef,(C—E—E'—R;—R,)? = 2 hence, as above, we get
(A.15). Similarly in case (A.10)we ha\€ —E—E')-R=—-1,C—E—E —R
is nef,(C — E — E' — R)?> = 2, hence again (A.15) is proved.

Notice now thatC - (C — E — E’) > 0 hencd?(Os(C — E — E')) =0and
the Riemann-Roch theorem together with (A.15) implies

(A.16) h°(Os(C — E — E')) = h°(Os(F)) = { ; :]': g _ ; :

Another consequence of (A.15) that will be used later is & (2C — E —
E")) = 0, asitcan be easily checked by restrictingt®inceC-(2C—E—E’) =
4g—-10> 0, (2C —E — E')?> = 8(g —4) we also get:?(Os(2C —E—E')) =0
andh®(Og(2C — E — E’)) = 4g — 15 by the Riemann-Roch theorem. Denote
now by < E >, < E' > the IP?’s that are linear spans of the two plane cubics
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E, E'. By (A.16) we deduce< E > N < E' >= ¢ henceh® Tz p/pe-2(2)) =

ho(j<E>U<E’>/ﬂ3g*2(2)) = { 26 ';g Z ; Also from the exact sequence

0— Os(C) — Os(ZC—E— E/) — OF(ZC—E—E/) —-0

and what we proved above, we get th&Or(2C — E — E')) = { g :I g z 873 .

Now by the exact sequence
0— Jcyps—2(2) = Jgupps—2(2) - Op(2QC —E —E') - 0
we see that (A.14) will follow once we show that the map
re: H'Opoppe2(2) — HY(Op(2C — E — E'))

is surjective. To this end consider the natural restriction madslo(JE/Wz(l))
— HY%Op(C—E)), " : H*(Jppe-2(1)) - H°(Op(C —E')) and the diagram

HO(jE/lPE*Z(l)) ® Ho(jE’/PK*Z(l)) I Ho(jEuE’/Pé’*z(z))
lrer I rr
HY%(Or(C — E)) ® HY(O(C — E)) 5 H%Or(2C — E — E')).

SinceC — E — F ~ E + Kgwe haveh'(Og(C — E — F)) = 0 and it follows that
hl(jEUF/Wz(l)) = 0, hencer and similarlyr’ are surjective (in fact isomor-
phisms). Therefore we just need to prove that the multiplication mapove is
surjective. We apply now Lemma (A.11). To see tllahnd M are base-point
free we use the exact sequence

(A.17) 0> 0Os(C—E—-F)— Og(C—E)— Op(C—-E)— 0.

Sinceh!(Os(C — E — F)) = 0we just need to show théxs(C — E) is base-point
free. The latter follows by applying [CD, Proposition 3.1.6, Proposition 3.1.4 and
Theorem 4.4.1]. In fact a quick inspection of cases (A.3) through (A.10) shows
thatC — E is nef and that? (C — E) # 1 (in case (A.3) use also the fact th@at
is very ample). Similarly foOg(C — E’).

Now if g = 7 we are in case (A.3) and we show that (A.12) holds. We have
wr ® M1 ® L = O (F) hence (A.12) holds sind®(Os(F)) = 1.

Wheng = 8 we will see thatthe hypotheses (A.13) hold. Fifg0s(F)) = 2
by (A.16), hence:®’(wr @ M1 ® £) = h°(Or(F)) = 1 and we can choose
its generatow to berr wheret € H%(Os(F)). To computeh®((C — E)r)
first notice thath®°(Os(C — E — F)) = 1. SinceC - (C — E) = 11 we get
h?(O4(C — E)) = 0; moreoverC — E is nef, (C — E)?> = 8 and therefore
h'(Os(C — E)) = 0 (by [CD, Corollary 3.1.3])1°(Os(C — E)) = 5 by the
Riemann-Rochtheorem. The exact sequence (A.17) thendi@s (C—E)) =
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4. Now applying [CD, Proposition 3.1.4] and [CD, Proposition 3.1.6] in case
(A.4), [CD, Corollary 3.1.4] in case (A.5), we see tHais irreducible in these
cases, hence (A.13) holds. In case (A.6) we hBve: R U Z with Z general

in |2E41|. As g = 0 (R is a base component) we gef = 7z # 0. Moreover
(C—E—2Z)-R=—-1henceh’((C — E)|r(—Z)) = 0 and (A.13) holds.

In the remaining cases (A.7) through (A.10) we will just limit ourselves to
indicate the componemt to be chosen and leave the easy verification of (A.13)
to the reader. We chooseto be a general divisor ifRE; + R1 + K| in case
(A.7), |2E4| in case (A.8) andE1 + E»| in cases (A.9) and (A.10). |
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