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Abstract

Explicit examples of quadrilateral lattices and their integrable reductions of pseudo-circular,
symmetric and pseudo-Egorov types are presented. © 2002 Elsevier Science B.V. Allrights reserved.
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1. Introduction

This paper focuses its attention on the integrable aspects of discrete geometry [2]. Our
main resultis the construction of explicit families of quadrilateral, pseudo-circular, symmet-
ric and pseudo-Egorov lattices by applying particular fundamental transformations [9,12] to
the Cartesian lattice. This particular choice is suggested by previous papers [6,8,13,15,16]
in which the Cauchy propagator [19] was extensively used in the study of integrable lattices
and nets. In fact, our matrix functioR(z, z’) introduced below can be understood as the
Cauchy propagator of a particular Cartesian lattice and our fundamental transformations as
dressing transformations of it. The advantage of ihis, z') compared to that used in, for
example, [6,8] is that the reductions follow the same patron as in the continuous case and
thed reduction theory simplifies (private communication by L. Bogdanov).

As the solutions obtained in this paper are produced by applying fundamental transfor-
mations, one should expect somVedimensional discrete integration in order to find the
transformation potentials. However, this is not the case, and only complex integration is
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used. The situation is even more interesting for some examples of pseudo-circular lattices
given in terms of arbitrary discrete functions (Fourier coefficients of arbitrary measures) in
which no integration is needed at all. Finally, the symmetric pseudo-circular lattices given
here appear when particular limits—in which some singular terms have cancelled—are
taken.

Now, we shortly review some basic aspects of integrable lattices and their fundamental
transformations. The layout of the paper is as follows. Section 2 is devoted to present our
ample families of explicit quadrilateral lattices and in Section 3, we characterize those
among these families that reduce.

1.1. Quadrilateral lattices

Among theN-dimensional lattices : Z"¥ — R there is a distinguished class for which
the elementary quadrilaterals are planar [7,9,18]. The planarity condition can be expressed
by the following linear equation for suitably renormalized tangent vedps) € RV :

Ai¢ = (T;Qp¢;, i,j=1,....,N, i #], (1)
being its compatibility conditions the following discrete Darboux equations [3]:
A Qij = (Tk Qik) Qkj» i, j and k different
The pointsx of the lattice can be found by means of discrete integration of
Aix=(TiH)C;, i=1...,N,
whereH; are solutions of the equations
AiHj = QjT;H;, i,j=1,...,N, i#]. (2
In the above formuladl; is the translation operator in the discrete variahle
T, f(n1,...,ni,...,nN)= f(n1,...,n; +1,...,ny),

and4; = T; — 1is the corresponding partial difference operator. As was explained in [8]
there is an equivalent description in terms of backward geometrical obi&¢ts;, Qjj
which satisfy

4,8 = Qi Ti¢;, AjH; = (T; Qij)Hj.
There exists first potentiajs, i = 1, ..., N [8] such that

- 1 -~ -
¢ =—pTi¢;, Hi = ——Hj, p;T; Qi = piTi Qji-

1

The discrete vectorial fundamental transformation [9,12] is given by
Qf = 0jj — ®2(®, @) '®;, i j=1....N, i#]
H = H; — ®'Q(®, ®*) 12 (®, H), ¢ =¢ — (¢, )2 (®, o) 1o,
i=1,...,N, ¥ =x— (¢, ®)Q2(®, ®*)12(®, H).
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These are data for a new quadrilateral latic@rovided®; € V, whereV being a linear
space, an®@; € V*, with V* the dual ofV, are solutions of (1) and (2), respectively. The
linear operatog2 (¢, §*) : W — V is defined by the compatible system of equations:

The first potentials transform according to [14]
pi = pi(L+ (T;9)2(®, @) )).

1.2. Reduced lattices

Quadrilateral lattices : Z¥ — RY for which each quadrilateral is inscribed in a circle
are called circular or cyclid lattices [1,4,6,10,17]. It can be shown that the constraint

¢ -Ti(€)+¢&-Tj(&) =0, i#]j (4)

for the tangent vectors is equivalent to the requirement that lattice is circular. The first
potentials for the circular lattices satisfy = ||¢||l.2 [8]. In [8], the symmetric and Egorov
lattices were introduced—the Egorov lattice was also introduced by Schief. The symmetric
lattice appears when backward and forward rotation coefficients are the same, which can
be casted in the condition

(T; Qi) (T Qi) (T Qi) = (T; Qij)(T; Qki)(Tx Qjk), i, j and k different

In this case the first potentials satigfyT; Qjj = p; T; Qji. A circular, symmetric and diag-
onal invariant lattice is called Egorov lattice, it was proven that Egorov lattices are charac-
terized by

T =0, i#]. (5)

Finally, in [13] pseudo-circular and pseudo-Egorov lattices in pseudo-Euclidean®pace
p+q = N, have beenintroduced. Here, we have a non-degenerate symmetric bilinear form

- N ~ . 1, i=1...,p,
X -X = ZE,’X,‘X,’ with ¢; .= .
i—1 -1, i=p+1....p+gq,

X1
which can be written aX - X = (X1,..., Xy, | @ | with

Xy
I, 4 :=diage, ..., en).
The pseudo-circular and pseudo-Egorov lattices are defined as in (4) and (5) but replacing
the Euclidean scalar product by the pseudo-Euclidean scalar product just introduced.
When the data defining the fundamental transformation satisfy
D, = (2(C, ")+ T;2(¢, d*)*¢;, i=1...,N,
(@, %) + (P, )" = 202(¢, D) 2(C, D7),
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whereA™ := I, ,A'I, ,, the transformation preserves the pseudo-circular reduction [5,10,
11,13]. Finally, in [14] we have shown that if the transformation data fulfil
@ =pi®, QP %) =22, 09,
the symmetric reduction is preserved [13]. Moreover, if
@ = €ipily T;® = (2(C, ®%) + T;2(C, )¢,
(P, %) = (P, D*)" = Q2(C, *)T2(C, ®*),
then the pseudo-Egorov reduction is also preserved.

2. Quadrilateral lattices

In this section, we give exact and explicit examples of ample families of quadrilateral
lattices. For that aim we dress the Cartesian background with specific fundamental trans-
formation. Finally, we describe the new quadrilateral lattice obtained.

2.1. Cartesian lattice

Our departing point is a Cartesian lattice characterized by the following rotation coeffi-
cients, Lamé coefficients, re-normalized tangent vectors and points of the lattice

L A . n,-—l
Qij(n):=0, i,j=1...,N, i#j, H;(n) = _pi=a <2) ’
Pi pi

l . n; N . .
xCi(n) = —— <ﬂ> e,, i=1...,N, x(n) ::sz qlniei,
qi \ pi = pidi

where{p;, q,-}f.\’=l C Care complex numbers withy # ¢;;n = va:l n;e;,n; €7, {e,-}{V:l
is the canonical basis iRY .

2.2. Transformation data and transformation potentials

The vectorial fundamental transformation [9,12] that we are going to perform is generated
by the following transformation data:

®;1
=\ ' |, O} 1= (@], ..., B, (6)
‘I’im
where
.
z—pi\ ¢ 1
i (n) :=/ fk(Z)( p’) d’ze;,
C z2—qi) z—gqi
pi—ai (2—ai\"
() = / o7 <—> (@) d%,
c z—pi \z—pi

and{ fx(2), gk ()}, is a set ofn N x N matrix distributions.
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Observe that as
A,‘<I>j=0, AﬁI)j:O, j#i,

(1) and (2) are fulfilled an®;, ®},i =1, ..., N, are suitable transformation data for the
Cartesian background. Now, we define the diagonal matrix

Nopo o
D(z,Z',n) = 1 / [(Z 9i)(z P:)] P
iz i=1

(@ — pi)z—qi)
whereP;e; = §jje;, which has the following important property:
. I . . ni
Pi —qi |:(Z qi)(z Pz):| P @)
(@ = pi)z—qi) L@ — pi)z—q:)

In what follows this function will play a central role and it could be understood as the
Cauchy propagator of the Cartesian background. With this matrix at hand we introduce

AiD(z,7) =

2(®, ®*) == Cy +/ ka(z)D(z,z/)gz(z’) d?z d%7, (8)
N

(P, H) = /C f@DGE 0 d2) e, 9
i=1

(€, %) = /C D(0, 9)gi(2) &z, (10)

whereCy is an arbitraryN x N matrix. Now, we shall prove that these matrix functions
are transformation potentials.

Proposition 1. The transformation potentials just introduced fulfil the following relations

Ai$2(®, %) = ik ® T; D}, (11)
A2 (®, H) = ®T; H;, (12)
Ai24(€ &) = €, & T, (13)

Proof. For (11), we just apply; to (8) to get

Ai (D, %) = / fi(@)(AiD(z, 7', ) g () d*z &%
CxC

=/ (e — P [(Z’—qi)(z—pi)
cxc (@=pi)z—q) [ &=pi)(z—qi)

n;
7 — D; i 1 D — (0
:/fk(Z)[ P:} e,-d2z®/elp/' i
C Z—dqi Z—dqi cC 2 —pi

/

n;
7 —a:
X L, Zl} (@) d% = oy @ T; @

— Pi

n;
} P,gi(2) d?z o2
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The relation (12) follows by applying the difference operator to the definition (9), in doing
so we get

N
Ai2(®, H) = /(C fel@)(A;iD(z. 0) ) e;

j=1

:/fk(Z) Pi — i [qi(z_pi)}idzze,-
C —-pi(z—qi) Lpi(z—qi)

-pi]" 1 i—qi [qi]"
= (/ Jie(@) [Z b } e; dzz) (—u [q—] ) = ®T; H;.
C i—qi i—qi Pi Pi

Finally, a similar reasoning gives (13)

A2 (€, @) = f (A:D(0, 7)) gk (z) d?z
C

:/ Pi —qi [(z—q,')p,-] lP,-gk(z)dzz
¢ —(@—=pi)qi |L(z— piqgi

1[p]" i—qi [2—qi]"
LT e ([T woe)
pi L4i C <=4 LZ—pi

We now introduce the notation

211(®, @) -0 210(P, DY)
2, ®) = : : ,
21 (®, %) -+ L@, D)
£21(®, H)
(P, H) = : , (¢, &%) = (£21(C, DY), ..., 2,(C, &),
2,(®, H)

so that we can rewrite Proposition 1 as
Ai2(®, ") = QT; P}, Ai2(®,H) = ®;T; H;,
AiR(C, %) =¢; QT; @,

and conclude, following [9,12], thalt, ®* generate a vectorial fundamental transformation
on the Cartesian background, with transformation potentials as described. Thus, a new
guadrilateral lattice is given by

Qf = —952(®, &) ', H = H; — ®Q(®, ") 12(®, H),
¢ =¢ — 2(C, NP, &) 19, ¥ =x—2(C, )P, ®*)12(®, H).
(14)
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Let us remark that the advantage of this particular fundamental transformations is that
the transformation potentials are given explicitly by (8)-(10); i.e., they are obtained by
an integration in the complex plane instead of by discrete integration of Egs. (11)-
(13). A very simple example appears when= 1 and we take two diagonal spectral
distributions

N N
f@Q=>_F@P. @)=Y GiQP~,
i=1 i=1
where!{F;, G,-}f\’:l is a set of 2V scalar distributions of. The transformation potentials
are

Q(®, &%) = C +diagcy, ..., cn),

: ::/ Fi2) 1 [(Z —qz‘)(Z—Pi)] iGi(Z/) 2 62,
CxC z2—7 (@ = pi)z—qi)

al
e@o.m=| |, a :=/ E(z)}[M} d?z,
: C z Lpi(z—qi)
an
o . 1[Gz—q)pi]" 2
(¢, @) =diagbr, ..., by),  bii=— | = | 20PN Gy d2s.
czL(z— piqi

Thus, if A = 2(®, ®*)~1, we can write for the points of the quadrilateral lattice

Pi — qi

iqi

N
ni —bi(ni) Y Ajj(mya;(nj).

j=1

xi(n) =

3. Reduced lattices

This section is devoted to explore which among the families of quadrilateral lattices
presented above are of reduced type. We begin by introducing the particular Cartesian lattice
to which proper fundamental transformations will be applied. Then, we present families of
pseudo-circular lattices and of symmetric lattices. Finally, the quadrilateral lattices which
are of both symmetric and pseudo-circular types are found and among them we isolate those
of pseudo-Egorov type.

Cartesian lattice For the reductions we need to consider the previous Cartesian back-
ground but withg; = —p;,i = 1,..., N. If this is the case, we have

Qijj(n) :=0, Hi(n) = —2(—1)"~1

1 , Noq
Ci(n) = —(=D"e, x(n)=-2)" Znie;.
pi iy Pi
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Solutions of the pseudo-circular latticé/e shall consider those quadrilateral lattices as
given in (14) but with spectral datg (z), gk ()}, satisfying

l m
8k(z) = —5% Z 1T (=2) By, (15)
=1

whereBy areN x N matrices.
The notation

1 7 (< (Z/—Pi)(Z—Pi)>ni N 2o (2
@, P%) = = —_—— - | T () dozdo7,
oa(®. 9 =5 | K@ (;((Z/—i-pi)(z-i-pi) P ) f7 () d%

1 N b — 2\
o (€, @) =3 /C fumZ(%) &’z P; (16)
i=1 !

allows us to write

m
Qu(®, ®*) = Cu + Z wyk (P, <I>*)B1§,l,
k'=1

2u(C, ) = (Z By (€, <1>*)) :

k=1
From (16), we deduce that
wkl(®, D%) + wf (B, B*) = 2w (€, ¥ (€, B*), (17)

and

(Ti+1)<l’i—z> _ D (Pi—Z>
pi +z Z+pi \pi+z
implies
(T; + Doy (€, @%)°¢; = @;. (18)

From (17) and (18), we can conclude that when

N
Z(Bkwck/l + C]z,kB”T(/) =0
k'=1

is verified, the following equations hold:

BQR(®, ®*) + (P, ®*)' B = 22(¢, ) 2(C, %),
(Ti + DR, %)'¢; = BY;,
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where we use the notatiah := (Byj). Moreover, from the equation

(Ti = DR(C, )¢ =1, (@)1 1,4 (T;®))",

€ .
Bo;, — pq(T<I> )
Pl

(T; 2(¢, ) ¢; = 1 <B<I> —51pg (T <1>*))
2 p?

it follows that

Q(¢, d*)7¢; =

NI =

Following [11,13] the associated fundamental transformation with such data gives the
following pseudo-circular lattice:

¥ =x— 0" (¢, ®")BT(C + w(®, ®*)B")12(®, H).
The first potentialg; of new lattice [8] are

/ €; % £\ —
ol = 1¢1? = ?<1+<T,-<I>,»)9<<I>,<I> ) 1@)). (19)

Let us consider a simple example with= 1 and a diagonal spectral distribution
N
f@ =) FQRP,

Where{F,-}f\’:l is a set ofN scalar distributions off. Then, if we denote

ai :=/ F(z)—[ Z} b :=/ [u} " Fi(2) .
pi t+z2 CcLpi+z

the transformation potentials are

1.
Q(®, ®*) =C + Zdlag(bz, ...,b3)BT,
ai
. * 1 H T
@ /=] : |, Q(F, )=§d|ag(b1,...,bN)B ,
an

and a new pseudo-circular lattice is given by

ai(ni)
2 1 . 2 o) :
xi(n) = —;ni—ébi(”i)B (C+ diagh?(n1), ..., b (ny))B ) : ,
ay(ny)
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whenever
BC+ (BO® =0.

Nice examples of this construction appear as follows.)Let iR be the imaginary axis
in the complex plane and let us take an spectral measure concentrated over

F.
# =F(s, (@), i=L...,N, yeR
Then, observing that
p— .
i) _ exp(—Zl arctan(l>> ,
pi +1y Di
we get

a;(n;) = / Fi(y) exp<—2iarctan(1> n,-) dy,
R Di

b;i(n;) =/ iyFi (y) exp(—Ziarctan<l> n,-) dy.
R Di

Performing the change of variables

¢ = arctan(l) ,
Pi

one gets
/2 - Di
aj(ni) = 77{/27:1‘(1?1' tang) exp(—2in;¢) c05% do,
/2 .
. . — 1 . . . —_ i . pl
i) = [ P AN F(prtang) exii—2inid) o .
In terms of
- Fi(pitang)
Fi@) = pi— e
we have
w/2
ai(n;) = Fi($) exp(—2in;¢) cos’¢ de
—/2
1 /2
=3 Fi(¢) exp(—2in;¢)(1+ cos 2p) do,
—/2
/2 5
bi(ni)Z/ ipi Fi (¢) €Xp(—2in; $) Sing cose do
—/2

/2 -
% / ipi Fi(¢) exp(—2in;¢) sin 2p de.
—/2
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Finally, if we define the Fourier coefficients 6% as

/2
vi(ny) = Fi(¢) exp(—i2n;¢)dp, n € Z,
/2

-7

we have
ai(ni) = 2@+ T+ Tyi(ni),  biln) = pi 3 (T4 T)yi(n).

Thus, all the elements of the new pseudo-circular lattice are built up in terms of the functions
vi.i = 1,..., N. For example, iflas}ses C [—7/2, w/2] and Fi(¢p) = (1/2) )" c5 Ais
(8(¢p — ais) + 8(¢ + wis)), we get

vini) =Y AisCOS Aatis,  n; € Z.

seS

Observe that, a priorijs € [—7/2, 7/2], however, if we add tajs any integer multiple of

7 the functiony; does not change. Then, the coefficients are not constrained to belong to
[—n/2, 7 /2] and we can writeis € R. Therefore, the functions can be taken as any cosine
series, for example the one given by the Jacobi elliptic cosine

21— ¢$t2 2s +Dr
u
JmK = 14 g&+1 2K

with argumenin, real and imaginary quarter periofsand K’

cn(u|m) =

/2 /2
0 0

and nome; = exp(—7 K'/K).
Hence, an elliptic example with

vi(n;) = A;en(ni|lm;), A; eR

ai(n;) = 2 A;2cn(n;Im;) + cn(n; — 1m;) + cn(n; + 1ym)),
bi(n;) = pi 5 Ai(Cn(n; — 1lm;) — cn(n; + 1jm;)).

Itis of interest to study the relation of these solutions with the quasi-periodic circular lattices
found by P. Grinevich (private communication of A. Doliwa).
Finally, we consider two particular examples of circular latticé&3mnd circular discrete

0 1
surfaces ifR3. In the first place, we takg; = pp = -2,C = ( 1 0) and

vi(n) i=2en({pnl3), i=1.2,

and the 2D circular lattice is shown in Fig. 1.
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e —
NA LN
9
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NI N
0 10
Fig. 1
0 1 1
1 0 1
-1 -1 0

We now plotacircular discrete surface, with= p> = p3 = —2.C =

and
vi(n) = foenznl3), =123

The corresponding discrete surfacefigr= 0 is shown in Fig. 2

3.1. Solutions of the symmetric lattice
We next study quadrilateral lattices as given by (14) butwith spectraj dlata, gi (2)}7- 1

satisfying
(20)

1 m
(@) = —3 1; fF(—2)Bg,

whereBy areN x N matrices.
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Fig. 2.

We introduce the notation

1 1 (@ =p)—p)\"
. T PN ) TN A2, 42,7
oa(®, &) = chxcc W& ( —~ ((Z/+Pi)(Z+Pi)> Pl) fi@dede

1

1 1 (pi—z\"
i (€, ®*) = 5 /é fk(Z)E < : ) d2Z P;,
i=1

pit+z

so that

m
Qu(®, &) = Cy + Z wkk (@, ®*)BJ,,

k=1
m T
(€, &%) = ( > Bixo (€, <1>*)> :
k=1

It is not difficult to realize that

o (P, D) = wi (P, B*). (21)
If

N
> (B Cri — CiyBi) =0,
k'=1

one concludes that

I, BR2(®, &%) = 2'(®, ®*)B'T,,.  T,0f = !By,
Di

which, according to [13], ensures that the associated fundamental transformation preserves
the symmetric character of the lattice.
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A simple example appears for = 1 and
N
f =Y F@P,
i=1

Where{F,-}l?\’:1 is a set ofN scalar distributions of€. With the notation

1 pi—z i 2
ai = | Fi(2)- d°z,
C ZLpitz

b :=/ F@)F@) ((Z’—pi)(z—pi)> e
cxc 2+ N\ +p)z+pi)

the transformation potentials are

1,
Q(®. ®%) = C — diagby. ... by) B,
ay
. * 1 H T
Q@M= | = 2@ee)=-Tdaga.. .. B
ay

Thus, a new symmetric lattice is given by

ai(n1)
2 1 1. -
xi(n) = __”li‘i‘éai (ni)Bt(C_Emaqbl(nl), ces bN(”N))Br)
Pi
ay(ny)
whenever
BC = (BO)".

3.2. Pseudo-Egorov lattices

To construct symmetric pseudo-circular latticesiset 2M, and

i@ =08z —wm), frem@ =8@+w), k=1....M, C=Inwm,

whereu are non-zero complex numbers different frgmand such that, + u; # O.
For the construction of a pseudo-circular lattice, we take the mAgdxn the form

0 —Jpc
Bpe = )
<ch 0 )
BT B?

. B B .
Jpc = —2d|ag<—1, e, —M> , ch = —2d|ag<—1, A —M) ,
Mn1 M Mm1 Mm
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whereB; are someV x N matrices. Instead, for the construction of a symmetric lattice we
take the matrixBs as

0 J
Bs = (JT os) Js:=—2diagBi. ..., By), JI:=—2diagBi, ..., BL).
S

Itis easily checked that these two lattices are the same due to the fact that the distributions
gk coincide in both prescriptions, namely

gk(z) = 8(z — ) Br. gk+m =8+ By, k=1....M

Thus, we have constructed a pseudo-circular symmetric lattice. However, this construction
has a pathology which is only cured if some further requirements are imposed over the
matricesBy. The problem is the appearance of singularitie®if®, ®*) as we have

Q2 1(®, %) = 8 + D (uk, 1) Br, Qi 1+m(®, %) = Dk, —pu) By,
Q21 m1 (P, %) = D(—pr, u)Br, ks mivm (@, %) = 8+D(—pk, —pu) By,

wherek,l =1,..., M. The matrices2 «(®, ®*) and 2k s f+m(®, ®*), k=1,.... M

are singular. A method to avoid this drawback is to use the matBgés such a way that

the singularity is killed. Observe that these singularities appear in the expressions for the
new rotation and Lamé coefficients, tangent vectors and points of the lattice in terms of
B 24 (@, @*)~1 and BY 2ym1k+m (@, @)1, Now, we can proceed as in [16]: tale
nilpotent matrices; i.eB,f = 0. To check that the suggested mechanism works properly, we
first consider a quadrilateral lattice generated by the salmbut with theg'’s as follows:

gk(@) = 8(z — vr) Bx, gk+m =8z +v)B, k=1....M

and with thev;, k = 1, ..., M, being arbitrary complex numbers. Only whgn— u;, we
can ensure that the resulting lattice is symmetric and pseudo-circular; i.e., we shall consider
this limit carefully. In particular, let us deal with

B @, @) = lim Bi(Iv + D (e, v) BO ™

The behaviour

1
D(pk, vie) = —— " +d(ui) + O(uk — vi)  as v — g,
where
d —Pl7
@)= Z G-+ p)

allows us to write

-1
- By
Bi(IN+D (i, vi) Bi) ™ ~ By (Mk_Vk+(1N+d(ﬂk)Bk)+O(,U«k_Vk)Bk> :

Vi —> Uk.
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When we assume that; + d(uy) By is invertible the nilpotency oB; ensures that/y +
d(ux)By) 1By = By and thereforeB (I + d (i) Bi) " 1Br = 0. Thus,

—-1 By
By (Iy + d(jx) Br)
Mk — Vg

= Bi + BrO(uik — vi) By,

+ Uy +d () Br) + Ok — Vk)Bk>

which implies
Bi2uk(®, ®%) = By (Iy +d (i) Br) L.

Then, we get a symmetric pseudo-circular lattice if we substitute the ill-defined transfor-
mation potentials2y «(®, ®*) and 24y k+m (P, ®*) by

2k (@, ®*) — Iy +d (k) B, Qi kv (@, @) — Iy + d(—jux) By,
respectively.
As it was proved in [8], a symmetric pseudo-circular lattice is of Egorov type iff the
potentials of the symmetric lattice coincide with the potentials of the pseudo-circular lattice,
which in our case happens only when

pi=p, i=1...,N.

To illustrate what type of solutions we get, let us study the case where

This form of the matrixB ensures thaBDB = 0 for any diagonal matrix. In particular,
B(Iy +d(w)B)~t = B.

We now introduce the functions

(i)
N . n p1+z
E@:i=). (u) P E(u):= : ,

i=1 pitz (PN_Z)nN
PN +2

and observe that

1
E()=EQ@™, D)= ——ZEQE-D).
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Hence, our effective transformation potentials are
1
Iy —E(u)?B"
yos

Q(®, &) = 1 , 2
——E(=w?*B Iy
2u

1 1( E
$2(¢, <I>*)=;(—E(—M)B,E(M)B’), (@, H)ZE( " )

—E(—uw)

and we have the expression

.Q(<I>,<I>*)_l=<a ﬁ)
y 6

1 —l
o= (m + —ZE(M)ZBTE(—M)ZB) :
4u

with

1

1 -1
pi=—g <1N+—E<u> BTE(—p) B) E(u)?B",

1 —1
v =g (It e BE(M)ZB) E(-1)*B,

1
2u

-1
( +—E< 1)?BE(1)?B ) :

Therefore, a symmetric pseudo-circular lattice is
X==2 | -[-E(- M)B‘X‘FE(M)BTV] E(M)

1
BB + EGOBT)- 5 E(-0).

A more closed form of this solution is found if we introduce the notation

- 1 (pi+ i\ s o=\
= ZmijEij, mij Z=—2<p. > Z ( ) € j€kbikbik,

NP — /) S APt

r r
M =" i Ej, D i (8irj +mirj) = 8,

i,j=1 i'=1

i.j=1

211
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so that
,
Ba = E@W’ME(-p)?B.  Bf = —2uE(w)? (Z Eii — M) :
T 1 T 4 2 T T
By:z—BME(—,u)B, B'S = B°M,
"

and the final expression for the symmetric pseudo-circular lattice becomes
/ . v 2 1 T 15 2 1
X==-21 : |- |- EWME(—n)°B + ZE(M)B ME(—w)*B FE(M)

d - 1
+ |:2ME(M) (Z Eii — M) + E(M)B’M} ZECw.

i=1
A further simplification arises by assuming= 1 so that

N N
B = ZbkElks B* = GlzbkEkEkla M = mEy,
k=2

pe =\ (pr— " -
m=—=e1 Y b? < ) < ) , M =mE;,
42 Z AV P11

1
1H[(1/ 42 er Ypp kb2 ((pr—i) / (prHi)) 2 ((p1 — )/ (p1 + ) ~2m]

m=

The following formulae characterize afrdimensional symmetric pseudo-circular lattice
2 _ ni _ —ni
m=-2"41%a- m)+_mz (Pk M) (Pl u) ’
)2 2 Pk + p1+
1 _ k _ —ny
Xp = —Zn—k + —2617;1€kbk <Pk M) (171 M)
|23 Dk + 1 pL+

1o~ (p—w\" (pr—p\™
(raxn () ) )
2u pr+u pL+

=2

wherek =2, ..., N. Only whenp;, = p,i =1, ..., N this symmetric pseudo-circular
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4
10 |
5 2
|
5 10 15 6 8
Fig. 3.

lattice is a pseudo-Egorov lattice with

N ng—n
n 2 . 1. — k=
x1=—2—1+—(1—m)+—2m E by, (p ,u) ,
p 28 ue = p+u

1 . ng—ni 1 N _ nj—ny
2
") p+u 2 \pt+n

1
L+ [(1/4P)er Yo ekbP((p — 1)/ (p + ) 2m—r0]’

Finally, we shall represent explicit examples in two and three dimensions. We take
—2,u=1/2,andb; = 1.

The picture on the left of Fig. 3 is an overview of the lattice, we see that on the diagonal
there is a mess of lines. This phenomena is connected with the Egorov nets presented in
[16], where the net was not regular on the diagonal and, in fact, one has an Egorov atlas
with two charts. The picture on the right of Fig. 3 is a detailed view of the lattice in the
neighbourhood of the diagonal. We see that together with convex quadrilaterals one has
also skew quadrilaterals, those quadrilaterals cross with the previous convex quadrilaterals.
This is the discrete version of the mentioned non-regularity.

m=
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13 12 4

Fig. 5.

In R3, however, the mess in the discrete surfaces disappears as it is lifted up (Fig. 4).
Next, we show three plots (Figs. 4 and 5) of a typical view of our discrete Egorov surfaces
(n3 = 0), observe that the two last plots (Fig. 5), right and left view of the surface, have
been scaled vertically in order to better show the behaviour of the discrete Egorov surface.
Observe that almost all the quadrilaterals are convex, however, there are two rows of skew
quadrilaterals, that in the continuous limit form the lines of non-regularity of the surface.
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