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Abstract

In this paper we present the results of a computational study that analyses the relationship between the noise
associated with the optical transmittance of a system of particles and the morphology of such particles. Computa-
tional algorithms have been developed in order to represent the different morphologies within a wide range of sizes.
By using this methodology, it has been possible to study the morphology of particles in a virtual system, therefore
avoiding the distortions that would inevitably be present in a real system. As a consequence of this study, a
classification of the morphologies observed has been made according to the amount of noise they would add to the
transmittance of a system of particles. The theoretical results obtained are in good agreement with the available
experimental data obtained in real systems. © 2002 Elsevier Science Ltd. All rights reserved.

Keywords: Precipitation; Noise; Transmittance; Simulation; Morphology; Polyhedron

www.elsevier.com/locate/compchem

1. Introduction

We have recently made measurements of transmit-
tance in precipitation systems in which PbI2, PbSO4,
BaSO4 and BaC2O4 precipitates were formed by means
of injecting an inducing agent into a base solution
(Poce-Fatou et al., 2001a).

Transmittances were measured using a laser beam
focused at the geometric centre of the precipitation cell.
This type of laser beam describes a hyperbolic path and
is capable of detecting particles of the same size range
as its focal region. For that reason, the transmittance
signal experiences significant fluctuations which are
recorded as noise associated with this signal (Martı́n et
al., 1991, 1992).

This associated noise may be caused by several fac-
tors, among which we could mention:
1. Factors which may be regarded as unconnected with

the precipitation system itself. This group includes
variations generated by the measuring instruments,
imperfections of the experimental arrangement, infi-
nitesimal changes in the external conditions, etc.

2. Factors related to the characteristics of the laser
probe used in the experiment. Within this group we
include the elements that characterise the hyperbolic
path of the beam, namely the laser wavelength, the
prefocussed radius of the beam, and the focal length
of the lens used for focussing the beam (Gerrard
and Burch, 1994; Poce-Fatou et al., 2001b).

3. Factors related to the nature of the precipitation
medium, including changes of orientation and posi-
tion of the particles, the presence of a variety of
sizes, as well as factors related to the presence of
different morphologies in the precipitation medium.

* Corresponding author. Tel.: +34-956-016-178; fax: +34-
956-016-288.

E-mail address: juanantonio.poce@uca.es (J.A. Poce-Fatou).

0097-8485/02/$ - see front matter © 2002 Elsevier Science Ltd. All rights reserved.

PII: S 0097 -8485 (01 )00090 -0

mailto:juanantonio.poce@uca.es


J.A. Poce-Fatou et al. / Computers & Chemistry 26 (2002) 131–140132

In connection with the last group of factors men-
tioned above, and with regard to the measurements of
transmittance made in the course of these experiments,
we have found signs that suggest some kind of relation-
ship between the morphology of the precipitate and the
noise associated with the measured signal.

In the tests carried out under identical experimental
conditions and precipitated mass, the systems made up
of flat particles of PbI2 and PbSO4, generated variations
of transmittance whose levels of associated noise turned
out to be much higher than in the case of systems made
up of elongated particles of BaSO4 and BaC2O4.

With the aim of doing an in-depth analysis of these
facts and characterising the relationship between the
noise associated with the transmittance of a precipita-
tion system and the morphology of the precipitate, we
have developed a theoretical study based upon comput-
erised simulation techniques.

2. Materials and methods

2.1. The concept of morphological noise

We have recently developed an experimental arrange-
ment for a study of precipitation systems based upon
measurement of the noise associated with the transmit-
tance (Poce-Fatou et al., 2001a). Subsequently, we have
designed a computer program (PPSP), (Poce-Fatou et
al., 2001b), which emulates the characteristics of such
systems and extracts simulated transmittances and asso-
ciated noises.

This program provides a model of a pure nucleation
process in which spherical particles with a unimodal

distribution of volumes precipitate. Particles intercept-
ing the beam at some point along its path will generate
projections onto a virtual photoreceptor placed orthog-
onally to the propagation axis. Supposing these parti-
cles absorb 100% of the incident radiation,
transmittances are calculated as a value proportional to
the area of the photoreceptor unit on which there is no
projection (Fig. 1), according to the expression,

Transmittance

�
Photorreceptor Area−Projected Area

Photorreceptor Area
(1)

In the computational model, the noise associated
with the transmittance has no sources other than those
of the simulated experiment itself, so that noise sources
such as those related to the measuring instruments, the
imperfections of the experimental arrangement, changes
in the experimental conditions, etc. are not included.
Furthermore, if the factors that define the virtual beam
path are kept constant, their influence may be consid-
ered constant throughout the simulated process.

However, the influence of the dynamic characteristics
of the system, such as changes in position and orienta-
tion of the particles, blocking of the beam, etc. are very
difficult to quantify. Out of this set of factors, the
morphology of the precipitate might well be one of a
significant influence, since the fluctuations in the trans-
mittance that may be caused by changes in the position
and orientation of the particles, depend on their
morphology.

By way of example, let’s imagine that an isolated
spherical particle forms a precipitation system and that
its centre of mass remains fixed at certain point of
space. Let’s also suppose that this particle can freely
orientate itself, changing its orientation constantly and
randomly.

If we could use a virtual photodetector to measure
transmittances, we would obtain a stable signal due to
the fact that the projected shadow does not change.

By contrast, if we analysed the influence of a flat
particle in exactly the same conditions, we would find
that its projection would show a great many variations,
producing changes that would be recorded as noise
associated with the transmittance.

Taking account of the definition of transmittance
given by Eq. (1), if the averages of the areas projected
during a given period of time in each of these two
hypothetical precipitation systems coincided, it follows
that the average transmittances should also coincide.

In such a case, the dispersion of the projected areas
data from the mean area, would become a data describ-
ing the noise associated with the transmittance. The
measure of dispersion we have opted for in order to
obtain this information is the standard deviation.

Fig. 1. Basic optical scheme used in the precipitation processes
simulation program (PPSP).
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Fig. 2. Flow-chart of the program for the calculation of
average coefficients and noises.

morphology with a given orientation, we need to know,
first of all, which are the flat surfaces involved in the
projection, and secondly, what is the contribution of
each of these faces to the total projection.

To answer the first question we analyse the sign of
each one of the scalar products of the normal vectors
representing the volume’s faces and the vector normal
to the projection plane. All faces whose scalar product
have the same sign (no matter what sign we choose),
will be involved in the morphology’s final projection,
(Rogers, 1998).

Secondly, the total area of the surface projected by a
morphology can be easily calculated through the fol-
lowing expression,

A=�
i

Si · cos �i (2)

where A is the area of the projection, Si is the area of
face i, and �i is the angle formed by the vector normal
to face i and the vector normal to the projection plane.

The average projected area and the characteristic
noise of the morphology are finally calculated as the
arithmetic mean and standard deviation, respectively,
of the areas of the projections thus generated.

2.3. Matrix calculation of the noise

The simulation of morphologies using the method
based on matrix calculation takes place, generally
speaking, in the same way as described in the previous
section. The difference between these two methods lies
in that once we know which faces of the morphology
are involved in the global projection, we do not proceed
with the numerical estimate of the area by using Eq.
(2).

Instead, the morphology is projected on a bidimen-
sional matrix (representing the photodetector), whose
elements can contain numerical information. Those ele-
ments of the matrix on which there is no projection are
given a value equal to zero (0), whereas the elements on
which projection is detected, are given a value equal to
one (1). Accordingly, the area of the projected surface
may be calculated as the sum of all the elements in the
matrix, as expressed in:

A= �
n

j=1

Xj (3)

where A is the area of projection, n is the total number
of elements contained in the matrix on which projec-
tions take place, and Xj is the numerical value (0 or 1)
assigned to the element j of the matrix.

The usefulness of the matrix method lies in two
arguments: (a) it represents a method of calculation
alternative to the numerical one, and (b) the algorithms
used extend the possibilities of the PPSP.

To make these calculations we have designed a com-
puter program based upon the first of the two models
presented above, i.e. the one with an isolated particle
capable of randomly orientating itself. To fine-tune the
program, it has been necessary to include the right
algorithms that represent different morphologies in dif-
ferent spatial orientations and evaluates the projection
areas on an orthogonal plane.

The program has been designed in FORTRAN1 and
the flow-chart describing how it works is shown in Fig.
2. The program applies two different methods to obtain
noise data characteristic of every morphology: numeri-
cal and matrix calculation, both described in the fol-
lowing sections.

2.2. Numerical calculation of the noise

The morphologies analysed in this work are polyhe-
drons, i.e. volumes having all faces flat. Each face is
mathematically represented by a normal vector. In or-
der to calculate the area of the surface projected by a

1 Microsoft Fortran Power Station. Copyright© 1993. Mi-
crosoft Corporation.
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Indeed, the PPSP program (which simulates a precip-
itation process) evaluates a spherical particles multiple
system, whereas the morphological noise calculation
program analyses a system formed by one single parti-
cle. What both programs have in common is the fact

that they use a matrix as a plane on which to evaluate
the projections of the particles.

For that reason, if the results obtained through the
matrix method are acceptably close to the numerical
ones, the algorithms developed to represent morpholo-
gies will be validated and ready to be incorporated in
the PPSP. In future studies the extended program may
provide information concerning precipitation systems
formed by non-spherical particles.

2.4. Pri�ileged orientations

In order to calculate the average area of the projected
surfaces and the noise associated with each morphology
using both the numerical and matrix methods, it is
necessary to know some data on surface projected by
the morphologies in different spatial orientations.

Computationally, the collection of these data has
been based on the following considerations:
1. The morphology to be analysed remains stationary

at the centre of an enveloping sphere of radius �.
2. The mobile plane on which the projection is mapped

takes positions tangent to the enveloping sphere.
3. The spatial orientations to be evaluated are ex-

pressed in angular spherical coordinates (� y �),
which correspond with the direction defined by the
radius vector with origin at the centre of the envel-
oping sphere and ending at the point of tangency
between the sphere and the projection plane. These
coordinates coincide with those of the vector normal
to the projection plane shown in Fig. 3.

In this model, each (�, �) pair represents a different
spatial orientation of the analysed morphology. The
coordinate � varies between 0 and 180°, whereas �

varies between 0 and 360°. If the radius vector moved
along the surface of the enveloping sphere changing its
coordinate � at a rate of constant angular intervals,
and we traced its directions by means of a straight line
with origin at the centre of the enveloping sphere, we
would obtain a situation equivalent to the one shown in
Fig. 4.

It can be seen from Fig. 4 that for each value of �,
the radius vector describes a cone that envelops the
directions defined by �. Each one of these cones inter-
sects with the enveloping sphere forming a circumfer-
ence whose length depends on �. The value of the
length is maximum in the direction given by �=90°,
and null in those given by �=0 and 180°.

If for every direction � we analysed an equal number
of directions �, represented as dots on the enveloping
sphere, we would find that the final distributions of
these dots would not be uniform. It would be more
concentrated at the poles (�=0 or 180°) and more
scattered at the equator (�=90°).

If the calculations were made analysing this distribu-
tion of directions, the results would be strongly influ-
enced by the concentration of directions at polar

Fig. 3. Enveloping sphere used for calculating projected areas.
The morphology to be studied must be placed at its geometri-
cal centre. The projection plane varies its position according to
the spherical coordinates, keeping a point of tangency with the
surface of the enveloping sphere.

Fig. 4. The length of the circle generated by the cone of angle
�, has a radius R�, whose value is related to the radius of the
enveloping sphere by means of the sin(�) factor.
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Fig. 5. This figure shows the surface projected by a cylinder placed at the centre of the enveloping sphere in different orientations.
In figure (A), the projected surface on the polar direction is a rectangle. In figure (B), it is a circle. If the influence of the privileged
orientations were not considered, the average coefficients would be different in both cases.

regions. The final result, therefore, would depend on
the initial orientation of the morphology studied (Fig.
5).

Solving this problem requires that the distribution of
dots representing directions, have a uniform density on
the surface of the enveloping area.

To that end, it is only necessary that the number of
directions � to be evaluated for every value of �, be
proportional to the length of the circumference of
radius R�, and therefore,

No. of directions � in the orientation �=N�

N��L�

N��2�R�=2�� sin(�)

N��sin(�) (4)

where L� is the length of the circumference of radius
R�, and � is the radius of the sphere enveloping the
morphology.

That is to say, in order to obtain a set of uniform
spatial directions, we should select, for every angle �, a
number of directions � proportional to sin(�).

An equivalent methodology consists of evaluating a
constant number of directions � for every value of �

but weighing the results with the sin(�) factor.

2.5. Description of the morphologies analysed

The mathematical and computational description of
the 32 crystallographic groups (Vainshtein, 1994) is an
arduous, time-consuming task. For that reason we have
made a selection of morphology types which includes
three-, four- and six-sided faces polyhedral prisms,
called in this work P3, P4 and P6, respectively.

These morphologies have been analysed in a whole
variety of lengths ranging from 0.25 to 3.0 times the
length of the main edge. It has also been included a
special length of 0.1 to emulate a quasi-flat
morphology.

Other morphologies derived from those mentioned
above by adding three-, four- and six-sided pyramids
have also been analysed. These morphologies, which we
called P3P, P4P and P6P have been analysed using the
same size relationship as with P3, P4 and P6, although
incorporating a 0.0 length factor, corresponding to the
non-prismatic bipyramidal varieties. A graphic repre-
sentation of these morphologies, together with the main
edge for every one of them, is shown in Fig. 6.

The pyramids added to prisms P3P and P4P are
formed by equilateral triangles whose side lengths are
equal to the main edge. However, that is not possible in
the case of the 6-sided polyhedron, since the bases on
which the six-sided pyramids are placed are regular



J.A. Poce-Fatou et al. / Computers & Chemistry 26 (2002) 131–140136

Fig. 6. Description of morphologies. Every volume shows a thicker line, which indicates the principal edge. A line has been drawn
next to each morphology, to show the edge that defines the length of the volume. This may be from 0.0 to 3.0 times the length of
the principal edge. In this figure, only 1.0 lengths have been drawn.

hexagons, and the only possible disposition of equilat-
eral triangles on such a base would have to be on the
same plane. In this case, the height of the pyramid has
been arbitrarily assigned a value equal to the length of
the main edge.

2.6. Election of comparable �olumes

In the analysis of morphologies there is clearly a
relationship between noise, interpreted as the standard
deviation of the projected areas from their mean value,
and the size of the morphology. The larger the volume,
the larger the projected surfaces and the higher the
absolute values of the variations caused by changes in
the orientation.

For that reason, in order to analyse the morphologi-
cal noise in terms of standard deviation, it is necessary
to set a criterion that eliminates the influence of size.

To establish this criterion we will return to the one
single isolated particle system. The particle changes its
orientation continuously and randomly, and the aver-
age transmittance of the system is a data equivalent to
that of the average projected area. If we compare
morphologies whose average projections coincide, we
are comparing virtual systems with equal levels of
transmittance and with comparable associated noises.

Therefore, comparable volumes are those which pro-
ject the same average areas, which are easily obtained
using Cauchy’s theorem (Cauchy, 1908; Van De Hulst,
1981; Brown and Felton, 1985; Hostomský et al., 1986).

According to this theorem, the average area pro-
jected by a convex volume2 that changes its orientation
randomly can be calculated as one fourth of the surface
enveloping it, that is:
Average Projected Area (A)

=

� �

−�

� �

0

f(�,�) sin(�)d�d�� �

−�

� �

0

sin(�)d�d�

=
S

4
(5)

where sin(�) d� d� represents the surface differential
element of a sphere of radius 1, � and � are the
coordinates that define the direction of the vector nor-
mal to the projection plane, f(�, �) is the function that
gives the area of the projection of the morphology on
an orthogonal plane whose normal vector is in the
direction defined by (�, �), and S represents the envel-
oping surface of the convex volume analysed.

Therefore, Cauchy’s average represents an important
reference inasmuch as the application of the computa-
tional model used in this work does not include the
infinite number of possible orientations which, on the
contrary, Cauchy’s theorem does evaluate.

In order to derive the expressions that give compara-
ble volumes, it is necessary to combine the expressions
describing the volume of each morphology, with the
ones that give Cauchy’s average area.

Table 1 shows the analytical expressions describing
the calculation of comparable volumes whose average
projections generate the same average area, A� . The
Cauchy average coefficient has also been included, a
non-dimensional value obtained by dividing the average
projected surface (Cauchy average area) by the square
of the length of the main edge (a2). Thus defined, this
value will characterise the morphology regardless of its
size.

3. Results and discussion

The volumes analysed correspond to those generated
by an average projected surface of 1000 arbitrary units.
These volumes have been estimated by substituting the

2 A volume that is intersected only at two points by a
straight line passing through it in any direction.
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Table 1
Analytical equations for the calculation of the volume for the different morphologies are listed

Cauchy averageCauchy average area Volume of comparable morphologiesMorphology Volume
(A� )=S/4 coefficient

P3 �3

8
+

3

4
L

��3

2
+3L

� a2

4

�3

4
La3 �3

4
L
� 4A�

�3

2
+3L

�3/2

P3P � 1

3�2
+

�3

4
L
�

a3 �
3

�3

2
+3L

�a2

4

3�3

8
+

3

4
L � 1

3�2
+

�3

4
L
�� 4A

3
�3

2
+3L

�3/2

La3P4
L
� 4A

2+4L

�3/21

2
+L(2+4L)

a2

4

P4P
(2�3+4L)

a2

4

��2

3
+L

�� 4A

2�3+4L

�3/2��2

3
+L

�
a3

�3

2
+L

P6
(3�3+6L)

a2

4

�3�3

2
L
�� 4A

3�3+6L

�3/23�3

4
+

6

4
L

3�3

2
La3

P6P ��3+
3�3

2
L
�� 4A

3�7+6L

�3/2

(3�7+6L)
a2

4

��3+
3�3

2
L
�

a3
3�7

4
+

6

4
L

The Cauchy averaged area is listed as well, in terms of the length factor (L), together with the analytical expressions of comparable
volumes and the Cauchy average coefficients.

corresponding length factors (L) and the value A� =
1000, in the ‘volume of comparable morphologies’
column in Table 1.

The variations of the average coefficients calculated
is shown in Fig. 7,
1. by applying Cauchy’s theorem;
2. by applying the computer program using the numer-

ical method;
3. by applying the computer program using the matrix

method.
The coefficients computationally obtained (b and c)

were calculated by evaluating the directions defined by
the angular coordinates � and �, varying from 0 to
180°, with an angular interval of 0.5°.

It can be seen from the graphs in Fig. 7 that the
average coefficients are very close, regardless of the
method of calculation used. This indicates that the
directions evaluated constitute a subset representative
of the infinite number of possibilities. Furthermore,
they validate the computational algorithms designed to
represent each morphology.

The matrix coefficients are optimally close to the

numerical ones. However, they present a higher devia-
tion from the Cauchy coefficients. This discrepancy
may be accounted for by rounding-off errors made
when projecting volumes (defined in the field of real
numbers) on the matrix plane (defined in the field of
integer numbers3). The graphs show that the deviation
of the coefficients increases as the value of the length
parameter (L) is higher. This is due to the fact that the
rounding-off problems are concentrated around the
perimeter of the projected surfaces.

In the projection of elongated volumes, the contribu-
tion of the perimeter to the total projection is quantita-
tively larger than that of volumes with more
symmetrical proportions4. As a consequence, the higher

3 To minimise these discrepancies we would simply have to
use a matrix plane with a larger number of elements. Increas-
ing the resolution would demand more memory and would
entail slowing down the calculation program.

4 For example, a 2×2 square has an area of 4 units and a
perimeter of 8. A 1×4 rectangle has exactly the same area but
it has a perimeter of 10 units.
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the value of the length parameter (L), the likelier the
morphologies are to make rounding-off errors and the
more different will be the matrix coefficients from the
numerical ones.

The data on noise associated with the morphologies,
calculated by applying the computer program using the
numerical and matrix methods are shown in Fig. 8. These

graphs also show the evolution of the � function, defined
as the quotient between the volume of an equivalent
sphere and the volume of the morphology analysed.

Given that they are all convex volumes, and we can
apply Cauchy’s theorem to them, all the morphologies
studied have in common the area of the enveloping
surface, S=4 · A� =4000 surface units.

Fig. 7. Average coefficients calculated by the matrix, numerical and Cauchy methods. The graphs show length factors versus average
coefficients.

Fig. 8. Variations of the numerical and matrix noise and of the � function, for every morphology. The graphs show length factors
versus noises and the � function.
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Fig. 9. Morphology classification in terms of the numerical noise.

In these circumstances, the sphere is the morphology
that has a volume maximum, and for that reason, the �

function represents, by means of a non-dimensional
factor, the level of morphological analogy with the
sphere in volumetric terms. Furthermore, the sphere is
the only morphology whose level of noise is null, and
because of that, the variation of the � function related
to the value of L, provides information concerning the
level of morphological noise.

As we can see from Fig. 8, the plotting of the �

function is very similar to that of the noise data.
Therefore, � becomes an important argument that
accounts for the relation of morphological noise as a
consequence of volumetric resemblance to the equiva-
lent sphere.

However, although the plotting of these functions
share some similarities, there are some clear differences
too. This suggests that the noise, in addition, estab-
lishes a dependence related to how the enveloping
surface is located in space.

The graph in Fig. 9 shows the different levels of
numerical noise for every morphology. It allows us to
clearly discern the relative classification of morpholo-
gies in terms of noise for every value of the length
factor (L).

It can be seen that the quasi-flat morphologies (P3,
P4 and P6 with L=0.1), represent higher levels of
noise. In addition, the more edges in the polyhedron,
the higher the level of noise.

From Fig. 9 we can infer that there is clearly a
relationship between noise and length of the morphol-
ogy. As the length increases, the levels of noise tend to
get closer to one another. In the hypothetical limit for
which L would have a value similar to infinite, all the
morphologies tend to have elongated, similar struc-
tures. In that case we should expect to find identical
levels of noise for every morphology.

4. Conclusions

The study of the level of noise associated with a
morphology is based on the isolated analysis of the
particle to be studied and on the calculation of areas
projected on an orthogonal plane.

Different morphologies may be compared when the
volumes used are those that generate the same average
transmittance, whose noise is exclusively caused by
morphological factors.

The level of morphological noise can be approached
through the � factor, which describes each morphology
in terms of volumetrical resemblance to the equivalent
sphere. However there is another factor of influence
given by the spatial disposition of the enveloping sur-
face of every morphology.

The theoretical results obtained confirm the validity
of the hypothesis set forth in the experimental work
(Poce-Fatou et al., 2001a). In that work it was detected
that the level of noise associated with the transmittance
was higher in the case of flat particles of PbI2 and
PbSO4 and clearly lower in the case of elongated parti-
cles of BaSO4 and BaC2O4.
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Poce-Fatou, J.A., Alcántara, R., Gallardo, J.J., Martı́n, J.,
2001a. Comput. Chem., in press.
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