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Abstract

Explicit examples of quadrilateral lattices and their integrable reductions of pseudo-circular,
symmetric and pseudo-Egorov types are presented. © 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

This paper focuses its attention on the integrable aspects of discrete geometry [2]. Our
main result is the construction of explicit families of quadrilateral, pseudo-circular, symmet-
ric and pseudo-Egorov lattices by applying particular fundamental transformations [9,12] to
the Cartesian lattice. This particular choice is suggested by previous papers [6,8,13,15,16]
in which the Cauchy propagator [19] was extensively used in the study of integrable lattices
and nets. In fact, our matrix functionD(z, z′) introduced below can be understood as the
Cauchy propagator of a particular Cartesian lattice and our fundamental transformations as
dressing transformations of it. The advantage of thisD(z, z′) compared to that used in, for
example, [6,8] is that the reductions follow the same patron as in the continuous case and
the ∂̄ reduction theory simplifies (private communication by L. Bogdanov).

As the solutions obtained in this paper are produced by applying fundamental transfor-
mations, one should expect someN -dimensional discrete integration in order to find the
transformation potentials. However, this is not the case, and only complex integration is
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used. The situation is even more interesting for some examples of pseudo-circular lattices
given in terms of arbitrary discrete functions (Fourier coefficients of arbitrary measures) in
which no integration is needed at all. Finally, the symmetric pseudo-circular lattices given
here appear when particular limits—in which some singular terms have cancelled—are
taken.

Now, we shortly review some basic aspects of integrable lattices and their fundamental
transformations. The layout of the paper is as follows. Section 2 is devoted to present our
ample families of explicit quadrilateral lattices and in Section 3, we characterize those
among these families that reduce.

1.1. Quadrilateral lattices

Among theN -dimensional latticesx : ZN → R
N there is a distinguished class for which

the elementary quadrilaterals are planar [7,9,18]. The planarity condition can be expressed
by the following linear equation for suitably renormalized tangent vectorsCi (n) ∈ RN :

∆jCi = (TjQij )Cj , i, j = 1, . . . , N, i �= j, (1)

being its compatibility conditions the following discrete Darboux equations [3]:

∆kQij = (TkQik)Qkj, i, j and k different.

The pointsx of the lattice can be found by means of discrete integration of

∆ix = (TiHi)Ci , i = 1, . . . , N,

whereHi are solutions of the equations

∆iHj = QijTiHi, i, j = 1, . . . , N, i �= j. (2)

In the above formulas,Ti is the translation operator in the discrete variableni :

Tif (n1, . . . , ni, . . . , nN) = f (n1, . . . , ni + 1, . . . , nN),

and∆i = Ti − 1 is the corresponding partial difference operator. As was explained in [8]
there is an equivalent description in terms of backward geometrical objects,C̃i , H̃i , Q̃ij

which satisfy

∆i C̃j = QijTi C̃i , ∆j H̃i = (Tj Q̃ij )H̃j .

There exists first potentialsρi, i = 1, . . . , N [8] such that

Ci = −ρiTi C̃i , Hi = − 1

ρi
H̃i, ρjTj Q̃ij = ρiTiQji .

The discrete vectorial fundamental transformation [9,12] is given by

Q′
ij = Qij − �∗

jΩ(�,�
∗)−1�i , i, j = 1, . . . , N, i �= j,

H ′
i = Hi − �∗

i Ω(�,�
∗)−1Ω(�, H), C′

i = Ci −Ω(C,�∗)Ω(�,�∗)−1�i ,

i = 1, . . . , N, x′ = x −Ω(C,�∗)Ω(�,�∗)−1Ω(�, H).
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These are data for a new quadrilateral latticex′ provided�i ∈ V , whereV being a linear
space, and�∗

i ∈ V ∗, with V ∗ the dual ofV , are solutions of (1) and (2), respectively. The
linear operatorΩ(ζ, ξ∗) : W → V is defined by the compatible system of equations:

∆iΩ(ζ, ξ
∗) = ζi ⊗ (Tiξ∗

i ), i = 1, . . . , N. (3)

The first potentials transform according to [14]

ρ′
i = ρi(1 + (Ti�∗

i )Ω(�,�
∗)−1�i ).

1.2. Reduced lattices

Quadrilateral latticesx : ZN → R
N for which each quadrilateral is inscribed in a circle

are called circular or cyclid lattices [1,4,6,10,17]. It can be shown that the constraint

Ci · Ti(Cj )+ Cj · Tj (Ci ) = 0, i �= j (4)

for the tangent vectors is equivalent to the requirement that lattice is circular. The first
potentials for the circular lattices satisfyρi = ‖C‖2

i [8]. In [8], the symmetric and Egorov
lattices were introduced—the Egorov lattice was also introduced by Schief. The symmetric
lattice appears when backward and forward rotation coefficients are the same, which can
be casted in the condition

(TiQji )(TjQkj)(TkQik) = (TjQij )(TiQki)(TkQjk), i, j and k different.

In this case the first potentials satisfyρjTjQij = ρiTiQji . A circular, symmetric and diag-
onal invariant lattice is called Egorov lattice, it was proven that Egorov lattices are charac-
terized by

Ci · Ti(Cj ) = 0, i �= j. (5)

Finally, in [13] pseudo-circular and pseudo-Egorov lattices in pseudo-Euclidean spaceRp,q ,
p+q = N , have been introduced. Here, we have a non-degenerate symmetric bilinear form

X · X̃ :=
N∑
i=1

εiXiX̃i with εi :=
{

1, i = 1, . . . , p,

−1, i = p + 1, . . . , p + q,

which can be written asX · X̃ = (X1, . . . , XN)Ip,q



X̃1

...

X̃N


 with

Ip,q := diag(ε1, . . . , εN).

The pseudo-circular and pseudo-Egorov lattices are defined as in (4) and (5) but replacing
the Euclidean scalar product by the pseudo-Euclidean scalar product just introduced.

When the data defining the fundamental transformation satisfy

�i = (Ω(C,�∗)+ TiΩ(C,�∗))τCi , i = 1, . . . , N,

Ω(�,�∗)+Ω(�,�∗)τ = 2Ω(C,�∗)τΩ(C,�∗),
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whereAτ := Ip,qAtIp,q , the transformation preserves the pseudo-circular reduction [5,10,
11,13]. Finally, in [14] we have shown that if the transformation data fulfil

�i = ρiTi�∗t
i , Ω(�,�∗) = Ω(�,�∗)t,

the symmetric reduction is preserved [13]. Moreover, if

�i = εiρiIp,qTi�∗t
i = (Ω(C,�∗)+ TiΩ(C,�∗))τCi ,

Ω(�,�∗) = Ω(�,�∗)τ = Ω(C,�∗)τΩ(C,�∗),
then the pseudo-Egorov reduction is also preserved.

2. Quadrilateral lattices

In this section, we give exact and explicit examples of ample families of quadrilateral
lattices. For that aim we dress the Cartesian background with specific fundamental trans-
formation. Finally, we describe the new quadrilateral lattice obtained.

2.1. Cartesian lattice

Our departing point is a Cartesian lattice characterized by the following rotation coeffi-
cients, Lamé coefficients, re-normalized tangent vectors and points of the lattice

Qij (n) := 0, i, j = 1, . . . , N, i �= j, Hi(n) := −pi − qi
pi

(
qi

pi

)ni−1

,

xCi (n) := − 1

qi

(
qi

pi

)ni
ei , i = 1, . . . , N, x(n) :=

N∑
i=1

pi − qi
piqi

niei ,

where{pi, qi}Ni=1 ⊂ C are complex numbers withpi �= qi ; n = ∑N
i=1 niei , ni ∈ Z; {ei}Ni=1

is the canonical basis inRN .

2.2. Transformation data and transformation potentials

The vectorial fundamental transformation [9,12] that we are going to perform is generated
by the following transformation data:

�i :=




�i1

...

�im


 , �∗

i := (�∗
i1, . . . ,�

∗
im), (6)

where

�ik(n) :=
∫
C

fk(z)

(
z− pi
z− qi

)ni 1

z− qi d2z ei ,

�∗
ik(n) :=

∫
C

ei
pi − qi
z− pi

(
z− qi
z− pi

)ni−1

gk(z)d
2z,

and{fk(z), gk(z)}mk=1 is a set ofmN ×N matrix distributions.
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Observe that as

∆i�j = 0, ∆i�
∗
j = 0, j �= i,

(1) and (2) are fulfilled and�i , �∗
i , i = 1, . . . , N , are suitable transformation data for the

Cartesian background. Now, we define the diagonal matrix

D(z, z′,n) := 1

z− z′
N∑
i=1

[
(z′ − qi)(z− pi)
(z′ − pi)(z− qi)

]ni
Pi,

wherePiej = δijei , which has the following important property:

∆iD(z, z
′) = pi − qi

(z′ − pi)(z− qi)
[
(z′ − qi)(z− pi)
(z′ − pi)(z− qi)

]ni
Pi . (7)

In what follows this function will play a central role and it could be understood as the
Cauchy propagator of the Cartesian background. With this matrix at hand we introduce

Ωkl(�,�
∗) := Ckl +

∫
C×C

fk(z)D(z, z
′)gl(z′)d2z d2z′, (8)

Ωk(�, H) :=
∫
C

fk(z)D(z,0)d
2z

N∑
i=1

ei , (9)

Ωk(C,�
∗) :=

∫
C

D(0, z)gk(z)d
2z, (10)

whereCkl is an arbitraryN × N matrix. Now, we shall prove that these matrix functions
are transformation potentials.

Proposition 1. The transformation potentials just introduced fulfil the following relations:

∆iΩkl(�,�
∗) = �ik ⊗ Ti�∗

il , (11)

∆iΩk(�, H) = �ikTiHi, (12)

∆iΩk(C,�
∗) = Ci ⊗ Ti�∗

ik. (13)

Proof. For (11), we just apply∆i to (8) to get

∆iΩkl(�,�
∗)=

∫
C×C

fk(z)(∆iD(z, z
′,n))gl(z′)d2z d2z′

=
∫
C×C

fk(z)
pi−qi

(z′−pi)(z−qi)
[
(z′−qi)(z−pi)
(z′−pi)(z−qi)

]ni
Pigl(z

′)d2z d2z′

=
∫
C

fk(z)

[
z− pi
z− qi

]ni 1

z− qi ei d2z⊗
∫
C

ei
pi − qi
z′ − pi

×
[
z′ − qi
z′ − pi

]ni
gl(z

′)d2z′ = �ik ⊗ Ti�∗
il .
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The relation (12) follows by applying the difference operator to the definition (9), in doing
so we get

∆iΩk(�, H)=
∫
C

fk(z)(∆iD(z,0))d
2z

N∑
j=1

ej

=
∫
C

fk(z)
pi − qi

−pi(z− qi)
[
qi(z− pi)
pi(z− qi)

]ni
d2z ei

=
(∫
C

fk(z)

[
z−pi
z−qi

]ni 1

z−qi ei d2z

)(
−pi−qi

pi

[
qi

pi

]ni)
= �ikTiHi.

Finally, a similar reasoning gives (13)

∆iΩk(C,�
∗)=

∫
C

(∆iD(0, z))gk(z)d
2z

=
∫
C

pi − qi
−(z− pi)qi

[
(z− qi)pi
(z− pi)qi

]ni
Pigk(z)d

2z

=
(

− 1

pi

[
pi

qi

]ni
ei

)
⊗
(∫
C

ei
pi − qi
z− qi

[
z− qi
z− pi

]ni
gk(z)d

2z

)

= Ci ⊗ Ti�∗
ik. �

We now introduce the notation

Ω(�,�∗) :=



Ω11(�,�

∗) · · · Ω1m(�,�
∗)

...
...

Ωm1(�,�
∗) · · · Ωmm(�,�

∗)


 ,

Ω(�, H) :=



Ω1(�, H)

...

Ωm(�, H)


 , Ω(C,�∗) := (Ω1(C,�

∗), . . . ,Ωm(C,�∗)),

so that we can rewrite Proposition 1 as

∆iΩ(�,�
∗) = �i ⊗ Ti�∗

i , ∆iΩ(�, H) = �iTiHi,

∆iΩ(C,�
∗) = Ci ⊗ Ti�∗

i ,

and conclude, following [9,12], that�,�∗ generate a vectorial fundamental transformation
on the Cartesian background, with transformation potentials as described. Thus, a new
quadrilateral lattice is given by

Q′
ij = −�∗

jΩ(�,�
∗)−1�i , H ′

i = Hi − �∗
i Ω(�,�

∗)−1Ω(�, H),

C′
i = Ci −Ω(C,�∗)Ω(�,�∗)−1�i , x′ = x −Ω(C,�∗)Ω(�,�∗)−1Ω(�, H).

(14)
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Let us remark that the advantage of this particular fundamental transformations is that
the transformation potentials are given explicitly by (8)–(10); i.e., they are obtained by
an integration in the complex plane instead of by discrete integration of Eqs. (11)–
(13). A very simple example appears whenm = 1 and we take two diagonal spectral
distributions

f (z) =
N∑
i=1

Fi(z)Pi, g(z) =
N∑
i=1

Gi(z)Pi,

where{Fi,Gi}Ni=1 is a set of 2N scalar distributions onC. The transformation potentials
are

Ω(�,�∗) = C + diag(c1, . . . , cN),

ci :=
∫
C×C

Fi(z)
1

z− z′
[
(z′ − qi)(z− pi)
(z′ − pi)(z− qi)

]ni
Gi(z

′)d2z d2z′,

Ω(�, H) =



a1

...

aN


 , ai :=

∫
C

Fi(z)
1

z

[
qi(z− pi)
pi(z− qi)

]ni
d2z,

Ω(C,�∗) = diag(b1, . . . , bN), bi := −
∫
C

1

z

[
(z− qi)pi
(z− pi)qi

]ni
Gi(z)d

2z.

Thus, ifΛ = Ω(�,�∗)−1, we can write for the points of the quadrilateral lattice

xi(n) = pi − qi
piqi

ni − bi(ni)
N∑
j=1

Λij (n)aj (nj ).

3. Reduced lattices

This section is devoted to explore which among the families of quadrilateral lattices
presented above are of reduced type. We begin by introducing the particular Cartesian lattice
to which proper fundamental transformations will be applied. Then, we present families of
pseudo-circular lattices and of symmetric lattices. Finally, the quadrilateral lattices which
are of both symmetric and pseudo-circular types are found and among them we isolate those
of pseudo-Egorov type.

Cartesian lattice. For the reductions we need to consider the previous Cartesian back-
ground but withqi = −pi, i = 1, . . . , N . If this is the case, we have

Qij (n) := 0, Hi(n) := −2(−1)ni−1,

Ci (n) := 1

pi
(−1)niei , x(n) := −2

N∑
i=1

1

pi
niei .
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Solutions of the pseudo-circular lattice. We shall consider those quadrilateral lattices as
given in (14) but with spectral data{fk(z), gk(z)}mk=1 satisfying

gk(z) = −1

2
z

m∑
l=1

f τl (−z)Bτkl, (15)

whereBkl areN ×N matrices.
The notation

ωkl(�,�
∗) := 1

2

∫
C×C

fk(z)
z′

z+z′
(
N∑
i=1

(
(z′−pi)(z−pi)
(z′+pi)(z+pi)

)ni
Pi

)
f τl (z

′)d2z d2z′,

ωk(C,�
∗) := 1

2

∫
C

fk(z)

N∑
i=1

(
pi − z
pi + z

)ni
d2z Pi (16)

allows us to write

Ωkl(�,�
∗) = Ckl +

m∑
k′=1

ωkk′(�,�
∗)Bτk′l ,

Ωk(C,�
∗) =

(
m∑
k′=1

Bkk′ωk′(C,�
∗)

)τ
.

From (16), we deduce that

ωkl(�,�
∗)+ ωτlk(�,�∗) = 2ωk(C,�

∗)ωτl (C,�
∗), (17)

and

(Ti + 1)

(
pi − z
pi + z

)ni
= pi

z+ pi

(
pi − z
pi + z

)ni

implies

((Ti + 1)ωk(C,�
∗))τCi = �i . (18)

From (17) and (18), we can conclude that when

N∑
k′=1

(Bkk′Ck′l + Cτk′kBτlk′) = 0

is verified, the following equations hold:

BΩ(�,�∗)+Ω(�,�∗)τBτ = 2Ω(C,�∗)τΩ(C,�∗),
((Ti + 1)Ω(C,�∗))τCi = B�i ,
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where we use the notationB := (Bkl). Moreover, from the equation

((Ti − 1)Ω(C,�∗))τCi = Ip,q(Ti�∗
i )

t‖Ci‖2 = εi

p2
i

Ip,q(Ti�
∗
i )

t,

it follows that

Ω(C,�∗)τCi = 1

2

(
B�i − εi

p2
i

Ip,q(Ti�
∗
i )

t

)
,

(TiΩ(C,�
∗))τCi = 1

2

(
B�i − εi

p2
i

Ip,q(Ti�
∗
i )

t

)
,

Following [11,13] the associated fundamental transformation with such data gives the
following pseudo-circular lattice:

x′ = x − ωτ (C,�∗)Bτ (C + ω(�,�∗)Bτ )−1Ω(�, H).

The first potentialsρ′
i of new lattice [8] are

ρ′
i = ‖Ci‖2 = εi

p2
i

(1 + (Ti�∗
i )Ω(�,�

∗)−1�i ). (19)

Let us consider a simple example withm = 1 and a diagonal spectral distribution

f (z) =
N∑
i=1

Fi(z)Pi,

where{Fi}Ni=1 is a set ofN scalar distributions onC. Then, if we denote

ai :=
∫
C

Fi(z)
1

z

[
pi − z
pi + z

]ni
d2z, bi :=

∫
C

[
pi − z
pi + z

]ni
Fi(z)d

2z,

the transformation potentials are

Ω(�,�∗) = C + 1

4
diag(b2

1, . . . , b
2
N)B

τ ,

Ω(�, H) =



a1

...

aN


 , Ω(C,�∗) = 1

2
diag(b1, . . . , bN)B

τ ,

and a new pseudo-circular lattice is given by

xi(n) = − 2

pi
ni−1

2
bi(ni)B

τ

(
C+1

4
diag(b2

1(n1), . . . , b
2
N(nN))B

τ

)−1



a1(n1)

...

aN(nN)


,
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whenever

BC+ (BC)τ = 0.

Nice examples of this construction appear as follows. Letγ = iR be the imaginary axis
in the complex plane and let us take an spectral measure concentrated overγ

Fi(z)

z
= Fi (y)δγ (z), i = 1, . . . , N, y ∈ R.

Then, observing that

pi − iy

pi + iy
= exp

(
−2i arctan

(
y

pi

))
,

we get

ai(ni) =
∫
R

Fi (y)exp

(
−2i arctan

(
y

pi

)
ni

)
dy,

bi(ni) =
∫
R

iyFi (y)exp

(
−2i arctan

(
y

pi

)
ni

)
dy.

Performing the change of variables

φ = arctan

(
y

pi

)
,

one gets

ai(ni) =
∫ π/2

−π/2
Fi (pi tanφ)exp(−2iniφ)

pi

cos2φ
dφ,

bi(ni) =
∫ π/2

−π/2
ipi tan(φ)Fi (pi tanφ)exp(−2iniφ)

pi

cos2φ
dφ.

In terms of

F̃i (φ) := piFi (pi tanφ)

cos4φ
,

we have

ai(ni)=
∫ π/2

−π/2
F̃i (φ)exp(−2iniφ) cos2φ dφ

= 1

2

∫ π/2

−π/2
F̃i (φ)exp(−2iniφ)(1 + cos 2φ)dφ,

bi(ni)=
∫ π/2

−π/2
ipiF̃i (φ)exp(−2iniφ) sinφ cosφ dφ

= 1

2

∫ π/2

−π/2
ipiF̃i (φ)exp(−2iniφ) sin 2φ dφ.
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Finally, if we define the Fourier coefficients of̃Fi as

γi(ni) =
∫ π/2

−π/2
F̃i (φ)exp(−i2niφ)dφ, n ∈ Z,

we have

ai(ni) = 1
4(2 + T −1

i + Ti)γi(ni), bi(ni) = pi 1
4(T

−1
i + Ti)γi(ni).

Thus, all the elements of the new pseudo-circular lattice are built up in terms of the functions
γi, i = 1, . . . , N . For example, if{αs}s∈S ⊂ [−π/2, π/2] andF̃i (φ) = (1/2)

∑
s∈S Ais

(δ(φ − αis)+ δ(φ + αis)), we get

γi(ni) =
∑
s∈S
Ais cos 2niαis, ni ∈ Z.

Observe that, a priori,αis ∈ [−π/2, π/2], however, if we add toαis any integer multiple of
π the functionγi does not change. Then, the coefficients are not constrained to belong to
[−π/2, π/2] and we can writeαis ∈ R. Therefore, the functions can be taken as any cosine
series, for example the one given by the Jacobi elliptic cosine

cn(u|m) := 2π√
mK

∞∑
s=0

qs+1/2

1 + q2s+1
cos

(
(2s + 1)π

2K
u

)

with argumentm, real and imaginary quarter periodsK andK ′

K =
∫ π/2

0
(1 −m sin2θ)−1/2 dθ, K ′ =

∫ π/2

0
(1 − (1 −m) sin2θ)−1/2 dθ,

and nomeq = exp(−πK ′/K).
Hence, an elliptic example with

γi(ni) = Ai cn(ni |mi), Ai ∈ R
is

ai(ni)= 1
4Ai(2cn(ni |mi)+ cn(ni − 1|mi)+ cn(ni + 1|mi)),

bi(ni)= pi 1
4Ai(cn(ni − 1|mi)− cn(ni + 1|mi)).

It is of interest to study the relation of these solutions with the quasi-periodic circular lattices
found by P. Grinevich (private communication of A. Doliwa).

Finally, we consider two particular examples of circular lattices inR2 and circular discrete

surfaces inR3. In the first place, we takep1 = p2 = −2,C =
(

0 1

−1 0

)
and

γi(n) := 2cn( 7
10n|1

2), i = 1,2,

and the 2D circular lattice is shown in Fig. 1.
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Fig. 1.

We now plot a circular discrete surface, withp1 = p2 = p3 = −2.C =




0 1 1

−1 0 1

−1 −1 0




and

γi(n) := 1
10cn(1

2n|1
2), i = 1,2,3.

The corresponding discrete surface forn3 = 0 is shown in Fig. 2.

3.1. Solutions of the symmetric lattice

We next study quadrilateral lattices as given by (14) but with spectral data{fk(z), gk(z)}mk=1
satisfying

gk(z) = −1

2

m∑
l=1

f τl (−z)Bτkl, (20)

whereBkl areN ×N matrices.
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Fig. 2.

We introduce the notation

ωkl(�,�
∗) := −1

2

∫
C×C

fk(z)
1

z+z′
(

N∑
i=1

(
(z′−pi)(z−pi)
(z′+pi)(z+pi)

)ni
Pi

)
f τl (z

′)d2z d2z′,

ωk(C,�
∗) := −1

2

∫
C

fk(z)
1

z

N∑
i=1

(
pi − z
pi + z

)ni
d2z Pi,

so that

Ωkl(�,�
∗) = Ckl +

m∑
k′=1

ωkk′(�,�
∗)Bτk′l ,

Ωk(C,�
∗) =

(
m∑
k′=1

Bkk′ωk′(C,�
∗)

)τ
.

It is not difficult to realize that

ωkl(�,�
∗) = ωτlk(�,�∗). (21)

If
N∑
k′=1

(Bkk′Ck′l − Cτk′kBτlk′) = 0,

one concludes that

Ip,qBΩ(�,�
∗) = Ω t(�,�∗)B tIp,q, Ti�

∗
i = εi

pi
�t
iB

tIp,q,

which, according to [13], ensures that the associated fundamental transformation preserves
the symmetric character of the lattice.
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A simple example appears form = 1 and

f (z) =
N∑
i=1

Fi(z)Pi,

where{Fi}Ni=1 is a set ofN scalar distributions onC. With the notation

ai :=
∫
C

Fi(z)
1

z

[
pi − z
pi + z

]ni
d2z,

bi :=
∫
C×C

Fi(z)Fi(z
′)

z+ z′
(
(z′ − pi)(z− pi)
(z′ + pi)(z+ pi)

)ni
d2z d2z′,

the transformation potentials are

Ω(�,�∗) = C − 1

2
diag(b1, . . . , bN)B

τ ,

Ω(�, H) =



a1

...

aN


 , Ω(C,�∗) = −1

2
diag(a1, . . . , aN)B

τ .

Thus, a new symmetric lattice is given by

xi(n) = − 2

pi
ni+1

2
ai(ni)B

τ

(
C−1

2
diag(b1(n1), . . . , bN(nN))B

τ

)−1



a1(n1)

...

aN(nN)


,

whenever

BC = (BC)τ .

3.2. Pseudo-Egorov lattices

To construct symmetric pseudo-circular lattices setm = 2M, and

fk(z) = δ(z− µk), fk+M(z) = δ(z+ µk), k = 1, . . . ,M, C = I2NM,

whereµk are non-zero complex numbers different frompi and such thatµk + µl �= 0.
For the construction of a pseudo-circular lattice, we take the matrixBpc in the form

Bpc =
(

0 −Jpc

J τpc 0

)
,

Jpc := −2 diag

(
B1

µ1
, . . . ,

BM

µM

)
, J τpc := −2 diag

(
Bτ1

µ1
, . . . ,

BτM

µM

)
,
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whereBj are someN ×N matrices. Instead, for the construction of a symmetric lattice we
take the matrixBs as

Bs =
(

0 Js

J τs 0

)
, Js := −2 diag(B1, . . . , BM), J

τ
s := −2 diag(Bτ1 , . . . , B

τ
M).

It is easily checked that these two lattices are the same due to the fact that the distributions
gk coincide in both prescriptions, namely

gk(z) = δ(z− µk)Bk, gk+M = δ(z+ µk)Bτk , k = 1, . . . ,M.

Thus, we have constructed a pseudo-circular symmetric lattice. However, this construction
has a pathology which is only cured if some further requirements are imposed over the
matricesBk. The problem is the appearance of singularities inΩ(�,�∗) as we have

Ωk,l(�,�
∗) = δkl +D(µk, µl)Bl, Ωk,l+M(�,�∗) = D(µk,−µl)Bτl ,

Ωl+M,k(�,�∗) = D(−µk, µl)Bl, Ωk+M,l+M(�,�∗) = δkl+D(−µk,−µl)Bτl ,
wherek, l = 1, . . . ,M. The matricesΩk,k(�,�∗) andΩk+M,k+M(�,�∗), k = 1, . . . ,M
are singular. A method to avoid this drawback is to use the matricesBk in such a way that
the singularity is killed. Observe that these singularities appear in the expressions for the
new rotation and Lamé coefficients, tangent vectors and points of the lattice in terms of
BkΩk,k(�,�

∗)−1 andBτkΩk+M,k+M(�,�
∗)−1. Now, we can proceed as in [16]: takeBk

nilpotent matrices; i.e.B2
k = 0. To check that the suggested mechanism works properly, we

first consider a quadrilateral lattice generated by the samef ’s but with theg’s as follows:

gk(z) = δ(z− νk)Bk, gk+M = δ(z+ νk)Bτk , k = 1, . . . ,M,

and with theνk, k = 1, . . . ,M, being arbitrary complex numbers. Only whenνk → µk, we
can ensure that the resulting lattice is symmetric and pseudo-circular; i.e., we shall consider
this limit carefully. In particular, let us deal with

BkΩkk(�,�
∗)−1 = lim

νk→µk
Bk(IN +D(µk, νk)Bk)−1.

The behaviour

D(µk, νk) = 1

µk − νk + d(µk)+O(µk − νk) as νk → µk,

where

d(z) := 2
N∑
i=1

pi

(z− pi)(z+ pi)Pi,

allows us to write

Bk(IN+D(µk, νk)Bk)−1 ∼ Bk
(

Bk

µk−νk+(IN+d(µk)Bk)+O(µk−νk)Bk
)−1

,

νk → µk.
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When we assume thatIN + d(µk)Bk is invertible the nilpotency ofBk ensures that(IN +
d(µk)Bk)

−1Bk = Bk and thereforeBk(IN + d(µk)Bk)−1Bk = 0. Thus,

Bk(IN + d(µk)Bk)−1
(

Bk

µk − νk + (IN + d(µk)Bk)+O(µk − νk)Bk
)

= Bk + BkO(µk − νk)Bk,

which implies

BkΩkk(�,�
∗) = Bk(IN + d(µk)Bk)−1.

Then, we get a symmetric pseudo-circular lattice if we substitute the ill-defined transfor-
mation potentialsΩk,k(�,�∗) andΩk+M,k+M(�,�∗) by

Ωk,k(�,�
∗)→ IN + d(µk)Bk, Ωk+M,k+M(�,�∗)→ IN + d(−µk)Bk,

respectively.
As it was proved in [8], a symmetric pseudo-circular lattice is of Egorov type iff the

potentials of the symmetric lattice coincide with the potentials of the pseudo-circular lattice,
which in our case happens only when

pi = p, i = 1, . . . , N.

To illustrate what type of solutions we get, let us study the case where

B =
∑

i=1,...,r;k=r+1,...,N

bikEik, 1 ≤ r ≤ N.

This form of the matrixB ensures thatBDB = 0 for any diagonal matrix. In particular,

B(IN + d(µ)B)−1 = B.

We now introduce the functions

E(z) :=
N∑
i=1

(
pi − z
pi + z

)ni
Pi, E(µ) :=




(
p1 − z
p1 + z

)n1

...(
pN − z
pN + z

)nN


 ,

and observe that

E(−z) = E(z)−1, D(z, z′) = 1

z− z′E(z)E(−z
′).
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Hence, our effective transformation potentials are

Ω(�,�∗) =


 IN

1

2µ
E(µ)2Bτ

− 1

2µ
E(−µ)2B IN


 ,

Ω(C,�∗) = 1

µ
(−E(−µ)B,E(µ)Bτ ), Ω(�, H) = 1

µ

(
E(µ)

−E(−µ)

)
,

and we have the expression

Ω(�,�∗)−1 =
(
α β

γ δ

)

with

α :=
(
IN + 1

4µ2
E(µ)2BτE(−µ)2B

)−1

,

β := − 1

2µ

(
IN + 1

4µ2
E(µ)2BτE(−µ)2B

)−1

E(µ)2Bτ ,

γ := 1

2µ

(
IN + 1

4µ2
E(−µ)2BE(µ)2Bτ

)−1

E(−µ)2B,

δ :=
(
IN + 1

4µ2
E(−µ)2BE(µ)2Bτ

)−1

.

Therefore, a symmetric pseudo-circular lattice is

x′ = −2




n1

p1
...
nN

pN


− [−E(−µ)Bα + E(µ)Bτγ ]

1

µ2
E(µ)

+[−E(−µ)Bβ + E(µ)Bτ δ] 1

µ2
E(−µ).

A more closed form of this solution is found if we introduce the notation

M :=
r∑

i,j=1

mijEij , mij := 1

4µ2

(
pi + µ
pi − µ

)2ni N∑
k=r+1

(
pk − µ
pk + µ

)2nk
εj εkbikbjk,

M̃ =
r∑

i,j=1

m̃ijEij ,

r∑
i′=1

m̃ii ′(δi′j +mi′j ) = δij ,
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so that

Bα = E(µ)2M̃E(−µ)2B, Bβ = −2µE(µ)2
(

r∑
i=1

Eii − M̃
)
,

Bτ γ = 1

2µ
BτM̃E(−µ)2B, Bτ δ = BτM̃,

and the final expression for the symmetric pseudo-circular lattice becomes

x′ = −2




n1

p1
...
nN

pN


−

[
−E(µ)M̃E(−µ)2B + 1

2µ
E(µ)Bτ M̃E(−µ)2B

]
1

µ2
E(µ)

+
[

2µE(µ)

(
r∑
i=1

Eii − M̃
)

+ E(µ)Bτ M̃
]

1

µ2
E(−µ).

A further simplification arises by assumingr = 1 so that

B =
N∑
k=2

bkE1k, Bτ = ε1
N∑
k=2

bkεkEk1, M = mE11,

m = 1

4µ2
ε1

N∑
k=2

εkb
2
k

(
pk − µ
pk + µ

)2nk (p1 − µ
p1 + µ

)−2n1

, M̃ = m̃E11,

m̃ = 1

1+[(1/4µ2)ε1
∑N
k=2 εkb

2
k((pk−µ)/(pk+µ))2nk ((p1 − µ)/(p1 + µ))−2n1]

.

The following formulae characterize anN -dimensional symmetric pseudo-circular lattice

x1 = −2
n1

p1
+ 2

µ
(1 − m̃)+ 1

µ2
m̃

N∑
k=2

bk

(
pk − µ
pk + µ

)nk (p1 − µ
p1 + µ

)−n1

,

xk = −2
nk

pk
+ 1

µ2
ε1m̃εkbk

(
pk − µ
pk + µ

)nk (p1 − µ
p1 + µ

)−n1

×
(

1 − 1

2µ

N∑
l=2

bl

(
pl − µ
pl + µ

)nl (p1 − µ
p1 + µ

)n1
)
,

wherek = 2, . . . , N . Only whenpi = p, i = 1, . . . , N this symmetric pseudo-circular
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Fig. 3.

lattice is a pseudo-Egorov lattice with

x1 = −2
n1

p
+ 2

µ
(1 − m̃)+ 1

µ2
m̃

N∑
k=2

bk

(
p − µ
p + µ

)nk−n1

,

xk = −2
nk

p
+ 1

µ2
ε1m̃εkbk

(
p − µ
p + µ

)nk−n1
(

1 − 1

2µ

N∑
l=2

bl

(
p − µ
p + µ

)nl−n1
)
,

m̃ = 1

1 + [(1/4µ2)ε1
∑N
k=2 εkb

2
k((p − µ)/(p + µ))2(nk−n1)]

.

Finally, we shall represent explicit examples in two and three dimensions. We takep =
−2,µ = 1/2, andbi = 1.

The picture on the left of Fig. 3 is an overview of the lattice, we see that on the diagonal
there is a mess of lines. This phenomena is connected with the Egorov nets presented in
[16], where the net was not regular on the diagonal and, in fact, one has an Egorov atlas
with two charts. The picture on the right of Fig. 3 is a detailed view of the lattice in the
neighbourhood of the diagonal. We see that together with convex quadrilaterals one has
also skew quadrilaterals, those quadrilaterals cross with the previous convex quadrilaterals.
This is the discrete version of the mentioned non-regularity.

Fig. 4.
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Fig. 5.

In R3, however, the mess in the discrete surfaces disappears as it is lifted up (Fig. 4).
Next, we show three plots (Figs. 4 and 5) of a typical view of our discrete Egorov surfaces
(n3 = 0), observe that the two last plots (Fig. 5), right and left view of the surface, have
been scaled vertically in order to better show the behaviour of the discrete Egorov surface.
Observe that almost all the quadrilaterals are convex, however, there are two rows of skew
quadrilaterals, that in the continuous limit form the lines of non-regularity of the surface.
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