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Abstract

This paper presents a new approach to model selection based on hypothesis testing. We
4rst describe a procedure to generate di5erent scores for any candidate model from a single
sample of training data and then discuss how to apply multiple comparison procedures
(MCP) to model selection. MCP statistical tests allow us to compare three or more groups
of data while controlling the probability of making at least one Type I error. The complete
procedure is illustrated on several model selection tasks, including the determination of the
number of hidden units for feed-forward neural networks and the number of kernels for
RBF networks. c© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Many model selection algorithms have been proposed in the literature [35].
The existing procedures can roughly be categorized as analytical or resampling
based. Analytical approaches require certain assumptions of the underlying statis-
tical model. Resampling based methods involve much more computation, but they
remove the risk of making faulty statements due to unsatis4ed assumptions [10].
With the computer power currently available, this does not seem to be an obstacle.
Standard methods of model selection include classical hypothesis testing [35],

maximum likelihood [2], Bayes method [29], cross-validation [31], Akaike’s infor-
mation criterion [1] and many more. Probably the most widely accepted procedure
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is the use of an information criterion based on choosing the model with the max-
imized log-likelihood function minus a penalty. However, there is little agreement
about what the form of the penalty function should be. Although, there is active
debate within the research community regarding the best method for comparison,
statistical model selection is a reasonable approach [21].
We consider the general problem of determining which of a set of competing

models is better. A statistical approach to model selection should try to 4nd out
which model is better on average. One way to de4ne “on average” is to consider
the performance of these algorithms averaged over all the training sets that might
be drawn from the underlying distribution [25]. In a real situation, the underlying
distribution is unknown, and we only have a 4nite size sample to work with.
The simplest approach to estimate the error for each model is to divide available

data into a training set and a disjoint test set (hold-out method). However, the rela-
tive performance may be dependent on the choice of training and test sets. One way
to improve this estimate is to repeatedly partition the data into disjoint training and
test sets and to take the mean of the test set errors for these di5erent experiments.
The goal of our strategy will be the correct design of these batteries of experi-
ments to take into account the sources of variation that should be controlled and to
analyze the errors for each model to determine if di5erences among models exist.
In the following sections, we 4rst describe the design of a randomized data

collecting procedure, taking into account the di5erent sources of variation that
could exist. After collecting the data, our goal will be to make inferences about
k population means. To get around this problem, we need tests that compare
groups of data. These are the analysis of variance tests (parametric=nonparametric,
independent=repeated measures). Although, these tests allow us to reject the null
hypothesis that the groups’ means are all equal, they do not determine where the
signi4cant di5erences lie [14]. To accomplish this, a naL$ve approach is to test
each possible pair of groups by a paired t-test. However, multiple t tests are not
appropriate because the probability of a Type I error increases with the number
of comparisons made. Statistical methods to compare three or more means while
controlling the probability of making at least one Type I error are called multiple
comparisons procedures [15]. We brieMy discuss these methods, including Fisher’s
LSD, Tukey’s HSD, Bonferroni, Sidak, Sche5#e, Dunnett and Hsu’s RSMCB pro-
cedures and comment their potential advantages.
Finally, we apply these techniques to the determination of the optimal com-

plexity of a model on various arti4cial and real problems (both, classi4cation and
regression tasks are considered) and show examples where the appropriate model
complexity is known in advance, observing that it performs well in these situations.

2. Design of the experiment

To design and evaluate statistical tests, the 4rst step is to identify the sources
of variation that must be controlled by each test. A source of variation is any-
thing that could cause an observation to have di5erent numerical value from other



J. Pizarro et al. / Neurocomputing 48 (2002) 155–173 157

observations. Dietterich [7] studied di5erent statistical tests for comparing super-
vised learning algorithms and the sources of variation that a good statistical test
should control:

Random variation in the selection of the test data: On any particular randomly-
drawn test data set, one model may outperform another, even though on the whole
population the two models could perform identically.

Random variation in the selection of the training data: On any particular ran-
domly drawn training data set, one model may outperform another, even though
on average, the two models have the same accuracy. Even small changes to the
training set, such as adding or deleting a few data points, may cause large changes
in the estimated parameters of models.

Internal randomness in the estimation of model parameters: If the estimation
of parameters is analytical and its determination is unique, this source may be
omitted because there is no internal randomness. However, in an iterative approach
the results depend critically on the starting state. Most of the iterative procedures
su5er from internal randomness due to the initialization of the parameter set. This
parameter set depends on the model complexity, so it is di5erent in value and
number for each model.
Ideally, the population is considered to have an in4nite number of samples. How-

ever, in real situations, the amount of data available is only a subset (sometimes
only a few data) of the overall population. A fundamental assumption is that this
collection of known cases is representative of the entire population. For a 4nite set
of data, these sources of variation should be controlled as follows:

• The learning algorithms should be executed multiple times over di5erent training
and test sets to control the variation due to the choice of training and test data
sets.

• If any model is trained and tested on a given training and test data set, any
other model should be trained and tested with the same set. This ensures that
all models are compared under the same conditions. It also helps to control the
variations due to the choice of training and test data sets, and allows us to apply
statistical pairwise tests.

• Each unstable algorithm should be executed several times, taking di5erent start-
ing states for each training data set to reduce the variance due to internal ran-
domness.

As explained above, we also need a method to obtain di5erent measures of
error for each learning algorithm. In order to get di5erent data sets for training
and testing the most common procedures are the following:

• Systematic selection of subsets from the original data set: K-fold cross-validation
related techniques (2×CV; 10×CV, leave-one-out, strati4ed CV; : : : ; etc.) might
be included in this approach.

• Repeated permutations [19]: New data sets are created by permuting available
data randomly. This has the same e5ect as sampling N data randomly without
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replacement. After generation of data, holdout may be applied. It is also known
as random subsampling.

• Bootstrapping [6,9]: New data sets are created by sampling N data randomly
with replacement, so the resulting data set has the same size as the original,
but some data have been left out (these data are used for testing purposes) and
others are duplicated.

• Combinations of the above.

Depending on the strategy selected, we may 4nd nonindependent training sets
(in all cases, at di5erent levels), nonindependent test sets (resampling cases), very
small test sets (leave-one-out), or a limited number of data sets that may be gen-
erated (systematic selection of subsets). As a consequence, any design devised to
work with a 4nite set of data will violate the fundamental assumption of statistical
methodology, sampling independence. What is more, statistical designs cannot be
viewed as rigorously correct, but only approximate.
In the design of the experiment we use repeated permutations followed by

two-fold cross-validation, because it gives a trade-o5 between large test sets and
completely disjoint training sets, at least, on pairs of consecutive samples. We rec-
ommend at least 30 error measures per model, in order to guarantee that the error
samples will provide a good estimate of the distribution of errors. For a given
training and test set, each unstable algorithm is trained for 10 times. We focus
our study on the model behavior on average, so the mean of these errors is con-
sidered to be the actual error of the model. Extreme error values (the minimum
and maximum error estimates) are excluded in the computation of the error mean
to reduce the inMuence of the appearance of local minima in the learning process.
The strategy is summarized as follows:

for iteration=1 to 30 (at least)
Random selection of training and test sets
for model=1 to H (H=number of models)

for r=1 to 10 (to avoid internal randomness)
Train model
Error(r) = Compute Error Measure

end
GlobalError(iteration,model)=Average(Error) (excluding extreme cases)

end
end

3. Data analysis

As a 4rst step, we may consider the use of a paired sample t-test to assess
whether the means of two populations are not di5erent. However, if we are in-
terested in testing whether the means of more than two populations are equal,
the appropriate inferential statistic will depend on the underlying distributions [4].
Both, the parametric test (ANOVA) and the nonparametric test (Kruskal–Wallis),
are adequate for testing the di5erences between more than two samples. They look
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at how much variation or spread there is in each sub-group. The more within-group
variation that there is in each sub-group, the more diQcult it will be to positively
say that there is a di5erence among the groups. However, if the populations from
which data to be analyzed violate some assumptions, the results of the analy-
sis may be incorrect or misleading. ANOVA test may be used if the following
assumptions=requirements are met:

• Normal distribution: The ANOVA test functions fairly well with deviations from
normality if the sample sizes are nearly equal [3]. This assumption has been
tested using the method of Kolmogorov–Smirnov and we have nearly always
found that the distribution of results follows a Gaussian curve.

• Homoscedasticity—Homogeneous variances: The most common method em-
ployed to test for homogeneity of variances is Bartlett’s test [23]. This test is
powerful when the sample populations are normal, but it is badly a5ected by
nonnormal populations. ANOVA’s are pretty reliable even if the equal variance
assumption is violated, if the sample sizes are all equal. In our design the num-
ber of error measures is the same in all the models. In the experiments, lower
complex models exhibit greater variance due to under4tting, while more com-
plex models exhibit nearly equal variances between them. We expect robustness
against these inequalities.

• Independence of observations: This assumption is in practice diQcult to test. We
must think about the experimental design. As the sources of variation have been
taken into account, we assume random and independent data samples. Strictly
speaking, the independence of the samples is not veri4ed in our design, given
that di5erent results have been obtained from splitting randomly the available
data, which are 4nite sized. However, by considering pairwise comparisons, the
violation of this assumption might be considered secondary.

Fortunately, the analysis of variance is robust with respect to the assumption
of the underlying population’s normality, operating well even with considerably
heterogeneity of variances, as long as all groups have the same size. Anyhow, if
the data are highly skewed or if the variances of the di5erent populations are very
unequal, then we can, either transform the data to change the scale of the values or
use a non-parametric version of the analysis of variance, called Kruskal–Wallis test.
The Kruskal–Wallis test provides a nonparametric alternative to the ANOVA test
for comparing more than two populations based on independent random samples
by using rank sums to calculate an H -test statistic that possesses an approximate
	2 sampling distribution. This test is 95% as powerful as a single-factor ANOVA
test, and much better when the assumptions of the ANOVA test are not true.
Repeated measures designs [18], often referred to as within-subjects designs,

o5er greater statistical power relative to sample size. They test for signi4cant dif-
ferences among the means of two or more groups when the observations come
from matched units. With such designs you actually get more power because
you can factor between-subject di5erences out of the error term, thereby result-
ing in larger F values. When the proper assumptions are not met, nonparametric
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Friedman’s analysis of variance by ranks may be used. In this case, no assumptions
are made about the population.
We should be very careful when applying non-parametric tests [13], because

they are less sensitive to the detection of di5erences when the assumptions are
satis4ed. Therefore, if a parametric test is appropriate, it should be used because it
provides a better chance of 4nding signi4cances when they exist. Only when the
parametric test is not appropriate, should a nonparametric test be used.

4. Multiple comparison procedures

When comparing more than two means, analysis of variance tells you whether
the means are signi4cantly di5erent from each other, but it does not tell you which
means di5er from each other [17].
The 4rst idea that comes to mind is to test each possible di5erence by a paired

t-test. The problem with multiple individual comparisons is that when we compute
several tests we increase our chances of obtaining a signi4cant result by chance
alone. We should bear in mind that each comparison is typically done with the
level of signi4cance set at a probability of 0.05 which means that on 5% of oc-
casions we will reject the null hypothesis when in fact it is true. This means that
the level of signi4cance for the experiment soon rises to unreasonable levels. For
example, if a one-way analysis of variance is computed on 4ve groups and in-
dicates that there is a signi4cant di5erence among the groups, then there will be
a total of n(n − 1)=2=10 pairwise comparisons that can be made. If a simple
t-test comparison is made on each of these ten possible comparisons and an 0.05
level of signi4cance is used for each, then the experimentwise level of signi4-
cance is 1 − (1 − 0:05)10 =1 − 0:5987=0:4013. In other words, there is a 40%
chance of making a Type I error. Statistical methods to compare three or more
means while controlling the probability of making at least one Type I error are
called MCP.

4.1. Description

In general, multiple comparisons of several groups should be performed only
as a follow-up analysis to the appropriate analysis of variance F-test, i.e., only
after we have determined that suQcient evidence exists of di5erences among the
means [30]. In this section, we will describe some of the methods that adjust for
the multiplicity of tests. In all multiple comparison testing, equal sample sizes
are desirable for maximum power and robustness, and the experiment has been
designed keeping this in mind. So, all procedures are presented for analysis with
equal n.
Let Sy i and ni be the mean and sample size of group i and Sy j and nj be the

mean and sample size of group j, respectively. Two groups will be considered sig-
ni4cantly di5erent if their corresponding means are bigger than the ‘critical value’.
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As shown below, all the tests de4ne ‘critical values’ based on the square-root of
the estimated variance of Sy i − Sy j, that will be noted as �̂ij:

�̂ij = SVNE

√(
1
ni

+
1
nj

)
= SVNE

√
2
n
;

where SVNE is the within-sample variation with (n− k) degrees of freedom, being
k the number of models considered, and n the number of samples for each model:

SVNE =

∑k
i=1

∑n
j=1 (xij − Sy i)

2

n · k − k
:

A large number of multiple comparison procedures have been developed. Among
the most commonly used methods are the following:

Fisher’s least signi�cant di>erence (LSD) [5]: If the overall F-ratio (which tests
the hypothesis that all group means are equal) is statistically signi4cant, we can
safely conclude that not all the treatment means are identical and then, and only
then, we compare all possible combinations of the group means, taking two at a
time, while controlling the level of signi4cance. Two groups are not signi4cantly
di5erent if:

| Sy i − Sy j|¿ t(�; n− k)�̂ij;

where t(�; n−k) is the �-level critical value from a two-tailed Student’s t distribu-
tion with (n− k) degrees of freedom. The method is undesirable if the number of
groups is large, for, in 4xing a signi4cance level, we are controlling the individual
probability of false rejection for each pair, rather than the overall probability of
some false rejection.

Tukey’s honestly signi�cant di>erences (HSD) [33]: It is based on a Studen-
tized range distribution (q statistic) which is similar to the Student distribution but
taking into account the number of treatments being considered. Two groups are
not signi4cantly di5erent if:

| Sy i − Sy j|¿ q(�; k; n− k)�̂ij;

where q(�; k; n− k) is the �-level critical value of a studentized range distribution
of k independent normal random variables with (n− k) degrees of freedom [24].

Bonferroni correction: The Bonferroni approach is a follow-up analysis to the
ANOVA method [30] and is based on the following result. If c comparisons are to
be made, each with con4dence coeQcient (1−�=c), then the overall probability of
making one or more Type I errors is at most �. Two groups are not signi4cantly
di5erent if:

| Sy i − Sy j|6 t(�=c; n− k)�̂ij;

where t(�=c; n − k) is the �=c-level critical value from a two-tailed Student’s t
distribution with (n− k) degrees of freedom.

Sidak test: The Sidak test [17] is a variant on the Bonferroni approach, using a
t-test for pairwise multiple comparisons, where the � signi4cance level for multiple
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comparisons is adjusted to tighter bounds than for the Bonferroni test:

| Sy i − Sy j|6 t(1− (1− �)c; n− k)�̂ij:

Sche>�e test [27,28]: It assumes all possible pairs and all possible combinations
of means are to be tested. It works by 4rst requiring the overall F-test of the null
hypothesis be rejected. Two groups are not signi4cantly di5erent if:

| Sy i − Sy j|6
√
(k − 1)F(�; k − 1; n− k)�̂ij;

where F(�; k−1; n−k) is the �-level critical value of an F distribution with (k−1)
numerator degrees of freedom and (n− k) denominator degrees of freedom.

Dunnett test [8]: It is a t-statistic that is used when the researcher wishes to
compare each treatment group mean with the mean of the control group, and for
this purpose has better power than alternative tests. Any group is signi4cantly
di5erent from the control one if:

| Sy i − Sy Control|¿w2�̂ij;

where w2 = t�k−1; n−k;� is the percentile of the maximum of a two-tailed multivariate
t distribution with common correlation � and (n − k) degrees of freedom at the
�-level.

Ranking, selection and multiple comparisons with the best treatment (RSMCB).
Hsu [16] developed a method in which each sample mean of a treatment is com-
pared with the best of the other treatments, allowing some of them to be eliminated
as worse than best, and allowing one treatment to be identi4ed as best if all others
are eliminated. Any group is signi4cantly di5erent from the best one if:

| Sy i − Sy Best|¿w1�̂ij:

The critical coeQcient w1 is the same as that for Dunnett’s, but one-tailed con4-
dence bound.

4.2. Discussion

Although, there is no correct procedure to use, most researchers believe that
procedures like Fisher’s protected LSD procedure should not be used since they
do not control the overall con4dence level nor the experimentwise error rate. The
remaining procedures discussed in this section keep the experimentwise error rate
at the speci4ed signi4cance level, but they might be less powerful for testing all
pairwise comparisons. Bonferroni, Sidak and Sche5e’s tests are most conservative
methods. LSD is the least conservative, but, as we mentioned above, it is not
recommended. Tukey’s HSD test is somewhat in-between, and it is used frequently
when a comparison between all pairs of means is needed. It is preferred when the
number of groups is large as it is very conservative. Bonferroni test gives shorter
con4dence intervals than other methods if c is small. Sche5#e’s test gives shorter
intervals than Bonferroni’s method if n is large. Dunnett’s test is used when you
want to compare the mean of a control to the other group means, rather than
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Fig. 1. Schematic illustration of the complete procedure for signi4cance testing.

comparing all means to each other. Hsu’s is similar to Dunnett’s test, except that
it is considered known prior to the experiment which treatment is the best.
The choice of a multiple comparison test should be also governed by a logical

analysis of the seriousness of making an error. If falsely rejecting the null hypoth-
esis would have serious consequences, then we should select a more conservative
method. In this case, the level of signi4cance for each comparison should be set
very low (�=0:001). If the experiment is exploratory, then more powerful tests
may be considered and a moderate level of signi4cance (�=0:1) might be selected.
Finally, let us consider the situation where the assumptions of normality are not

met, and the nonparametric Kruskal–Wallis test is applied. In this case, we will
also have the need of a nonparametric multiple comparison test. This may be done
using rank sums instead of means, resulting in tests analogous to Tukey (Nemenyi’s
method) or Dunnett (Steel method) testing. These techniques are discussed at length
in [34].
Fig. 1 shows an schematic illustration of the recommended procedure for testing.

In our experiments, we do not test for homoscedasticity, given that all the groups
have the same size.

5. Experimental results

In order to illustrate our strategy we conducted a range of experiments on both
simulated and real data sets. Unless stated otherwise, the original data were not
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preprocessed. To compute the error measure (the ratio of misclassi4ed patterns for
classi4cation problems and the mean squared error, MSE, for regression problems),
two-fold crossvalidation is used.
We consider three di5erent algorithms for classi4cation to which we refer as

KNN (K-nearest neighbor), MLP (multilayer perceptron) and RBF (Radial basis
function network).
KNN implements the most basic instance-based method [12]: The K-nearest

neighbor algorithm with Euclidean distance, where ties have been solved randomly.
We have not considered the use of a reject option in instances where there is not
a clear ‘winner’.
MLP represents a multilayer perceptron having two layers of weights with full

connectivity between adjacent layers. One linear output unit, M ‘tanh’ hidden units
and no direct input–output connections [20]. In the experiments, the weights of the
MLP network were randomly initialized and 200 iterations were performed using
the Levenberg–Marquardt algorithm [2].
RBF represents a radial basis function network having one hidden layer for which

the combination function is the Euclidean distance between the input vector and
the weight vector, and the activation function is the exponential [2]. The placement
of the kernel functions has been accomplished using the k-means algorithm. The
width of the basis functions has been set to

�=
‖max(̃xi − x̃j)‖√

2n
;

where n is the number of kernels and ‖ · ‖ denotes the Euclidean norm. The
second layer of the network is a linear mapping from the RBF activations to the
output nodes. Output weights are computed via matrix-pseudoinversion [26]. Only
for RBF algorithm, we normalize each component to have zero mean and unit
variance based on training test statistics.
For regression we have considered two di5erent algorithms to which we refer as

POL (polynomial 4tting) and NLLSQ (nonlinear least squares 4tting). POL 4nds
the coeQcients of a polynomial of degree N that 4ts the data in a least-squares
sense. NLLSQ 4nds the coeQcients to best 4t a given nonlinear function to the
data in the least-squares sense.
In most of the cases, the populations follow a normal distribution (Kolmogorov–

Smirno5 test is applied), so ANOVA test and parametric multiple comparison test
are used. In this situation, analysis of variance F-value was always signi4cant,
and it was not necessary to use a repeated measures design. Occasionally, there
are experiments where one or two populations do not 4t normal distributions, and
Kruskal–Wallis and nonparametric Tukey tests are applied.

5.1. Classi�cation experiments

In the 4rst experiment, we use the two-dimensional arti4cial data (two-class
problem) shown in Fig. 2. The training data set consists of 270 points per class
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Fig. 2. Sample data distribution for an arti4cial classi4cation experiment.

Fig. 3. Box and whisker plot for errors (models 1 through 10).

and was arti4cially generated from the following bivariate normal distributions:

Class 1: �1 = (0; 0); �1 = I; �2 = (10; 0); �2 = I ,
Class 2: �1 = (5; 0); �1 = 2I; �2 = (15; 0); �2 = 2I .

MLP is used as learning algorithm in order to train 10 di5erent models having
from 1 through 10 hidden units, respectively. A sample of 30 error measures per
model is collected as described in Section 2. Fig. 3 shows a box and whisker
plot for errors obtained from each model. The box has lines at the lower quartile,
median, and upper quartile values. The whiskers are lines extending from each end
of the box to show the extent of the rest of the data. Outliers are data with values
beyond the ends of the whiskers.
The assumptions to the proper application of the ANOVA test are satis4ed,

and in this case, the di5erences among error means are signi4cantly di5erent at
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Table 1
MCP Bonferroni’s test results (critical value = 0.0199)

Hidden units Error mean Error std Models not signi4cantly di5erent

7 (control) 0.05956 0.0134 7 9 10 8 6 5
9 0.06040 0.0314 7 9 10 8 6 5
10 0.06086 0.0119 7 9 10 8 6 5
8 0.06091 0.0157 7 9 10 8 6 5
6 0.06114 0.0137 7 9 10 8 6 5
5 0.06286 0.0251 7 9 10 8 6 5
4 0.08573 0.0452 4
3 0.16706 0.0727 3
2 0.26877 0.0260 1 2
1 0.2869 0.0154 1 2

Table 2
MCP tests critical values for the estimated variance of di5erencesa

Test Fisher’s Tukey’s Bonferroni Sidak Sche5#e Dunnett Hsu’s
�-value LSD HSD correction test test test RSMCB

0.1 0.0116 0.0206 0.0183 0.0216 0.0271 0.0170 0.0149
0.05 0.0139 0.0222 0.0199 0.0231 0.0292 0.0189 0.0170
0.01 0.0183 0.0257 0.0234 0.0263 0.0332 0.0227 0.0211

a�̂ij =0:0273 and di5erent values of signi4cance (�=0:1; 0:05; 0:01)

the con4dence level of �=0:05. Now, we might wish to know which models
di5er signi4cantly from each other, thus, the application of multiple comparison
procedures should be carried out.
We 4rst select the model with the lowest error mean as the control treatment

(the a priori best model is, in this case, model 7). After carrying out a multiple
comparison procedure, we select the simplest model that is not signi4cantly di5er-
ent from the control model, following Occam’s razor criterion [2], so as to obtain
better generalization ability.
Table 1 shows the models, which are denoted by the number of hidden units

they have, the corresponding error means, standard deviations and Bonferroni test
results. Models from 5 through 10 are considered not signi4cantly di5erent from the
control model. Two models are not signi4cantly di5erent if the di5erence between
its means is less than 0.01991. Thus, model 5 should be selected, since it is the
simplest model not signi4cantly di5erent from that with lowest mean error.
In Table 2, we show critical values for di5erent MCP tests. Let us note that

Fisher’s LSD is the most powerful, followed by Hsu’s RSMCB. However, LSD
procedure should not be used since it does not control the experimentwise error
rate. For this reason, in successive experiments, results will be reported on Hsu’s
test.
Now, we will show some examples illustrating our strategy for the determination

of model complexity using real data sets. The aim of the experiments will be to
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determine the optimal value of K (in the KNN algorithm) or the number of hidden
neurons (in the BP and RBF algorithms). Databases, coming from the UCI [22]
(Diabetes, Heart, Cancer, Vehicle and Iris) and ELENA Project [32] (Clouds)
repositories will be used. A detailed description of each database may be found in
the repositories themselves.
The results are given in Tables 3–5. The 4rst row shows the model with the

lowest mean of the error measures. In the following rows, models whose means are
not signi4cantly di5erent with the lowest are shown. A set of parametric multiple
comparison test are used to compare the results and when, necessary, nonparam-
etric Tukey test is used. In all the cases, ANOVA test (and Kruskal–Wallis test
when necessary) is signi4cant. In the last row, the model chosen according to Hsu
test (or nonparametric Tukey, when needed) and the corresponding error mean is
shown. Model N implies N hidden units (MLP and RBF algorithms) or K =N
(KNN algorithm). KNN has been trained with values of K between 1 and 15,
MLP networks trained with a number of hidden units between 1 and 15 and RBF
networks between 1 and 20 kernels.

Table 3
Model selection strategy applied to classi4cation tasks. Algorithm K-NN. (16K6 15)

Diabetes Heart Clouds Cancer Vehicle Iris

Control group (lowest error mean) 11 15 15 6 3 8
Fisher 7–15 5–7, 10–15 8–15 3–15 1–4 3–10
Tukey 7–15 3–15 5–15 3–15 1–6 3–12
Bonferroni 6–15 3–15 5–15 3–15 1–8 3–12
Sche5#e 5–15 3–15 5–15 3–15 1–9 1–14
Sidak 6–15 3–15 5–15 3–15 1–7,9 3–12
Dunnett 7–15 3,5–15 7–15 3–15 1–6 3–10,12
Hsu 7–15 3,5–15 7–15 3–15 1–5 3–10,12
Nonparametric Tukey 3–15
Model=Error mean 7=24:40 3=35:23 7=11:85 3=3:54 1=36:56 3=4:17

Table 4
Model selection strategy applied to classi4cation tasks. Algorithm MLP. (16N 6 15)

Diabetes Heart Clouds Cancer Vehicle Iris

Control group (lowest error mean) 1 1 15 2 10 3
Fisher 1–2 1–2 11–15 1–3 5–15 2–15
Tukey 1–3 1–2 7–15 1–3 4–15 2–15
Bonferroni 1–3 1–2 7–15 1–3 4–15 2–15
Sche5#e 1–5 1–3 7–15 1–4 3–15 2–15
Sidak 1–3 1–2 7–15 1–3 4–15 2–15
Dunnett 1–3 1–2 9–15 1–3 5–15 2–15
Hsu 1–2 1–2 9–15 1–3 5–15 2–15
Nonparametric Tukey 7–15
Model=Error mean 1=24:21 1=20:31 7=11:85 1=4:52 5=24:55 2=5:14
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Table 5
Model selection strategy applied to classi4cation tasks. Algorithm RBF. (16N 6 20)

Diabetes Heart Clouds Cancer Vehicle Iris

Control group (lowest error mean) 14 17 20 18 20 11
Fisher 11–20 12–20 18–20 3,4,13–20 15–20 6–20
Tukey 7–20 10–20 15–20 3–7, 9–20 14–20 5–20
Bonferroni 7–20 9–20 14–20 3–7, 9–20 14–20 5–20
Sche5#e 6–20 8–20 10–20 3–20 13–20 5–20
Sidak 7–20 10–20 14–20 3–7, 9–20 14–20 5–20
Dunnett 7–20 10–20 17–20 3–5, 11–20 14–20 6–20
Hsu 7–20 10–20 17–20 3–5, 12–20 14–20 6–20
Nonparametric Tukey
Model=Error mean 7=25:41 10=18:76 17=17:92 3=4:00 14=34:79 6=5:33

We see from Tables 3–5 that Fisher’s LSD gives the shortest intervals around the
control due to an uncontrolled experimentwise error rate, while Sche5#e’s test ob-
tains the widest ones due to a well-known limited power of the test. The remaining
multiple comparison tests (parametric and nonparametric) gave very similar results.
If ANOVA F-test is not signi4cant, which was not the case in any experiment, we
might conclude that either the problem has a low-complexity or the sample size
is not large enough with respect to the complexity of the problem. In this case
statistical tests may be inconclusive.
On the other hand, if the error means seems to be decreasing with the complexity

of models and the most complex ones are selected as the best group, more complex
models should be analyzed in the experiment. Let us observe, for instance, the
results obtained by RBF algorithm on the clouds database. Models not signi4cantly
di5erent from the control model (model 20), following Hsu criterion, are indeed
sorted in descending order of error means, from 17 through 20, and model 17 is
selected as the best model. We recommend to repeat the experiment with more
complex models (from 21 through 30) and determine if they are not signi4cantly
di5erent from the others, thus ensuring that 17 is the best one.

5.2. Regression experiments

Let us consider now the problem of 4nding the degree N of a polynomial P(x)
that better 4ts a set of data in a least-squared sense. The experimental polynomial
is P(x)=0:4x3−0:5x2−0:25x+�, where the values x∈ [−1 3], and � is zero mean,
unit variance Gaussian noise. Fig. 4 shows the set of 160 data points that will be
used in the experiment.
Polynomials with degrees ranging from 1 to 10 are used. The only aspect of

the polynomials that remains to be speci4ed is the degree (M). A sample of 30
MSE errors for each polynomial has been generated. As ANOVA test assumptions
are not satis4ed (models 8–10 do not follow normal distribution), Kruskal–Wallis
test is used instead. This test is signi4cant and nonparametric Tukey test is applied
to determine whether the observed di5erences in the sample means imply that
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Fig. 4. 160 data points from a curve-4tting problem, with the true curve, a third-order polynomial.

Table 6
Polynomial 4tting simulation results (160 data points, nonparametric Tukey test)

Polynomial degree MSE mean MSE Std Polynomial degrees
not signi4cantly di5erent

3 7.17314 0.6844 3 4 5 6 7 8 9 10
4 7.18805 0.7006 3 4 5 6 7 8 9 10
5 7.27101 0.7549 3 4 5 6 7 8 9 10
6 7.43246 0.7894 3 4 5 6 7 8 9 10
7 7.71308 1.2842 3 4 5 6 7 8 9 10
8 7.97803 1.8819 3 4 5 6 7 8 9 10
9 8.19752 1.8853 3 4 5 6 7 8 9 10
10 9.02928 4.2481 3 4 5 6 7 8 9 10
2 30.55481 4.3711 2
1 83.92423 13.8307 1

di5erences exist among the accuracy of the competing polynomials. The overall
con4dence level is 4xed to 0.05.
Table 6 shows polynomial degrees, their corresponding MSE errors mean and

standard deviations and degrees of the set of polynomials not signi4cantly di5erent
from that of the 4rst column. Two polynomials are not signi4cantly di5erent if
the di5erence between its means is less than the critical value computed in this
case through a nonparametric Tukey test as 4.47. Polynomials from degrees 3 to
10 form a not signi4cantly di5erent MSE group and model 3 is selected.
Let us consider now a nonlinear least squares regression problem. The synthetic

dataset “add10”, coming from the UCI repository [22], uses a function suggested
by Friedman [11]. The true function is

f(x1; : : : ; x10)=10 sin(�x1x2) + 20(x3 − 0:5)2 + 10x4 + 5x5 + �;
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Table 7
Nonlinear least squares regression results (‘add10’ data set)

Model order MSE mean MSE Std Models not signi4cantly di5erent

3 4838.75 70.6805 3 4 5 6 7 8 9
4 4839.83 70.7937 3 4 5 6 7 8 9
5 4840.08 70.4030 3 4 5 6 7 8 9
6 4841.32 69.9378 3 4 5 6 7 8 9
7 4843.28 69.8620 3 4 5 6 7 8 9
8 4844.07 69.9044 3 4 5 6 7 8 9
9 4848.75 97.8153 3 4 5 6 7 8 9
2 19282.31 231.4177 2
1 114593.74 1219.9864 1

where � is zero mean, unit variance Gaussian noise. The inputs x1; : : : ; x10 are
sampled independently from a uniform (0,1) distribution. Let us assume we know
that the function has the form:

f(x1; : : : ; x10)= 1 sin(�x1x2) +  2(x3 − 0:5)2 +
N∑
i=3

 ixi+1; N ¡ 10;

but we do not know how many input parameters are necessary to 4t the data
(the true model needs the 4ve 4rst parameters to 4t the data and the others are
unnecessary). To answer this question nine models are de4ned:

Model 1: f(x1; : : : ; x10)= 1 sin(�x1x2) +  2(x3 − 0:5)2

Model 2: f(x1; : : : ; x10)= 1 sin(�x1x2) +  2(x3 − 0:5)2 +  3x4

Model 3: f(x1; : : : ; x10)= 1 sin(�x1x2) +  2(x3 − 0:5)2 +  3x4 +  4x5

·····

Model 9: f(x1; : : : ; x10)= 1 sin(�x1x2) +  2(x3 − 0:5)2 +
9∑
i=3

 ixi+1:

Table 7 shows the results when the whole data set is used. All the populations
follow normal distributions and ANOVA test is signi4cant. All multiple comparison
tests select the same groups of models and model 3 is selected.

6. Conclusions

We have assumed that the goal is to 4nd a model having the best generalization
performance. In doing this, we have been concerned primarily with the choice of
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a subset of models not signi4cantly di5erent from the best rather than with the
choice of a single model.
An alternative method has been proposed to model selection, where no distribu-

tion assumptions about the data are needed. Our goal has been to determine that,
in a 4nite set of models, it is possible to 4nd a subset, whose di5erences among
error means are not signi4cant with respect to the smallest.
In the design of the experiment for comparing several models, we have taken into

consideration all the sources of variations that any statistical test should control.
This goal is not achieved completely due to the 4nite size of available data. At least,
we guarantee that di5erent models are evaluated under the same circumstances. A
calculation should be done for the number of observations that are needed in order
to achieve the objectives of the experiment. If too few observations are taken,
the experiment may be inconclusive. If too many are taken, then time, energy, and
money may be needlessly expended. We recommend at least 30 error measures per
model, in order to guarantee that the error samples will provide a good estimate
of the distribution of errors.
After collecting data from a completely randomized design, error means are

analyzed. It is well known that a battery of resampled t-tests should never be
employed. The more tests we do, the more chance we have of falsely rejecting a
null hypothesis and accepting a di5erence where one does not exist (Type I error).
Hence, results obtained using these tests cannot be trusted.

Multiple comparison procedures (parametric and nonparametric) are statistical
methods to compare three or more means while controlling the probability of mak-
ing at least one Type I error. These tests are used only after a signi4cant di5erence
has been demonstrated. When this strategy is applied to a 4nite set of models, it
is possible to 4nd a subset of them whose di5erences among their error means
are not large enough to indicate di5erences among the corresponding models. A
wide range of multiple comparison procedures is commonly present in the litera-
ture. Fisher’s LSD, Tukey’s HSD, Bonferroni, Sidak, Sche5#e, Dunnett and Hsu’s
RSMCB procedures have been discussed. The various procedures trade-o5 power
for control of the experimentwise error rate in di5erent ways. As a conclusion, we
can say that there is no “correct” procedure to use.
The complete procedure has been shown to be useful in several model se-

lection problems such as the determination of the optimal degree in polynomial
4tting, the determination of the optimal number of hidden units in feedforward
networks, the determination of the optimal number of kernels in radial basis func-
tion networks and the determination of the optimal K in the K-nearest neighbor
algorithm.
The degree of the model complexity that is appropriate depends substantially

on the sample size. In general, only simple models are stable when the sample
size is small. As the sample size increases it become feasible to reliably esti-
mate progressively 4ner details on the problem by using more complex models. If
the size of sample data is not large enough with respect to the complexity of
the problem, statistical tests may be inconclusive.
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