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Departamento de Matemáticas, Universidad de Cádiz, PO.BOX 40, 11510 Puerto Real,
Cádiz, Spain

Received April 30, 2001; Revised July 17, 2001; Accepted July 26, 2001

Abstract

In this work we derive potential symmetries for ordinary differential equations. By
using these potential symmetries we find that the order of the ODE can be reduced
even if this equation does not admit point symmetries. Moreover, in the case for which
the ODE admits a group of point symmetries, we find that the potential symmetries
allow us to perform further reductions than its point symmetries. Some diffusion
equations admitting an infinite number of potential symmetries and the scaling group
as a Lie symmetry are considered and some general results are obtained. For all the
equations that we have studied, a set of potential symmetries admitted by the diffusion
equation is “inherited” by the ODE that emerges as the reduced equation under the
scaling group.

1 Introduction

It is well known that the knowledge of a one parameter Lie symmetry group of an ordinary
differential equation (ODE), allows us to reduce the order of the equation by one. In
particular, a first order equation with a known one-parameter symmetry group can be
integrated by a single quadrature. For higher dimensional symmetry groups the situation
is different. In general it is not possible to reduce the order of an equation invariant under
an r-parameter symmetry group by r using only quadratures, we need a solvable group.
In [2] Bluman and Reid derived an algorithm to find new symmetry groups for ODE’s.
These new symmetries reduce the order of a given ODE in cases where a direct application
of Lie’s method fails. These symmetries are in general not equivalent to point symmetries.
In the last few years we have observed a significant progress in the application of

symmetries to the study of nonlinear partial differential equations (PDE’s) of physical
importance, as well as in looking for exact solutions for such equations.
Lie classical symmetries admitted by nonlinear PDE’s are useful for finding invariant

solutions, as well as to discover whether or not the equation can be linearized by an in-
vertible mapping and to construct an explicit linearization when one exists. Nevertheless
an obvious limitation of group-theoretic methods based on local symmetries, is that many
PDE’s do not have local symmetries. It turns out that PDE’s can admit nonlocal symme-
tries whose infinitesimal generators depend on the integrals of the dependent variables in
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some specific manner. For a given PDE one can find useful nonlocal symmetries by em-
bedding it in an auxiliary “covering” system with auxiliary dependent variables. A point
symmetry of the auxiliary system, acting on the space consisting of the independent and
dependent variables of the given PDE as well as the auxiliary variables, yields a nonlocal
symmetry of the given PDE if it does not project onto a point symmetry acting in its
space of the independent and dependent variables.
In [3] there have been obtained two hierarchies of PDE’s which are linearizable by two

corresponding hierarchies of nonlocal transformations. The first of them is

ut = Rm[u](u−2ux)x (1.1)

where

R[u] = D2
xu

−1D−1
x . (1.2)

Thus, the first three equations in the hierarchy (1.1) take the form

ut = (u−2ux)x
ut = (u−3ux)xx

ut = (u−4uxx − 3u−5ux
2)xx.

(1.3)

The equations (1.3) are invariant under the classical scaling group and admit an infinite
set of potential symmetries which allow us to linearize them. Under the scaling group the
sets of equations (1.3) are reduced to a set of ODE’s. These ODE’s only admit a one-
parameter Lie group of point symmetries but “inherit” potential symmetries that allow
us to linearize the ODE’s, or to reduce the order by two.
The aim of this paper is to study a new class of symmetries for ODE’s. Some of these

ODE’s arise by means of invariance of diffusion equations under the scaling group and,
“inherit” a set of potential symmetries. These potentials symmetries lead to further order
reductions than the classical Lie symmetries of these equations.
We consider:

- The ODE’s arising from ut = (f(u)ux)xx, (this equation is a generalization of the
second equation of (1.3)), (Section 2).

- The ODE’s arising from the third equation of (1.3), (Section 3).

- A second order ODE which does not admit Lie symmetries, however by using po-
tential symmetries can be reduced to a quadrature, (Section 4).

2 The diffusion equation ut = (f(u)ux)xx

We consider the third order diffusion equation

ut = (f(u)ux)xx. (2.1)

If f(u) is an arbitrary function, the equation (2.1) admits a three-parameter Lie group
with infinitesimal generators

X1 = ∂x, X2 = ∂t, X3 = x∂x + 3t∂t. (2.2)
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On the other hand, PDE (2.1) is written in a conserved form. Its associated auxiliary
system [1] is given by

vx = u,
vt = (f(u)ux)x.

(2.3)

We have that equation (2.1) admits a potential symmetry, corresponding to the auxiliary
system (2.3), if and only if the function f(u) adopts the form

f(u) =
1

(u2 + bu+ c)3/2
exp

[
k

∫
du

u2 + bu+ c

]
. (2.4)

The corresponding infinitesimal generators of potential symmetries are listed below. Two
cases arise:
Case I-c, b, k arbitrary constants such that 9b2−36c−4k2 �= 0. The equation (2.1) admits
the potential symmetry

Xs = v∂x + (k − 3b2 )t∂t − (u2 + bu+ c)∂u − (cx+ bv)∂v. (2.5)

Case II-b, c, k arbitrary constants such that 9b2 − 36c − 4k2 = 0. It can be easily seen
that in this case we can take without loss of generality

f(u) =
1
u3
, (2.6)

(by replacing u by k1(u + k2) being k1 and k2 certain constants). The equation (2.1)
admits the potential symmetry

Xs = η(t, v)∂x − ηv(t, v)u2∂u (2.7)

where η(t, v) is any particular solution of the linear equation

ηt + ηvvv = 0.

Coming back to the Lie symmetries of (2.1), it is known that an important class of
solutions of this equation arises from its invariance under the scaling group X3 (2.2),
using this invariance we have

u = u(z) z = xt−1/3

where u satisfies the ODE

zuz + 3(f(u)uz)zz = 0. (2.8)

For applications it is important to reduce the order of (2.8). We can show that (2.8)
admits a one-parameter Lie group of point transformations if and only if

f(u) = λ(u+ k)ν (2.9)
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or the limit case

f(u) = λeνu, (2.10)

where λ, k, ν are arbitrary constants. The corresponding generators are

V = z∂z +
3
ν
u∂u,

and
V = z∂z +

3
ν
∂u.

These are the only functional forms of f(u) for which the order of (2.8) can be reduced by
Lie’s method. However, we next show that it is still possible to reduce the order by using
potential symmetries of ODE’s. In particular we find:

• A functional form of f for which (2.8) does not admit classical Lie symmetries but
the order of (2.8) can be reduced by using potential symmetry.

• A functional form of f for which (2.8) just admits a one-parameter Lie group of
symmetries and the reduced equation does not admit Lie symmetries, however using
potential symmetries the order of (2.8) can be reduced by two.

These two cases correspond to the previous Cases I and II for which the diffusion
equation (2.1) admits potential symmetries.
We start by setting u = vz, then (2.8) becomes

(3(f(vz)vzz)z + zvz − v)z = 0, (2.11)

we also consider the associated system

vz − u = 0

3(f(u)uz)z + zu− v = 0,
(2.12)

and the corresponding integrated equation

3(f(vz)vzz)z + zvz − v = 0. (2.13)

As it is indicated above two interesting cases arise:
1.-For

f(u) =
1

(u2 + 1)3/2
exp (k arctan u), (2.14)

system (2.12) admits a group of transformations with infinitesimal generator

V = ξ(x, u, v)∂x + φ(x, u, v)∂u + ψ(x, u, v)∂v (2.15)

where

ξ = v − kz
3 , φ = −(u2 + 1), ψ = −z − kv

3 . (2.16)
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This symmetry group is a new symmetry group for (2.8) due to the fact that ξ depends
explicitly on v. This new group also allows us to reduce the order of (2.8). For example,
if k = 0 the canonical coordinates corresponding to (2.16) :

r = (z2 + v2), w = arctan (vz ) (2.17)

lead to expressing ODE

3
(

vzz

(v2z + 1)3/2

)
z

+ zvz − v = 0 (2.18)

in the form

−3r(r2y2+1)yrr+9r3y(yr)2+9r2y2yr−9yr−r2y(r2y2+1)5/2+3r3y5+12ry3 = 0 (2.19)

where y = wr.
2.- If we consider f(u) = u−3 ODE (2.8) only admits a one-parameter Lie group of point
transformations with infinitesimal generator

V = z∂z − u∂u (2.20)

that allows us to reduce (2.8) to the second order ODE

−y6h5+y5h4−3y2hh′′+9y2(h′)2−9y2h2h′+6y2h4+27yhh′−27yh3+36h2 = 0, (2.21)

where y = xu, w = logx and wy = h. This equation (2.21) does not admit any classical
Lie symmetry. Nevertheless (2.8) admits a set of “potential” symmetries derived by con-
sidering the associated system (2.12). System (2.12) admits a new group of symmetries
as in (2.15) with infinitesimals

ξ = k1z + η(v), φ = −k1u− ηv(v)u2, ψ = 0 (2.22)

where η(v) satisfies

ηvv + 3ηvvv − η = 0. (2.23)

A solution for (2.23) is η = k2v. Consequently the integrated equation (2.13) admits a
two-parameter Lie group of point transformations with infinitesimals

V1 = z∂z, V2 = v∂z. (2.24)

As the Lie-bracket is [V1, V2] = −V2 we can reduce (2.13) first by V2 and then by V1. The
canonical coordinates for V2 are w = z

v , y = v, thus, (2.13) is reduced to the second order
Bessel ODE

3yh′′ + 9h′ + y2h = 0, (2.25)
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where h = wy and ′ stands by d
dy . Then, (2.25) inherits the Lie symmetry V1, whose

projection is V̂1 = h∂h (it is clear that invariance under V̂1 is just a consequence from
being (2.25) a linear equation). This symmetry allows us to reduce (2.25) to the first
order ODE,

3tg′ + 3tg2 + 9g + t2 = 0

being t = y, g = h′
h .

Remark
By making in (2.8) f(u) = u−3, u = vz, it can be written in the conserved form[
3((vz)−3vzz)z + zvz − v

]
z
= 0. (2.26)

The integrated equation with c = 0 has the form (2.13), with f(vz) = v−3
z . We have

found that equation (2.13) admits two generators V1 and V2. On the other hand, it can
be easily seen that the equation (2.26) admits the generator V1. Besides, the process for
the order reduction from (2.26) to (2.8) has been done by using the Lie symmetry ∂v of
equation (2.26). Since [∂v, V1] = 0, V1 is inherited as a Lie symmetry of equation (2.8).
The corresponding inherited symmetry, z∂z − u∂u, is the only Lie symmetry admitted by
(2.8).
The same process can not be done for the other admitted Lie symmetry of (2.13)

because the vector field V2 = v∂z is not a Lie symmetry for equation (2.26). In fact,
it is a conditional symmetry for the equation (2.26) because it transforms only a class
of solutions of (2.26) into solutions of (2.26), that is those solutions that verify equation
(2.13).

3 The fourth order diffusion equation ut = [(u−2)xxu−1]xx

Another interesting equation, from the point of view of the symmetry reductions is the
fourth order diffusion equation

ut = [(u−2)xxu
−1]xx, (3.1)

related to the third member of the hierarchy (1.1) through the change of variables t′ = −2t.
This equation admits the four parameter group of infinitesimal generators

X1 = ∂x, X2 = ∂t, X3 = x∂x − u∂u, X4 = 4t∂t + u∂u.

An important class of solutions of (3.1) arises from its invariance under the scaling group
X = mX3 +X4, i.e.

u = w(z)t
1−m

4 , z = xt−
m
4

where w satisfies the ODE

m(zwz + w)− w + 4[(w−2)zzw
−1]zz = 0. (3.2)

We can show that ODE (3.2) only admits a Lie group of point transformations of generator

V = z∂z − w∂w.
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This symmetry allows us to reduce (3.2) to the third order ODE

−1 +m− h7 y7 + h6 y2
(−24 + (−7 +m) y4)+ 3h5 y

(
16 + (−7 + 2m) y4)

−40h′2 + 120 y2 h
′3 + h4

(−48 + 5 (−7 + 3m) y4 + 48 y2 h′) − 80 y h′ h′′
+h3 y (−176h′ + y (5 (−7 + 4m) y + 32h′′)) + 8h(3) + h

(
224 y h

′2 − 48h′′

−80 y2 h′ h′′ + y (−7 + 6m+ 16h(3)
))
+ h2

(
136h′ − 96 y2 h′2

+y
(−16h′′ + y (−21 + 15m+ 8h(3)

)))
= 0,

where y = wz and h = − d
dy (lnw). This equation does not admit any classical Lie sym-

metry. Nevertheless, (3.2) admits a set of “potential” symmetries derived by considering
the associated system

vz − w = 0,
mzw − v + 4[(w−2)zzw

−1]z = 0.
(3.3)

In fact, (3.3) has a group of symmetries with infinitesimals

ξ = k1z + η(v), φ = −k1w − ηv(v)w2, ψ = 0, (3.4)

where η(v) satisfies the linear equation

ηvv − 8ηvvvv −mη = 0. (3.5)

A particular nontrivial solution of the equation (3.5) can be found if m = 0, 1, 2, . . . . In
fact, by making the change of variables

η(v) = vm + φ1(v),

the equation (3.5) becomes

−mφ1 + vφ1v + 8m(m− 1)(m− 2)(m− 3)vm−4 + 8φ1vvvv = 0. (3.6)

If m = 0, 1, 2, 3, φ1 = 0 is a solution of (3.6), so we have that for (3.5)

η = vm.

If m �= 0, 1, 2, 3, we take

φ1(v) = c1vm−4 + φ2(v), (3.7)

where c1 is a parameter that we will determine later. By substituting (3.7) into (3.6) we
obtain

−8c1(m− 4)(m− 5)(m− 6)(m− 7)vm−8 − 4[c1 + 2m(m− 1)(m− 2)(m− 3)]vm−4

−mφ2 + vφ2v − 8φ2vvvv = 0.
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Thus, it is clear that if m = 4, 5, 6, 7, by choosing c1 = −2m(m − 1)(m − 2)(m − 3) and
φ2 = 0, φ1 is a solution of (3.6), consequently

η = vm − 2m(m− 1)(m− 2)(m− 3)vm−4, m = 4, 5, 6, 7,

is a solution of (3.5). Proceeding in the same way, we obtain a nontrivial solution of (3.5)
for each nonnegative integer m. We denote these solutions as ηm(v). We have then, that
for these values of m, the integrated equation

mzvz − v + 4[(v−2
z )zzv

−1
z ]z = 0 (3.8)

admits the two parameter Lie group of infinitesimals

V1 = z∂z, V2 = ηm(v)∂z.

As [V1, V2] = −V2, we can reduce (3.8) first by V2 and then by V1. For example, for
m = 0, 1, 2, 3 we reduce (3.8) by V2 to the linear third order ODE

h
(
64m− 96m2 + 32m3 − y4)+ 48 (−m+m2

)
y h′

+32my2 h′′ + 8 y3 h(3) = 0
(3.9)

with y = v, h = d
dy (

z
vm ), and then (3.9) inherits the symmetry group V̂1 = h∂h that allows

us to reduce (3.9) to the second order ODE,

64m− 96m2 + 32m3 + 48 g (−1 +m) mt+ 32 g2mt2 + 8 g3 t3

−t4 + 32mt2 g′ + 24 t3 g g′ + 8 t3 g′′ = 0

with t = y, g = h′
h . In the same way, for m = 4, 5, 6, 7 we reduce (3.8) by V2 to the linear

third order ODE

h (−46080m+ 112896m2 − 103936m3 + 47040m4 − 11200m5 + 1344m6

−64m7 + 52my4 − 74m2 y4 + 20m3 y4 + 2m4 y4 − y8)

+8 y (1440mh′ − 3288m2 h′ + 2700m3 h′ − 1020m4 h′ + 180m5 h′

−12m6 h′ − 6my4 h′ + 6m2 y4 h′ − 192my h′′ + 400m2 y h′′

−280m3 y h′′ + 80m4 y h′′ − 8m5 y h′′ + 4my5 h′′ + 12my2 h(3) − 22m2 y2 h(3)

+12m3 y2 h(3) − 2m4 y2 h(3) + y6 h(3)) = 0

(3.10)
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with y = v, h = d
dy (

z
vm−2m(m−1)(m−2)(m−3)vm−4 ), and then (3.10) inherits the symmetry

group V̂1 = h∂h that allows us to reduce (3.10) to the second order ODE,

−11200m5 + 1344m6 − 64m7 − t8 −m (
46080− 52 t4)+ 2m4

(
23520 + t4

)
+4m3

(−25984 + 5 t4) − 2m2
(−56448 + 37 t4) − 8 t (4 g2mt (48− 100m

+70m2 − 20m3 + 2m4 − t4)− g3 t2 (12m− 22m2 + 12m3 − 2m4 + t4)

+3 g (2 (−1 +m)m (240− 308m+ 142m2 − 28m3 + 2m4 − t4 − t2 (12m− 22m2

+12m3 − 2m4 + t4) g′)− t (−4m (48− 100m+ 70m2 − 20m3 + 2m4 − t4) g′

+t (12m− 22m2 + 12m3 − 2m4 + t4) g′′)) = 0

with t = y, g = h′
h .

Summarizing, making use of the potential symmetries of ordinary equations, we have
found that we can reduce the problem of looking for solutions of the fourth order diffusion
equation, of the form

u(x, t) = t
1−m

4 w

(
x

t
m
4

)
m = 0, 1, 2, . . . ,

to the problem of solving a second order ordinary differential equation and two quadra-
tures.

4 Integration of equations without Lie symmetries by means
of potential symmetries

We are interested in ODE’s which do not admit any Lie symmetry, but by means of
potential symmetries can be reduced to quadratures. Let us consider the following second
order differential equation:

e
1
u
+x

(−u4 − u5 + 2u3 ux − ux
2 − 3uux

2 + u2 (2ux + uxx)
)
= u5+ u6 − u3 ux. (4.1)

Equation (4.1) has no Lie symmetries. However, it can be reduced to quadratures in
the following way: By means of the transformation u = vx equation (4.1) becomes the
third order differential equation:

e
1

vx
+x (−v4x − v5x + 2 v3x vxx − vxx

2 − 3 vx vxx
2 + v2x (2 vxx + vxxx)

)
= v5x+v

6
x−v3x vxx. (4.2)

Equation (4.2) can be expressed in conserved form as follows:

Dx

(
−vx2 − v vx3 + e

1
vx

+x (−vx2 − vx3 + vxx

) − vx3 x

vx3

)
= 0. (4.3)
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Let us consider any second order equation associated to equation (4.2):

−vx2 − v vx3 + e
1

vx
+x (−vx2 − vx3 + vxx

) − vx3 x = Cvx3 (4.4)

where C is an arbitrary constant. It can be checked that equation (4.4) admits

X1 = e−v∂x and X2 = −e−v(v + x+ 1)∂x + e−v∂v (4.5)

as Lie symmetries. Then, X1 and X2 are potential symmetries of equation (4.1). Since
[X1, X2] = 0, any of the two Lie symmetries can be used to reduce the order of equation
(4.4) and the reduced equation inherits the other symmetry as Lie symmetry. If, for
instance, X1 is used to reduce the order of equation (4.4), by means of the change of
variables {y = v, α = evx,w = αy = ev( 1

vx
+ x)}, the following reduced equation is

obtained:(
−1 + ewe−y

)
w − ewe−y

wy − ey
(
ewe−y

+ y + C
)
= 0. (4.6)

The Lie symmetry of equation (4.6) inherited from X2 becomes:

X̂2 = e−y∂y + (−1 + e−yw)∂w.

By means of the canonical coordinates {z = e−yw + y, β = ey} for X̂2, equation (4.6) can
be solved by quadrature:

βz = − ez

z + C
.

Let us denote by β = H(z, C1) its general solution. From ey = H(e−yw + y, C1), w can
be locally expressed as w = G(y, C1). Since w = αy, the general solution of equation
(4.4), and hence the solution of equation (4.1), has been obtained through two successive
quadratures.

There exists a procedure to reduce the order of equation (4.1) based on the existence of
C∞−symmetries. The concept of C∞−symmetry is similar to the concept of Lie symmetry
but it is based on a different way of prolonging vector fields. For a function λ ∈ C∞(M (1))
we define the n−th order λ-prolongation of a vector field X = ξ(x, u)∂x + η(x, u)∂u, as
the following vector field:

X [λ,(n)] =
n∑

i=0

(Dx + λ)i (η(x, u)− ξ(x, u)u1) ∂ui + ξ(x, u)Dx, (4.7)

whereDx denotes the total derivative operator with respect to x. The C∞(M (1))−symmetries
of an equation ∆(x, u(n)) = 0 are the vector fields X for which there exists λ ∈ C∞(M (1))
such that X [λ,(n)](∆(x, u(n))) = 0, when ∆(x, u(n)) = 0.
An algorithm that let us reduce the order of the equation can be associated to a given

C∞−symmetry. It is based on the construction of invariants of X [λ,(n)] by derivation of
lower order invariants. This method, as well as equivalent definitions of C∞−symmetries,
can be consulted in [6].
We show here how potential symmetries can be recovered as C∞−symmetries of equa-

tion (4.1). This is a particular case of the use of the C∞−symmetries method to recover
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lost symmetries arising in equations with non-solvable symmetries algebras. Theoretical
results related to the general case can be consulted in [7].
First we observe that equation (4.2) keeps X1 and X2 as Lie symmetries, and it has an

additional Lie symmetry, X3 = ∂v. The reduced equation obtained by using X3 is equation
(4.1). It can be checked that the following relations hold:

[X1, X2] = 0
[X1, X3] = X1

[X2, X3] = X1 +X2

and when X3 is used to reduce the order, neither X1 nor X2 are inheritable symmetries
for equation (4.1). In fact, we have showed that equation (4.1) has no Lie symmetries.
However, since [X1, X3] = X1, the Lie symmetry X1 is inheritable as a C∞−symmetry.
The corresponding inherited C∞−symmetry for equation (4.1) is X̂1 = ∂x + u2∂u for the
function λ1 = −u.
The C∞−symmetry X̂1 can be used to reduce the order of equation (4.1). By means

of the change of variables {y = x + 1
u , β = x, µ =

β−y
βy
= ux

u3 − 1
u} the corresponding

X̂1−reduced equation is the following:
−e−y + µ+ µe−y − µ2 − µµy = 0. (4.8)

The lost symmetry X2 can also be recovered as C∞−symmetry of equation (4.8). It takes
the form X̂2 = −∂y + (−1 + µ)∂µ, for the function λ2 = 1

µ , and can be used to solve
equation (4.8) by quadrature. In fact, in terms of variables {s = ey(µ − 1), r = es−y}
equation (4.8) becomes

srs + es = 0. (4.9)

When the general solution of equation (4.8) is obtained, through the quadrature (4.9),
in the form µ = H(y, C), we get the general solution of equation (4.1), in variables {y, β},
by solving the first order linear equation βy = (β − y)/H(y, C). In conclusion, equation
(4.1) that lacks Lie symmetries, can be solved, by means of C∞−symmetries, by two
quadratures.
An algorithmic procedure, based on the use and determination of integrating factors,

has been introduced to reduce the order of ODE’s [5]. The C∞−symmetries provide a new
algorithmic method of reduction. The main advantage of using the reduction based on the
existence of C∞−symmetries is that C∞−symmetries can be determined through a well-
defined algorithm while conserved forms (4.3) needed to calculate potential symmetries
are usually difficult to find.

5 Conclusions

In this paper, we have considered a family of diffusion PDE’s which admit an infinite num-
ber of potential symmetries as well as point symmetries. An important class of solutions of
these equations arises from its invariance under the scaling group, using this invariance we
get a family of ODE’s. Knowing the importance of reducing the order of these ODE’s, we
have derived potential symmetries for them, as well as for some other interesting ODE’s.
We have found:



58 M L Gandarias, E Medina, C Muriel

• ODE’s, such as (2.1), where f adopts the form (2.14) for which (2.1) does not admit
point symmetries, but whose order can be reduced by using a potential symmetry.

• ODE’s, such as (3.2) and (2.1), where f adopts the form (2.6), which just admit a one-
parameter Lie group of point symmetries and the corresponding reduced equations
do not admit Lie symmetries. Nevertheless we have used potential symmetries to
reduce the order by two as well as to linearize them.

• ODE’s such as (4.1) which does not admit any Lie symmetry however by means of
potential symmetries can be integrated by quadratures.
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