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Abstract

The unconditional Barnard’s test for the comparison of two independent proportions is di4cult
to apply even with moderately large samples. The alternative is to use a �2 type, arc sine or mid-p
asymptotic test. In the paper, the authors evaluate some 60 of these tests, some new and others
that are already familiar. For the ordinary signi9cances, the optimal tests are the arc sine methods
(with the improvement proposed by Anscombe), the �2 ones given by Pearson (with a correction
for continuity of 2 or of 1 depending on whether the sample sizes are equal or di<erent) and the
mid-p-value ones given by Fisher (using the criterion proposed by Armitage, when applied as
a two-tailed test). For one-(two) tailed tests, the 9rst method generally produces reliable results
E¿ 10:5 (E¿ 9 and unbalanced samples), the second method does so for E¿ 9 (E¿ 6) and the
third does so for all cases, although for E6 6 (E6 10:5) it usually gives too many conservative
results. E refers to the minimum expected quantity. c© 2002 Elsevier Science B.V. All rights
reserved.

Keywords: Arc sine transformation; Barnard’s test; Binomial proportions; Continuity correction; Fisher’s
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1. Introduction

Let xi ∼ B(ni; pi); i = 1; 2; be two random independent binomial variables. In prac-
tically all Experimental Sciences one quite frequently has to test H0: p1 = p2 (=p)
against an alternative with one or two tails (the classic comparison of two propor-
tions). In the Health Sciences, this is customarily referred to as a Comparative 2 × 2
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Trial. The way to solve the problem is twofold: by using a conditional test (Fisher’s
exact test (Fisher, 1935)) or by using an unconditional one (Barnard’s test (Barnard’s,
1947)). The former is based on the conditional random variable (x1|x1 + x2 = a1) that
follows the hypergeometric distribution under H0; because of this, if CR(x1|a1) is a
critical region formed by a group of values x1 that fall between r = max(0; a1 − n2)
and s= min(a1; n1), then the error � of the conditional test will be �C =�CR(x1|a1)P(i),
where P(i) = C(n1; i)C(n2; a1 − i)=C(n; a1). The unconditional test is based on the
bidimensional random variable (x1; x2) following a double binomial; because of this, if
CR(x1; x2) is a critical region formed by a group of pairs (x1; x2), where 06 xi6 ni,
then the error �(p) of the unconditional test will be �(p) = �CR(x1 ;x2)P(x1; x2), where
P(x1; x2) = C(n1; x1)C(n2; x2)pa1 (1 − p)n1+n2−a1 , and its size is �1 = Max0¡p¡1 �(p).
The reasons put forward to support one or other methodology can be found in Yates
(1984) and Mart$%n Andr$es (1991). This article adopts the unconditional point of view,
which is licit, since it produces a test which generally is more powerful than the
conditional one (Haber, 1987).

The unconditional test has two drawbacks. On the one hand, there are a great number
of versions (ways of constructing the critical region), but Mart$%n Andr$es et al. (1998)
select the best of these: their programs are available at URL http://www.ugr.es/∼bioest/
Software.htm. Also, the versions usually take a long time to compute (Silva Mato and
Mart$%n Andr$es, 1997)—basically due to the maximization which the determination of
�I implies—making the test impossible to apply even for moderate values of ni. When
it is not possible to apply the unconditional exact test, one has no choice but to use
an asymptotic test.

When an asymptotic test is used as an approximation to the conditional test, it
is customary to apply the classic �2 test with the continuity correction (c.c. in the
following) given by Yates (1934) with the precaution proposed by Mantel (1974)
when the test is a two-tailed one. Other possible versions of c.c.’s were considered
by Mart$%n Andr$es et al. (1992) and the validity conditions (v.c. from here on) of
the optimal methods can be consulted in Mart$%n Andr$es and Herranz Tejedor (1997,
2000). However, where the asymptotic test is intended to be used as an approximation
to the unconditional test, the problem has not been su4ciently studied. It is true that
Mart$%n Andr$es and Silva Mato (1996) analyse 20 c.c.’s to the classic �2 test, �2 and
obtain the optimal c.c.’s which are quoted below. However, the behaviour of other
asymptotic methods proposed in the relevant literature remains to be evaluated. This
is the case of the various methods mentioned by Mart$%n et al. (1998), which belong
to the non-classic �2, arc sine or mid-p types.

The use of the arc sine transformation in this context is fairly customary when the
aim is to determine the sample size, but its performance as an approximation to the
unconditional exact test has not yet been evaluated.

The use of Fisher’s mid-p-value as an approximation to the Barnard test is
quite surprising and should be justi9ed. Given that the Fisher exact test is very
conservative (compared to Barnard’s test), Plackett, in his discussion of Yates (1984),
proposed Fisher’s mid-p-value as a means of reducing its conservatism. The idea was
favourably received by Barnard (1989), Routledge (1992), Upton (1992) and Agresti
(2001) because it was a way of terminating the conditional vs. unconditional argument

http://URL http://www.ugr.es/$sim $bioest/
mailto:Software.htm
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(Haber, 1992). Haber (1986) was the 9rst to propose mid-p as an approximation to the
unconditional test, one that was described by Hirji et al. (1991) as a quasi-exact
test. Both the authors and Davis (1993) agree that mid-p is generally conservative,
but quite less so than Fisher’s exact test, and behaves in a very similar fashion to
the �2 test without c.c. Note that although one needs to use a computer to apply the
mid-p, actually obtaining it presents no problem (no matter what the value of ni may
be).

The aim of this article is to make a comparative evaluation of all the referred meth-
ods, with the intention of selecting the optimal and obtaining its v.c. This involves the
evaluation of 55

57 new asymptotic methods for tests of one
two tails, plus the 4 optimal given

by Mart$%n and Silva. The mentioned comparison cannot be made through the power
of di<erent tests, because the real error of type I of each one of them is di<erent. It
is for this that the approach of Martin and Silva is adopted (see Section 3.1).

2. Asymptotic method to be studied

2.1. Type �2 methods

The most usual �2 statistic without c.c. (“uncorrected”) is the �2
U, although frequently

the version �2
P given by Pearson (1947) is used, where

�2
U =

(x1y2 − x2y1)2

a1a2n1n2
n; �2

P =
(x1y2 − x2y1)2

a1a2n1n2
(n− 1) (1)

and with yi = ni − xi, a1 = x1 + x2, a2 = n− a1 = y1 + y2 and n= n1 + n2. It has been
fairly well established (Pearson, 1947; Cox, 1970) that the asymptotic statistics based
on discrete random variables require a c.c. consistent with adding to or subtracting
from the experimental value, half the jump between that and the immediately following
value (Kendall and Stuart, 1973). Conover (1974) observed that “the following value”
is di4cult to obtain in the present case, and therefore Haber (1982) proposed adding
or subtracting “half the average jump” of the implied variable. This means that for any
statistic of the shape �2 = N 2=D -where N = x1y2 − x2y1 and D refers to any function
of the data—the “corrected” statistic will have a format which depends on what is
considered to be the variable base of the problem. If the variable is �2 (Mart$%n and
Silva), � (Haber) or N (Yates), then the corrected statistics will be �2 − c; (� − c)2

or (|N | − c)2=D, which will be referred to as being type M, H or T. In these statistics,
c is the c.c. and its value will be the average jump of �2, � or N in the whole of the
sample space. In the case of �2

U and �2
P, the value of c for the corrected statistics of

type M or H was obtained by Haber (1982) and Mart$%n and Silva (1996), thus yielding
the following statistics UM, UH, PM and PH:

�2
UM = �2

U − n
n0
; �2

UH =
(
�U −

√
n
n0

)2

;

�2
PM = �2

P −
n− 1
n0

; �2
PH =

(
�P −

√
n− 1
n0

)2

; (2)
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where n0 = (n1 +1)(n2 +1)−1−hcf (n1; n2) if n1 �= n2, n0 =[(n+2)2=8]− if n1 =n2, hcf
refers to the “highest common factor” and [x]− refers to the integer part of x. For the
type T statistic, and because |N | takes values between 0 and n1n2, it is immediately
clear (using the arguments of Mart$%n and Silva) that the new corrected statistics will
be the following UT and PT:

�2
UT =

(|x1y2 − x2y1| − n1n2
n0

)2

a1a2n1n2
n; �2

PT =
(|x1y2 − x2y1| − n1n2

n0
)2

a1a2n1n2
(n− 1): (3)

When n1 → ∞, then c → 0 in cases (2), but not in cases (3), which suggests these
other new asymptotic c.c.’s (methods UTA and PTA):

�2
UTA =

(|x1y2 − x2y1| − c0)2

a1a2n1n2
n; �2

PTA =
(|x1y2 − x2y1| − c0)2

a1a2n1n2
(n− 1); (4)

where c0=1 if n1 �= n2 and c0= 2 if n1= n2. It is clear that �2
UTA¡�2

UT and �2
PTA¡�2

PT,
so that the 9rst methods will give somewhat higher p-values than those of the second
ones.

For the corrected type T statistics, Mart$%n and Silva proposed that c should not
be “the average jump”, but rather “half the approximate jump”. Among the various
possible versions, those that behaved best were of types S and C which, based on c=
min(n1; n2)=2 and c= hcf (n1; n2)=2, respectively, were given by Schouten et al. (1980)
and Cook (1981). For example, �2

US = {|x1y2 − x2y1| − min(n1n2)=2}2n={a1a2n1n2}.
This same reasoning can be applied to any other type �2 statistic that is de9ned,

and in this way each one of them yields 6 statistics with c.c. (those of types M, H,
T, TA, S and C). As Mart$%n et al. (1998) proposed 7 di<erent �2 statistics to the
�2

U and �2
P—expressions (5)–(7) and (10)–(13) in the article mentioned—this gives

7×6=42 di<erent methods (generally with di<ering c values). To these must be added
the methods UT, PT, UTA and PTA (which are new proposals) and the methods UH,
UM, PH and PM (which were selected as optimal by Mart$%n and Silva), giving a
total of 50 methods to be analysed comparatively. For example, for the statistic �2

D of
D’Agostino et al. (1988), the method DT would be based on �2

DT = {|x1y2 − x2y1| −
n1n2=n0}2(n− 2)=[n{n2x1y1 + n1x2y2}], where n0 = (n1 + 1)(n2 + 1) − 3 − hcf (n1; n2)
if n1 �= n2 and n0 = 2[(n1 + 1)(n2 + 1)=4]− − 2 if n1 = n2. The remaining cases may be
requested from the authors.

2.2. Methods based on the arc sine transformation

Mart$%n et al. (1998) refer to the two traditional statistics A1 and A2

�2
A1 =

(sin−1√p̂1 − sin−1√p̂2)24n1n2

n
;

�2
A2 =

(2n1 + 1)(2n2 + 1)(sin−1
√
p̂′

1 − sin−1
√
p̂′

2)2

n+ 1
; (5)
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where p̂i = xi=ni and p̂′
i = (xi+3=8)=(ni+3=4). It is only meaningful to perform the types

H and M c.c.’s on these. For example, it can be shown that �2
A1H = 4n1n2{|sin−1p̂0:5

1 −
sin−1p̂0:5

2 | − �=2n0}2=n, where n0 = (n1 + 1)(n2 + 1) − 1 − hcf (n1; n2) if n1 �= n2 and
n0 = 2[(n1 + 1)(n2 + 1)=4]− if n1 = n2. In exceptional circumstances, and given that
it has never been evaluated, a classic type Y c.c. (Yates’ classic correction), which
in reality is a conditional c.c., can be performed. For example, if p̂1¿p̂2, then this
will give �2

A1Y = 4n1n2{sin−1(p̂1 − 1=2n1)0:5 − sin−1(p̂2 + 1=2n2)0:5}2=n. The remaining
expressions may be obtained on request from the authors. This produces 8 new methods
to be analysed: the methods A1, A1H, A1M, A1Y and their homonyms based on A2.
In this article, we consider A1 and A2 (which have no c.c.) because they have not
been previously evaluated in the relevant literature.

2.3. Methods based on Fisher’s mid-p-value

If we reorder the samples so that p̂1¿p̂2 (for which, if necessary, it is su4cient to
permute the values of xi and yi), then x1¿E11 = a1n1=n and Fisher’s mid-p-value for
the observed value x1 and for the alternative H1: p1¿p2 produces the method FM

FM(x1) =
s∑

i=x1+1

P(i) +
1
2
P(x1); (6)

where P(i) and s are as indicated in the introduction. For a two-tailed test there are
more possibilities. Hirji et al. (1991) mention the following two options:

FMH(x1) =
x′1∑
i=r

P(i) +
s∑

i=x1+1

P(i) +

{
P(x1)=2 if P(x1)¿P(x′1);

0 if P(x1) = P(x′1);

FMA(x1) = 2FM(x1);

(7)

where x′1¡E11 so that P(x′1)6P(x1) and P(x′1 + 1)¿P(x1). The FMH method is
based on the direct application of the mid-p concept; the FMA is based on Armitage’s
criterion that the p-value of a two-tailed test is double that of a test with one tail. A
third option is to use the criterion proposed by Mantel (1974), who de9ned it with
reference to Yates’ �2 test used as an approximation to the conditional test, that is, the
p-value of two tails is the sum of the p-values of one tail for the original data (x1)
and those of the other tail (x′1). This produces the method FMM de9ned by

FMM(x1) = FM(x1) + 1 − FM(x′1 − 1)

=
x′1−1∑
i=r

P(i) +
s∑

i=x1+1

P(i) +
1
2
{P(x′1) + P(x1)}: (8)

As one can see, in all the cases the mid-p constitutes a sort of c.c. to Fisher’s statistic.
All of this implies that a further 1

3 method should be analysed for one
two -tailed tests.
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3. Selection of the optimal method

3.1. Previous selection

The aim of an asymptotic method is to give a p-value (PA) which is approximately
equal to that of the exact method (PE). The maximum di<erence PA−PE that is admis-
sible is a matter of opinion. For the conditional test, Mart$%n et al. (1992) welcomed the
criterion proposed by Cochran (1954) requiring that |PA−PE|6 �PE, where � is of the
order of 20% or 50% for values of PE of 5% or 1%, respectively. When Mart$%n and
Silva (1996) tried to repeat the criterion for the unconditional test, they encountered
a double problem. On the one hand, the values of PA and PE di<er much more here;
on the other, computer capacity prevents the computations going further than n = 50.
For this reason, the evaluation of the asymptotic methods was carried out using wider
values of � than the previous ones, and showed that the optimal methods (of those
evaluated) were UM, UH, PM and PH already mentioned.

As shown above, 55
57 new asymptotic methods for one

two -tailed tests ( 46
46 of type �2, 8

8
of type arc sine and 1

3 of type mid-p) were proposed. In order to concentrate on those
that perform best, a preliminary critical study was carried out based on the criteria
proposed by Mart$%n and Silva (1996). The complete results may be obtained from the
authors on request. The study shows that the best performing methods are UT, PT,
UTA, PTA, A2, FM, FMH, FMA and FMM. The rest are either obviously inferior
or are similar to one of those selected (but more di4cult to compute the evaluation).
Therefore, these 9 methods are those which must be evaluated, together with the 4
optimal given by Mart$%n and Silva. Method A1 will also be considered because it is
quite well-known and has never been studied in this context. This makes a total of 11

13
one
two -tailed methods to be studied.

3.2. Evaluation of the selected asymptotic methods

To evaluate and compare the 11
13 proposed asymptotic methods (UM, UH, UT, UTA,

PM, PH, PT, PTA, A1, A2, FM, FMH, FMA and FMT), we adopt similar (but im-
proved) criteria to those used by Mart$%n and Silva (1996). According to these authors,
the behaviour of an asymptotic test depends fundamentally on the real p-value (PE),
on the unbalance of samples (K = n2=n1¿ 1) and the minimum expected quantity
E = min(ai) × min(ni)=n. Hence, in the following, all the samples (x1; x2; n1; n2) with
n= 20(1)100 that satisfy each of the following combinations of PE , K and E, will be
generated:

PE: 0.001-0.01; 0.01-0.1 (2 groups),
K : 1; 1(.25)2(1)3; ¿ 3 (7 groups),
E : 6 1:5; 1.5(1)4.5(1.5)12; ¿ 12 (10 groups),

which gives 2 × 7 × 10 = 140 groups of (PE;K ;E) values for the one-tail tests (and
similarly for two-tail tests). A given group has N samples (x1; x2; n1; n2). For example,
the 9rst value of N=82 in Table 1was obtained as follows: (1) As K=1, all the samples
with n=20(2)100 are considered, and this yields 40 sample spaces where n1 =n2 =n=2.
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Table 1
Values of H 0 (% of failures) for the selected asymptotic methods (N = n0 of tables for calculating the H 0

values)

0.01–0.10 One-tail Methods

K = 1 N UH UM PH PM UT PT UTA PTA A1 A2 FM

E6 1:5 82 12 10 7 2 7 2 7 2 100 20 80
1:5¡E6 2:5 152 0 0 0 0 0 0 0 0 100 0 16
2:5¡E6 3:5 166 40 36 40 6 40 17 40 14 96 41 2
3:5¡E6 4:5 230 3 3 3 3 3 3 3 3 70 4 2
4:5¡E6 6:0 350 6 2 3 5 6 2 6 3 9 7 2
6:0¡E6 7:5 374 3 2 1 1 3 1 3 1 16 3 1
7:5¡E6 9:0 363 2 1 2 1 2 2 2 1 14 2 1
9:0¡E6 10:5 352 4 2 1 1 4 1 4 1 9 5 1
10:5¡E6 12 336 4 1 1 3 3 1 3 1 7 4 2
E¿ 12 1553 2 1 0 2 2 0 2 1 8 2 1

1¡K6 1:25 N UH UM PH PM UT PT UTA PTA A1 A2 FM
E6 1:5 623 28 25 22 21 24 21 24 21 100 26 63
1:5¡E6 2:5 993 0 0 0 0 0 0 0 0 100 0 21
2:5¡E6 3:5 1104 40 25 23 18 29 20 29 20 87 28 2
3:5¡E6 4:5 1508 5 5 5 4 5 5 5 5 62 6 2
4:5¡E6 6:0 2399 7 6 5 4 7 4 7 4 17 5 2
6:0¡E6 7:5 2648 6 4 3 2 5 3 5 3 11 3 1
7:5¡E6 9:0 2782 5 3 3 1 5 3 5 3 9 3 2
9:0¡E6 10:5 2755 3 2 2 1 3 2 3 2 7 2 2
10:5¡E6 12 2753 3 2 1 1 1 2 3 1 7 2 2
E¿ 12 12 703 1 1 1 0 1 1 1 1 4 1 1

1:25¡K¡ 1:5 N UH UM PH PM UT PT UTA PTA A1 A2 FM
E6 1:5 657 45 35 37 34 37 34 37 34 100 33 9
1:5¡E6 2:5 1006 4 4 4 3 4 4 4 4 82 11 17
2:5¡E6 3:5 1134 31 22 19 16 26 18 25 17 76 21 7
3:5¡E6 4:5 1576 11 10 9 9 11 9 11 9 51 9 6
4:5¡E6 6:0 2358 11 10 9 7 11 9 11 9 31 7 5
6:0¡E6 7:5 2588 6 5 4 3 6 4 5 4 15 3 2
7:5¡E6 9:0 2650 4 3 3 2 4 2 4 2 8 3 2
9:0¡E6 10:5 2572 2 2 1 1 2 1 2 1 4 1 1
10:5¡E6 12 2529 1 1 1 1 1 1 1 1 2 1 1
E¿ 12 8561 1 1 1 0 1 1 1 1 2 1 0

1:5¡K6 1:75 N UH UM PH PM UT PT UTA PTA A1 A2 FM
E6 1:5 494 51 49 50 47 50 47 50 47 100 27 47
1:5¡E6 2:5 944 20 19 18 17 19 17 19 17 68 12 16
2:5¡E6 3:5 1097 30 26 24 24 29 24 29 24 65 23 9
3:5¡E6 4:5 1360 14 12 11 10 13 11 13 11 51 6 6
4:5¡E6 6:0 2138 6 4 4 3 6 4 6 4 22 3 0
6:0¡E6 7:5 2202 2 1 1 1 2 1 2 1 12 1 0
7:5¡E6 9:0 2222 1 1 1 1 1 1 1 1 8 1 0
9:0¡E6 10:5 2163 1 1 1 1 1 1 1 1 5 1 0
10:5¡E6 12 2046 1 1 1 1 1 1 1 1 2 1 0
E¿ 12 5145 1 1 1 0 1 1 1 1 2 1 0
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Table 1 (Continued)

0.01–0.10 One-tail Methods

K = 1 N UH UM PH PM UT PT UTA PTA A1 A2 FM

1:75¡K6 2 N UH UM PH PM UT PT UTA PTA A1 A2 FM
E6 1:5 608 50 50 50 50 50 50 50 50 99 25 31
1:5¡E6 2:5 915 27 29 31 32 28 32 29 32 59 5 6
2:5¡E6 3:5 1035 22 20 18 18 21 19 20 18 51 11 4
3:5¡E6 4:5 1379 6 5 5 5 5 5 5 5 50 3 1
4:5¡E6 6:0 2095 1 1 1 1 2 1 1 1 24 1 1
6:0¡E6 7:5 2137 1 1 1 0 1 1 1 1 11 1 0
7:5¡E6 9:0 2154 1 0 0 0 1 0 1 0 7 1 0
9:0¡E6 10:5 1961 1 1 1 0 1 1 1 1 5 1 0
10:5¡E6 12 1799 1 0 0 0 1 0 1 0 3 0 0
E¿ 12 3207 0 0 0 0 0 0 0 0 1 0 0

2¡K6 3 N UH UM PH PM UT PT UTA PTA A1 A2 FM
E6 1:5 1672 72 71 71 70 72 71 71 70 57 19 18
1:5¡E6 2:5 3111 32 31 31 32 31 31 31 31 45 4 5
2:5¡E6 3:5 3354 28 26 25 21 28 24 27 24 44 4 0
3:5¡E6 4:5 4188 8 5 6 3 8 5 8 5 45 1 0
4:5¡E6 6:0 6341 4 2 2 1 4 2 4 2 26 1 0
6:0¡E6 7:5 6181 2 1 1 0 2 1 2 1 10 1 0
7:5¡E6 9:0 5792 1 1 1 0 1 1 1 1 5 0 0
9:0¡E6 10:5 4884 1 0 0 0 1 0 1 0 3 0 0
10:5¡E6 12 3685 0 0 0 0 0 0 0 0 2 0 0
E¿ 12 3019 0 0 0 0 0 0 0 0 2 0 0

K ¿ 3 N UH UM PH PM UT PT UTA PTA A1 A2 FM
E6 1:5 5354 91 89 90 87 91 90 91 90 23 9 1
1:5¡E6 2:5 7518 40 36 36 35 40 36 40 36 42 20 0
2:5¡E6 3:5 8656 23 21 21 19 23 21 23 21 43 5 0
3:5¡E6 4:5 9999 2 1 2 1 3 2 2 2 46 0 0
4:5¡E6 6:0 11 338 1 0 0 0 1 1 1 0 22 0 0
6:0¡E6 7:5 7144 0 0 0 0 0 0 0 0 6 0 0
7:5¡E6 9:0 3977 0 0 0 0 0 0 0 0 2 0 0
9:0¡E6 10:5 1663 0 0 0 0 0 0 0 0 2 0 0
10:5¡E6 12 371 0 0 0 0 0 0 0 0 1 0 0

0.01–0.10 Two-tails Methods

K = 1 N UH UM PH PM UT PT UTA PTA A1 A2 FMH FMA FMM

E6 1:5 76 11 3 0 0 0 0 0 0 100 13 87 87 87
1:5¡E6 2:5 162 0 0 0 0 0 1 0 2 100 4 94 94 94
2:5¡E6 3:5 98 4 2 2 2 2 2 2 2 100 78 4 4 4
3:5¡E6 4:5 220 2 2 1 2 2 1 2 2 98 3 2 2 2
4:5¡E6 6:0 300 3 2 2 1 3 1 3 1 50 5 1 1 1
6:0¡E6 7:5 306 5 2 2 4 5 2 5 2 29 7 3 3 3
7:5¡E6 9:0 312 3 3 3 3 3 3 3 2 15 3 5 5 5
9:0¡E6 10:5 329 5 4 2 2 5 2 5 2 13 6 1 1 1
10:5¡E6 12 289 3 2 1 1 3 1 2 1 14 3 2 2 2
E¿ 12 1376 4 2 2 4 4 2 4 2 11 5 4 4 4
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Table 1 (Continued)

0.01–0.10 Two-tails Methods

K = 1 N UH UM PH PM UT PT UTA PTA A1 A2 FMH FMA FMM

1¡K6 1:25 N UH UM PH PM UT PT UTA PTA A1 A2 FMH FMA FMM
E6 1:5 324 29 35 40 44 36 45 37 48 100 39 19 100 15
1:5¡E6 2:5 845 17 19 22 26 20 27 20 28 99 27 30 76 15
2:5¡E6 3:5 916 9 7 7 5 8 6 8 6 91 17 28 18 44
3:5¡E6 4:5 1337 1 1 1 1 1 1 1 1 62 7 22 14 19
4:5¡E6 6:0 2186 2 2 1 1 2 1 2 1 35 3 21 9 23
6:0¡E6 7:5 2238 2 1 1 1 2 1 2 1 18 2 14 6 21
7:5¡E6 9:0 2453 2 1 1 1 1 1 1 1 10 2 11 4 22
9:0¡E6 10:5 2445 2 1 1 1 2 1 2 1 6 2 11 5 19
10:5¡E6 12 2424 1 1 1 1 1 1 1 1 5 2 9 4 21
E¿ 12 11 273 2 2 1 1 2 1 2 1 5 2 8 3 18

1:25¡K6 1:5 N UH UM PH PM UT PT UTA PTA A1 A2 FMH FMA FMM
E6 1:5 388 58 61 68 72 63 75 64 77 100 95 19 100 19
1:5¡E6 2:5 766 14 14 17 17 15 18 15 18 73 45 43 60 30
2:5¡E6 3:5 1077 7 6 7 7 7 6 7 7 56 27 45 30 21
3:5¡E6 4:5 1252 4 4 4 4 4 4 4 4 48 13 23 17 22
4:5¡E6 6:0 2084 3 3 3 3 3 3 3 3 41 7 18 13 23
6:0¡E6 7:5 2308 2 2 2 2 2 2 2 2 25 4 16 10 22
7:5¡E6 9:0 2316 2 1 1 1 2 1 1 1 14 3 10 6 20
9:0¡E6 10:5 2263 1 1 1 1 1 1 1 1 7 2 10 4 20
10:5¡E6 12 2242 1 1 1 1 1 1 1 1 5 1 9 2 20
E¿ 12 7592 1 1 1 1 1 1 1 1 3 1 8 2 17

1:5¡K6 1:75 N UH UM PH PM UT PT UTA PTA A1 A2 FMH FMA FMM
E6 1:5 358 9 21 30 40 28 46 31 48 95 93 37 100 37
1:5¡E6 2:5 675 6 5 5 8 5 7 5 7 54 85 40 54 8
2:5¡E6 3:5 981 12 12 14 13 13 14 13 14 54 43 29 28 21
3:5¡E6 4:5 1100 6 5 5 6 5 5 6 5 47 22 23 19 27
4:5¡E6 6:0 1900 3 3 2 2 3 2 3 2 42 9 18 13 22
6:0¡E6 7:5 1954 1 1 1 1 1 1 1 1 30 3 15 6 22
7:5¡E6 9:0 1954 1 1 0 1 1 0 1 0 16 3 14 4 18
9:0¡E6 10:5 1910 1 0 0 0 1 0 1 0 10 1 11 1 19
10:5¡E6 12 1793 0 0 0 1 0 0 0 0 5 1 9 2 18
E¿ 12 4576 0 0 0 0 0 0 0 0 4 0 8 2 17

1:75¡K6 2 N UH UM PH PM UT PT UTA PTA A1 A2 FMH FMA FMM
E6 1:5 446 2 5 7 11 4 14 5 15 90 95 43 100 43
1:5¡E6 2:5 688 10 8 9 9 10 9 10 9 59 70 38 59 21
2:5¡E6 3:5 963 13 13 15 16 13 15 13 16 46 43 33 34 24
3:5¡E6 4:5 1106 2 1 1 2 2 1 2 1 44 21 25 21 24
4:5¡E6 6:0 1852 1 1 1 1 1 1 1 1 44 8 19 11 21
6:0¡E6 7:5 1912 1 1 0 0 1 0 1 0 35 3 16 3 20
7:5¡E6 9:0 1895 1 0 0 1 1 0 1 0 18 1 13 2 18
9:0¡E6 10:5 1733 1 1 1 1 1 1 1 1 11 1 11 2 20
10:5¡E6 12 1559 1 0 0 0 1 0 1 0 6 0 9 2 18
E¿ 12 2857 1 0 0 0 1 0 1 0 6 1 9 2 17
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Table 1 (Continued)

0.01–0.10 Two-tails Methods

K = 1 N UH UM PH PM UT PT UTA PTA A1 A2 FMH FMA FMM

2¡K6 3 N UH UM PH PM UT PT UTA PTA A1 A2 FMH FMA FMM
E6 1:5 1323 47 47 48 49 47 48 47 48 85 84 27 100 27
1:5¡E6 2:5 2184 11 13 14 17 12 16 12 16 81 83 37 64 23
2:5¡E6 3:5 3043 13 14 17 19 13 17 13 17 60 53 28 37 19
3:5¡E6 4:5 3386 2 2 2 2 2 2 2 2 48 28 27 21 24
4:5¡E6 6:0 5582 1 1 1 2 1 1 1 1 47 12 20 13 20
6:0¡E6 7:5 5537 1 1 0 1 1 0 1 0 38 4 15 6 20
7:5¡E6 9:0 5115 1 0 0 1 1 0 1 0 21 2 14 3 18
9:0¡E6 10:5 4296 1 1 0 1 1 0 1 0 11 1 12 3 19
10:5¡E6 12 3247 1 1 1 1 1 1 1 1 7 1 11 2 18
E¿ 12 2692 2 1 1 0 2 1 2 1 6 2 9 2 18

K ¿ 3 N UH UM PH PM UT PT UTA PTA A1 A2 FMH FMA FMM
E6 1:5 4888 51 52 52 53 51 52 51 52 92 97 1 100 1
1:5¡E6 2:5 4966 15 18 18 22 16 18 16 19 98 97 23 74 20
2:5¡E6 3:5 7629 8 10 11 15 8 11 8 11 69 59 24 41 19
3:5¡E6 4:5 8120 2 2 2 3 2 2 2 2 52 25 26 22 23
4:5¡E6 6:0 10 047 0 0 1 2 0 1 0 1 50 7 20 11 21
6:0¡E6 7:5 6391 0 0 0 0 0 0 0 0 37 2 15 5 21
7:5¡E6 9:0 3482 0 0 0 0 0 0 0 0 19 1 13 3 19
9:0¡E6 10:5 1452 0 0 0 0 0 0 0 0 10 1 13 2 19
10:5¡E6 12 327 0 0 0 0 0 0 0 0 14 0 9 0 24

Each sample space (n1; n2), where 106 ni6 50, consists of (n1 +1)×(n2 +1) samples
(x1; x2), where 06 xi6 n=2, which gives N1 =

∑n=50
n=10 (n+ 2)2=4 possible samples; (2)

Each of the N1 samples has a value E = (Min ai)=2; the N2 samples are selected with
E¡ 1:5; (3) Each of the N2 samples yields a one-tailed p-value (PE) obtained by
the optimal version of the Barnard test (the method of the minimum: Barnard, 1947);
the N3 samples are selected with 0:016PE6 0:10. The N3 value is exactly N = 82.
For a given asymptotic method, PA is computed in each of these N samples and it is
noted whether |PA − PE|6 �PE or |PA − PE|¿�PE. In the 9rst case, it is said that
the asymptotic method does “not fail”; in the second, it is said that it “fails”. If N 0

is the number of samples in which the method fails, then the value H 0 = 100 × N 0=N
is the percentage of time it fails, which will be crucial for evaluating the method. To
this end, the assumed values � are those used by Mart$%n et al. (1992) and proposed
by Cochran, rather than the more liberal ones given in Mart$%n and Silva (1996), that
is

�=




0:5 if 0:0016PE6 0:01;

0:575 − 7:5PE if 0:01¡PE¡ 0:05;

0:2 if 0:056PE6 0:10:

Table 1 contains the values of H 0 for all the methods indicated in the case of
1%6PE6 10% (which are the most customary target signi9cances). The results for
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low values of PE may be obtained from the authors on request. From these results, the
following general conclusions may be drawn:
(1) Generally speaking, all the methods improve with the increase of E, but are worse

with the increase of the value of PE. For large values of E (so that H 0 is small),
all the methods generally improve with the increase in K , but perform worse as
a two-tailed test than as a one-tailed test.

(2) All the asymptotic methods have some failure (H 0¿0%) in the two-tailed tests,
high PE values or balanced samples (16K6 1:5). This is an unfortunate circum-
stance given the usual situation. The problem persists even when E¿ 18 (these
additional results may be requested from the authors).

(3) The minimum value of E for a type �2 statistic (with the relevant c.c.) not to fail
is quite higher in the present case than when it is used as an approximation to
Fisher’s exact test (the results of Mart$%n et al., 1992). Hence, it can be a4rmed
that the �2 test performs more erratically as an approximation to the unconditional
test than to the conditional test.

(4) The A1 method performs very poorly, is worse than all the others and does not
give reliable results even when E¿ 12. However, the slight modi9cation to it
which method A2 implies, makes its behaviour competitive.

(5) Of the type �2 methods, none behaves systematically better than the others. A
good choice is the method UTA (PTA) for the low (high) PE. Frequently, it is
one of the best methods and has the advantage of being based on a formula that
is easy to remember (and easy to apply).

(6) The mid-p method for one-tailed test (FM) performs quite well, especially with
unbalanced samples or low PE values. Of the two-tailed mid-p methods, the FMM
(FMA) has the best performance in low (high) PE values.

(7) Of the methods that can be applied “by hand” (arc sine and �2), the method A2
(PTA) is usually preferable in the low (high) PE values.

(8) Overall, the selected mid-p methods are preferable to the others (of any type) in
the two-tailed tests with low PE values (FMM) and in those with one tail with
high PE values (FM).

A complementary aspect of the question is what happens when a method fails
(H 0¿0). If the failures are always conservative, that is, if PA¿ (1 + �)PE, then the
test never gives false signi9cances and is always reliable. This is what occurs almost
always with the selected mid-p methods (see the data in Table 2). But the same does
not hold for the other methods, as their failures are frequently liberal (these data may
be requested from the authors).

3.3. Optimal method and validity conditions

In reality, it is not enough for a method to have the best general behaviour, rather,
it is necessary to indicate in what conditions it is reliable (i.e. it does not fail). For a
particular table in which the values of K and E are known, the authors advise applying
any of those methods in Table 1 giving H 0 =0 and, if there is none, the optimal mid-p
(which is always conservative) or an exact method. The criterion of demanding that
H 0 = 0 is useful for the researcher, for whom it is important to be sure that, in his=her
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Table 2
Values of H+=H− (conservative=liberal failures) for the optimal mid- p methods

One-tail 0.001–0.01 FM 0.01–0.10 FM 0.001–0.01 FMM 0.01–0.10 FMA Two-tails

K = 1 N H+ H− N H+ H− N H+ H− N H+ H−

E6 1:5 82 80 0 76 87 0
1:5¡E6 2:5 82 41 0 152 16 0 2 1000 162 94 0
2:5¡E6 3:5 152 70 0 166 1 1 162 720 98 4 0
3:5¡E6 4:5 98 0 0 230 1 1 82 660 220 2 0
4:5¡E6 6:0 239 1 0 350 2 0 234 30 300 1 0
6:0¡E6 7:5 259 0 0 374 1 0 238 00 306 3 0
7:5¡E6 9:0 249 1 0 363 0 1 233 10 312 5 0
9:0¡E6 10:5 247 1 0 352 1 0 227 10 329 1 0

10:5¡E6 12 255 0 0 336 2 0 219 00 289 2 0
E¿ 12 1117 0 0 1553 0 1 1044 10 1376 4 0

1¡K6 1:25 N H+ H− N H+ H− N H+ H− N H+ H−

E6 1:5 623 63 0 324 100 0
1:5¡E6 2:5 283 78 0 993 21 0 181 2 0 845 76 0
2:5¡E6 3:5 888 64 0 1104 0 1 762 13 0 916 18 0
3:5¡E6 4:5 807 17 0 1508 2 0 721 7 0 1337 14 0
4:5¡E6 6:0 1735 0 0 2399 2 0 1509 0 0 2186 9 0
6:0¡E6 7:5 1797 1 0 2648 1 0 1673 0 0 2238 6 0
7:5¡E6 9:0 1943 1 0 2782 2 0 1790 0 0 2453 4 0
9:0¡E6 10:5 1965 0 0 2755 2 0 1839 0 0 2445 5 0

10:5¡E6 12 1946 1 0 2753 1 0 1809 0 0 2424 4 0
E¿ 12 9169 0 0 12 703 1 0 8515 0 0 11 273 3 0

1:25¡K6 1:5 N H+ H− N H+ H− N H+ H− N H+ H−

E6 1:5 657 9 0 388 100 0
1:5¡E6 2:5 367 60 0 1006 17 0 378 59 0 766 60 0
2:5¡E6 3:5 940 48 0 1134 6 0 564 16 0 1077 30 0
3:5¡E6 4:5 869 27 0 1576 6 0 933 0 0 1252 17 0
4:5¡E6 6:0 1650 1 0 2358 4 1 1423 0 0 2084 13 0
6:0¡E6 7:5 1846 1 0 2588 2 0 1660 0 0 2308 10 0
7:5¡E6 9:0 1822 1 0 2650 1 1 1715 0 0 2316 6 0
9:0¡E6 10:5 1818 1 0 2572 1 0 1709 0 0 2263 4 0

10:5¡E6 12 1794 0 0 2529 1 0 1668 0 0 2242 2 0
E¿ 12 6181 0 0 8561 0 0 5747 0 0 7592 2 0

1:5¡K6 1:75 N H+ H− N H+ H− N H+ H− N H+ H−

E6 1:5 63 16 0 494 47 0 63 19 0 358 100 0
1:5¡E6 2:5 312 24 0 944 16 0 292 56 0 675 54 0
2:5¡E6 3:5 836 19 0 1097 9 0 542 0 0 981 28 0
3:5¡E6 4:5 797 23 0 1360 5 0 824 0 0 1100 19 0
4:5¡E6 6:0 1499 4 0 2138 0 0 1280 0 0 1900 13 0
6:0¡E6 7:5 1557 2 0 2202 0 0 1424 0 0 1954 6 0
7:5¡E6 9:0 1573 0 0 2222 0 0 1459 0 0 1954 4 0
9:0¡E6 10:5 1527 0 0 2163 0 0 1441 0 0 1910 1 0

10:5¡E6 12 1435 0 0 2046 0 0 1359 0 0 1793 2 0
E¿ 12 3722 0 0 5145 0 0 3448 0 0 4576 2 0
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Table 2 (Continued)

One-tail 0.001–0.01 FM 0.01–0.10 FM 0.001–0.01 FMM 0.01–0.10 FMA Two-tails

1:75¡K6 2 N H+ H− N H+ H− N H+ H− N H+ H−

E6 1:5 157 45 0 608 31 0 157 50 0 446 100 0
1:5¡E6 2:5 385 19 0 915 6 0 391 20 0 688 59 0
2:5¡E6 3:5 752 29 0 1035 4 0 406 1 0 963 34 0
3:5¡E6 4:5 824 33 0 1379 1 0 846 0 0 1106 21 0
4:5¡E6 6:0 1458 2 0 2095 0 1 1274 0 0 1852 11 0
6:0¡E6 7:5 1521 0 0 2137 0 0 1397 0 0 1912 3 0
7:5¡E6 9:0 1526 0 0 2154 0 0 1400 0 0 1895 2 0
9:0¡E6 10:5 1387 0 0 1961 0 0 1323 0 0 1733 2 0
10:5¡E6 12 1251 0 0 1799 0 0 1188 0 0 1559 2 0
E¿ 12 2320 0 0 3207 0 0 2134 0 0 2857 2 0

2¡K6 3 N H+ H− N H+ H− N H+ H− N H+ H−

E6 1:5 796 78 0 1672 18 0 801 79 0 1323 100 0
1:5¡E6 2:5 1182 2 0 3111 5 0 1162 2 0 2184 63 1
2:5¡E6 3:5 2448 12 0 3354 0 0 1470 3 0 3043 36 0
3:5¡E6 4:5 2612 29 0 4188 0 0 2545 0 0 3386 21 0
4:5¡E6 6:0 4362 0 0 6341 0 0 3929 0 0 5582 13 0
6:0¡E6 7:5 4415 0 0 6181 0 0 3990 0 0 5537 6 0
7:5¡E6 9:0 4138 0 0 5792 0 0 3800 0 0 5115 3 0
9:0¡E6 10:5 3404 0 0 4884 0 0 3256 0 0 4296 3 0
10:5¡E6 12 2594 0 0 3685 0 0 2447 0 0 3247 2 0
E¿ 12 2199 0 0 3019 0 0 1984 0 0 2692 2 0

K ¿ 3 N H+ H− N H+ H− N H+ H− N H+ H−

E6 1:5 3094 6 0 5354 1 0 3090 6 0 4888 100 0
1:5¡E6 2:5 3385 0 0 7518 0 0 3380 0 0 4966 71 3
2:5¡E6 3:5 5726 1 0 8656 0 0 3672 0 0 7629 41 0
3:5¡E6 4:5 6431 9 0 9999 0 0 5924 0 0 8120 22 0
4:5¡E6 6:0 7818 0 0 11 338 0 0 7023 0 0 10 047 11 0
6:0¡E6 7:5 5042 0 0 7144 0 0 4568 0 0 6391 5 0
7:5¡E6 9:0 2751 0 0 3977 0 0 2612 0 0 3482 3 0
9:0¡E6 10:5 1154 0 0 1663 0 0 1107 0 0 1452 2 0
10:5¡E6 12 262 0 0 371 0 0 241 0 0 327 0 0

particular table, the asymptotic method gives a reliable p-value, it is not enough to
know that the method “generally” works well.

If one wishes to select the optimal method in terms of the objective error �, it may
be concluded in a very general way that
(I) For researchers interested only in the very low signi9cances (because they have

to apply Bonferroni’s method, for example), the optimal is the method FMM for
the two-tailed tests. In the one-tailed test, the selection depends on the sample
inbalance: methods UTA, A2 or FM for low, moderate and high inbalances.

(II) For researchers interested in the usual signi9cances, the optimal is the method
FM (PTA) in one-(two) tailed tests.
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Table 3
Overall values of �= (PA−PE)=PE for 0:016PE 6 0:10; n= 20(1)100, any K and the asymptotic methods
indicated under the conditions shown (E refers to the minimum expected quantity)

Family Test Method Condition � minimum � maximum � median |�| median

�2 One-tailed PTA E6 9 −0:978 0.874 −0:066 0.113
E¿ 9 −0:338 0.383 −0:030 0.064

Two-tailed PTA E6 6 −0:956 0.998 0.021 0.105
E¿ 6 −0:392 0.522 −0:004 0.067

Arc sine One-tailed A2 E6 10:5 −0:549 0.234 −0:084 0.091
E¿ 10:5 −0:370 0.337 −0:047 0.068

Two-tailed A2 E6 9 −0:778 1.428 −0:037 0.167
E¿ 9 −0:434 0.362 −0:048 0.077

mid-p One-tailed FM E6 6 −0:246 0.580 0.073 0.085
E¿ 6 −0:306 0.539 0.029 0.060

Two-tailed FMA E6 10:5 −0:291 2.093 0.133 0.139
E¿ 10:5 −0:348 0.507 0.054 0.078

However, it is clear that the reader is interested in more generic rules of performance,
which means having to allow between 1% and 2% failure in some circumstances. For
the ordinary signi9cances
(A) The method PTA may be applied for E¿ 9 (6) in the one(two)-

tailed tests.
(B) The method A2 may be applied for E¿ 10:5 (E¿ 9 and K �= 1) in the one(two)-

tailed tests.
(C) The method FM (FMA) may always be applied in the one(two)-tailed tests,

although for E6 6 (E6 10:5) it tends to give too many conservative results.
For the very low signi9cances
(A′) The method UTA may be applied for E¿ 7:5 (9) in the one(two)-tailed tests.
(B′) The method A2 may be applied for E¿ 7:5 in the one- and two-tailed tests.
(C′) The method FM (FMM) may always be applied in the one- and two-tailed tests,

although for E6 4:5 it tends to give too many conservative results.
An alternative way of evaluating the 3 previous methods (under the afore-mentioned

v.c.) consists in determining the experimental value for the relative error � = (PA −
PE)=PE (note that � = |�|) for all the tables studied here. The minimum, median and
maximum values for � (as well as the median value for |�|) are given in Table 3. It
can be seen that when the v.c.’s are not veri9ed, the tests are not reliable (particularly
the two-tailed tests). For example (and for two-tailed tests), method FMA can give an
approximate p-value of more than three times the real p-value (� maximum = 2:093);
method PTA can give an approximate p-value of either nearly twice (� maximum =
0:998) or almost 4% (� minimum = −0:956) that of the real one.

4. Summary, conclusions and an example

The present article has evaluated some 60 asymptotic methods constituting an approx-
imation to Barnard’s unconditional test (comparison of two independent proportions).
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Included in these are the 4 optimal methods selected by Mart$%n and Silva (1996). The
base criterion for the evaluation is that the asymptotic method should yield a p-value
that is approximately equal to that of the exact method (using the criterion of Cochran).
In this sense, it is said that an asymptotic method does not fail if it yields, for an exact
p-value of 5% (for example), an approximate p-value which is between 4% and 6%.
From the article, it can be deduced that for the ordinary signi9cances and tests of one
(two) tails, the competitive methods are PTA, A2 and FM (PTA, A2 y FMA). The
method A1 (traditional arc sine) should not be applied.

The methods do not have a universal application, but generally will be valid when
E (the minimum expected quantity) is su4ciently large. All of them behave badly
when the samples are balanced. For the ordinary signi9cances: (a) The method PTA,
which is the simplest, can be applied when E¿ 9 (6) in the one(two)-tailed tests,
but this implies the acceptance of failure between 1% and 2%, (b) The method A2
may be applied for E¿ 10:5 (E¿ 9 and K �= 1) in the one(two)-tailed tests; (c) The
method FM (FMA), which is the most complex of all, can always be applied as a
one(two)-tailed test; its failures, which can be excessive for E6 6 (E6 10:5), are
always conservative.

As an example, let the data be x1=n1 = 14=40 vs. x2=n2 = 28=50 with a two-tailed
exact p-value PE = 5:068%. Since E = 18:7, all the previous asymptotic methods are
valid. For the PTA method, PPTA = 4:900% since �2

PTA = {|14 × 22 − 26 × 28| − 1}2

× 89={42 × 48 × 40 × 50} = 3:875. For the A2 method, PA2 = 4:783% since �2
A2 =

(81×101=91){sin−1(14:375=40:75)0:5 − sin−1(28:375=50:75)0:5}2 = 3:916. For the FMA
method, since FMA(x1) = 2FM(x1), it is necessary 9rst to apply expression (6); in
this, x1 = 14 is not larger than E11 = 18:7, for which reason one will have to permute
the xi values for the yi values and compare the samples 26=40 vs. 22=50. In this way,
FM(x1 = 26) = 2:5736%, and thus PFMA = 5:147%. As one can see (and this is quite
usual), the three methods yield a p-value that is very near to the real one, but PTA
and A2 are liberal, while FMA is conservative.
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