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Abstract

Some diffusion equations admitting potential symmetries and the scaling group
as a Lie symmetry are considered and some general results are obtained. For all
the equations that we have studied, a set of potential symmetries admitted by the
diffusion equation is “inherited” by the ODE that emerges as the reduced equation
under the scaling group. Using these potential symmetries we find that the order
of the ODE can be reduced even if this equation does not admit point symmetries.
Moreover, in the case for which the ODE admits a group of point symmetries, we
find that the potential symmetries allow us to perform further reductions than its
point symmetries.
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1 Introduction

In the last few years we have observed a significant progress in the application
of symmetries to the study of nonlinear partial differential equations (PDE’s)
of physical importance, as well as in finding exact solutions for such equations.

Lie classical symmetries admitted by nonlinear PDE’s are useful for finding
invariant solutions, as well as to discover whether or not the equation can be
linearized by an invertible mapping and to construct an explicit linearization
when one exists. Nevertheless an obvious limitation of group-theoretic methods
based on local symmetries, is that many PDE’s do not have local symmetries.
It turns out that PDE’s can admit nonlocal symmetries whose infinitesimal
generators depend on the integrals of the dependent variables in some specific
manner. For a given PDE one can find useful nonlocal symmetries by embe-
dding it in an auxiliary “covering” system with auxiliary dependent variables.
A point symmetry of the auxiliary system, acting on the space consisting of
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the independent and dependent variables of the given PDE as well as the
auxiliary variables, yields a nonlocal symmetry of the given PDE if it does
not project onto a point symmetry acting in its space of the independent and
dependent variables.

It also happens that if a nonlinear scalar PDE does not admit an infinite-
parameter Lie group of contact transformations it is not linearizable by an
invertible contact transformation. However most of the interesting lineariza-
tions involve non-invertible transformations, such linearizations can be found
by embedding given nonlinear PDE’s in auxiliary systems of PDE’s [1]. In [2]
Bluman and Reid derived an algorithm to find new symmetry groups for ordi-
pary differential equations (ODE’s). These new symmetries reduce the order
of a given ODE in cases where a direct application of Lie’s method fails. With
respect to the given independent and dependent variables of an ODE these
symmetries are in general not of point, contact or Lie-Bécklund type.

The aim of this paper is to study a family of diffusion equations which admits
potential symmetries. We prove that some of the reduced ODFE’s, which arise
by means of invariance of the diffusion equation under the scaling group,
“Iinherit” a set of potential symmetries. These potentials symmetries lead to
further order reductions than the classical Lie symmetries of these equations.

It is well known that

up = (U g, (1)

admits, besides Lie-Backlund symmetries and recursion operators, potential
symmetries. Noteworthy, (1) is the only equation of the form

up = (W), (2)

which admit classical potential symmetries [1].

In [3] there have been obtained two hierarchies which admit classical potential
symmetries. The first of them is

up = R™[u)(u™ug), (3)

where

Rlu) = D>y 'D;t. (4)



Third World Congress of Nenlinear Analysts 47 (2001) 5167-5178 5169
Thus, the first three equations in the hierarchy (3) take the form

up = (U 2ug)y

u = (u™3

4

U = (U Upr — 3UT5UL2) e

These equations admits an infinite set of potential symmetries if we consider
the corresponding associated hierarchy of systems

v =u, v = D;R™u)(u uy),. (6)

For example, the first three systems in the hierarchy (6) take the form
Ve = U, V= u‘2um,

Vp = U, Vp= (u—?’uz)z,

_ (-4 -5, 2
Vg =, U= (U "Ugy — 3UT"UL)g.

The second hierarchy obtained is

up = R[] (u" o) (7)

which admits the recursion operator

R[u] = v’ D*uD;'u™2. (8)

The first three equations in the hierarchy (7) are

Up = UUgy
U = (usuaca:)x (9)

g = u?[un + uPugg) e

Observe that (9) can be obtained from (5) by means of u — 1. These equations
admit an infinite set of potential symmetries if we consider the corres ponding
associated hierarchy of systems

Vg = ) Vg = —Ug,

U

1
Vo= oy U= —(utg),,
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1
Vo =y U= [(—uug) ..
These infinite set of potential symmetries allow us to linearize the correspon-
ding hierarchies of PDE’s.

The equations (5) and (9) are invariant under the classical scaling group and
admit an infinite set of potential symmetries. Under the scaling group the sets
of equations (5) and (9) are reduced to two sets of ODE’s. These ODE’s only
admit a one-parameter Lie group of point symmetries but “inherit” potential
symmetries that allow us to linearize the ODE’s, or to reduce the order by
two.

We have also obtained the equations:

Uy = (gzui_l):m

Uy = (( (uz_t;)s/z ):c (u2+11)1/2 )zz 3

which are invariant under the classical scaling group and admit potential sy-
mmetries. Note that the second and the third of these equations can be gen-
erated by applying the operator

D2(u?® +1)"2D;*

to the previous one. Under the scaling group, the set of equations (10) is
reduced to a set of ODE’s. These ODE’s do not admit any classical point
symmetry but ‘inherit’ potential symmetries that allow us to reduce the order
by one.

3

2 The diffusion equation u; = (u™>uy)zz

We consider the third order diffusion equation
U = (U Uz )z, (11)
which is the second member of (5). This equation admits the four parameter
group of infinitesimal generators
X1 = 61:, X2 = at, X3 = z@z - u@u, X4 = 3t8t -+ u@u

An important class of solutions of (11) arises from its invariance under the
scaling group X = Xs + X,; using this invariance, we have v = u(z) and
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z = zt~1/3, where u satisfies the ODE
zu; + 3(u"%u,),, = 0. (12)
For applications it is important to reduce the order of (12). ODE (12) only

admits a one-parameter Lie group of point transformations with infinitesimals
& = z and ¢ = —u, that allows us to reduce (12) to a second order ODE:

_y6h5 + y5h4 _ 3y2hh” -+ 9y2(h1)2 _ 9y2h2h/ + 6y2h4+

(13)
27yhh — 27yh® + 36R% = 0.

This equation does not admit any classical Lie symmetry. Nevertheless (12)
admits “potential” symmetries derived by considering the associated system

Uy, — U=

’ (14)
3(uu,); +2u —v=0.
System (14) admits a new group of symmetries with infinitesimals
6 =kiz + 77(7)): ¢ = ~kju — nv(v)uz) Y =0, (15)
where 7(v) satisfies the linear equation
MV + 377111)’0 ~n=0. (16)
A solution for (16) is 7 = kyv. Consequently the integrated equation
3(v%.,), F2v. —v =0 (17)

admits a two-parameter Lie group of point transformations with infinitesimals

‘/1 = Zaz; ‘/2 = vaz- (18)

The Lie-bracket is [Vi, V5] = —V; which allows us to reduce (17) first by V;

and then by Vi. The canonical coordinates for V; are w = £, y = v, thus, (17)
is reduced to the linear second order Bessel ODE

3yh” + 9h' + y*h =0, (19)
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where h = wy and ' stands by %. Then, (19) inherits the Lie symmetry V7,

whose projection is 171 = hd) (it is clear that invariance under Vl is just a
consequence from being (19) a linear equation). This symmetry allows us to
reduce (19) to the first order Ricatti ODE,

3tg' +3tg* +9g+t* =0
— — I
where t =y, g = 7.
Remark 1 By making in (12) u = v,, it can be written in the conserved form

[3((vz)‘3vzz)z + zv, — vL = 0. (20)

The integrated equation with ¢ = 0 has the form (17). We have found that
equation (17) admits two generators Vi and Vo. On the other hand, it can
be easily seen that the equation (20) admits the generator Vy. Besides, the
process for the order reduction from (20) to (12) has been done by using the
Lie symmetry 0, of equation (20). Since [8,, V1] = 0, V} is inherited as a Lie
symmetry of equation (12). The corresponding inherited symmetry, z0, —ud,,
is the only Lie symmetry admitted by (12).

The same process can not be done for the other admitted Lie symmetry of (17)
because the vector field Vo = v0, is not a Lie symmetry for equation (20). In
fact, it is o conditional symmetry for the equation (20) because it transforms
only a class of solutions of (20) into solutions of (20), that is those solutions
that verify equation (17).

3 The diffusion equation u; = (uug; ),
Next, we study the third order diffusion equation corresponding to the second
member of the hierarchy (7) i.e.

us = (Utgg)o- (21)

This equation admits the four parameter group of infinitesimal generators
X1=0,; Xo=0, X3z=20,+ud,, Xq=3t0;— ud,.
We consider the reduction of (21) under the group X = —3nX3 + X4, i.e.

uw=w(2)t" 5 z ="
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where w satisfies the ODE

~3nzw, + (3n + Dw + 3(ww.,), = 0. (22)
As in the previous section, now we try to reduce the order of (22). It is worth
noting that in the case n = —é this equation is in a conserved form, conse-

quently an order reduction can be done in a trivial way. We can show that
equation (22) only admits a one-parameter Lie group with infinitesimals

S (23)

that allows us to reduce (22) to the second order ODE
(—3hh" + 9(R")? — 9R*K + 6h*)y® + (9h® — ORR')y® + Py — 3nh* =0,
that does not admit any Lie symmetry.

We also can show that (22) does not admit potential symmetries by setting
w = v,. In this case the ODE (22) becomes

(3(1}311”2 —nzv,) + (6n + 1)v>z =0 (24)

and the associated system is

v, —w=>0
(25)
3wiw,, — 3nzw + (6n+ 1)v =0

that, for n # —%, only admits a one-parameter group of symmetries which
does not correspond to a potential symmetry of (22). In fact, it projects onto
(23). However we can show that by setting w = -, ODE (22) becomes

(—3(?1;,20;3)2 + 3nzv, + v)z =0 (26)

and then, it has a new group of “potential” symmetries derived by considering
the associated system

v,—w=20
(27)
3(w,w™?), — 3nzw —v =0
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which has a new group of symmetries with infinitesimals

£= (1/)'0 + kl)z + 77(7))7 ¢ = w2(¢vvz -+ 7711) —kw, ¥ = w(v) (28)

where 7(v) satisfies

TV + 3wy + 3077 = 0 (29)

and 1 (v) verifies

27/)1)” + 6¢vvv + /l,b - O
(30)
21)&'[1’1),0 + 31,01)1)1}1} + gn’lﬂv = 0.

We choose 1) = 0, besides, a particular solution of (29) is easily found for two
particular values of n. In fact, we have

for ’I’LI—%T]ZkQ’U then & = kyz + kov, ¢ = kyw + kov, P =0,

for n= —% 1 = kov? then & = kyz + kyv?, ¢ = kyw + 2kyvw?, ¢ = 0.

The symmetry groups corresponding to ke # 0 are new symmetry groups of
(22) because ¢ depends explicitly on v and v can not be expressed in terms
of z, u and derivatives of u to some finite order. Next, we consider these two
cases separately:

l-n= —%: We have found that the equation

3(v,07%), + 20, —v =10 (31)
admits a two-parameter Lie group of point transformations with infinitesimals

Vi = 20;, Va =0, ; (32)

the Lie-bracket is [Vq, V2] = —V4 that allow us to reduce the order of (31) first
by V5 to the second order Bessel ODE

3yh” + 9% —3?h =0 (33)
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V=2V,
v2u,

in terms of the new variables, has the form 171 = h0; and allows us to reduce
(33) to the first order ODE,

with y =v and h = Then, (33) inherits the symmetry group Vi, which

3tg' +3tg? + 99—t =0
witht:y,gz%'.
2-n= —%: For this case we have that the equation

3(v.2v7%). + 220, —v =0 (34)

admits a two-parameter Lie group of point transformations with infinitesimals

Vi = 28,, Vs = v20,. (35)

The Lie-braket is [V, Vo] = —V4, thus, we can reduce (34) first by V; to the
second order Bessel ODE

3y*h" + 18yh' + 18h + y*h =0 (36)
with y = v, h = ”—;%}‘Z:’—Z; and then (36) inherits the symmetry group V; that
now takes the form Vi = hd, and allows us to reduce (36) to the Ricatti
equation,

3t%¢' +3t2g% + 18tg + 18 +t3 =0

Withtzy,gz%’,

4 The fourth order diffusion equation u; = [(u™2),,u™ .

Another interesting equation, from the point of view of the symmetry reduc-
tions is the fourth order diffusion equation

Ut = [(U_2)xzu—1]zx; (37)

related to the third member of the hierarchy (3) through the change of varia-
bles t' = —2¢t. This equation admits the four parameter group of infinitesimal
generators

X, =08, Xo=268;, X3=z0,—ub, X4q=4t0;+ ud,.
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An important class of solutions of (37) arises from its invariance under the
scaling group X = —4nX3 + X4, i.e.

u= w(z)tm:l, z=zt"

where w satisfies the ODE

—n(zw, + w) — % + (0w s = 0. (38)

We can show that ODE (38) only admits Lie group of point transformations
of infinitesimals

5 = klz, ¢ = —kl'w.
Nevertheless (38) admits a set of “potential” symmetries derived by conside-
ring the associated system

v, —w =0,
(39)
—nzw — % + [(w™ %), w1, = 0.
In fact, (39) has a group of symmetries with infinitesimals
§ = k]_Z + W(U)a ¢ = _klw - nv(v)wza TP = 0: (40)
where n(v) satisfies the linear equation
oV — 8Nywww + 4nn = 0. (41)
A solution for (41) is = kyv™*™ where n = —1,—1 —3. Consequently, the
integrated equation
—nzu, — Z— + (w7, =0 (42)

admits the two parameter Lie group of infinitesimals
Vi=20, Vo=v0, ifn=—
Vi=20,, Vo=1%0,ifn=—
Vi=20,, Vo=2%0,ifn=—

?

i

W NI e

In the three cases we have [V}, Vs3] = —V5, then we can reduce (42) first by V5
and then by V;. For example, for n = —1 we reduce (42) by V; to the linear
third order ODE

Syh' + 32n" 4+ y2h =0 (43)
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withy = v, h = d%( Z), and then (43) inherits the symmetry group Vi = hoy
that allows us to reduce (43) to the second order ODE,

8tg" + 24tgg — t* + 8tg® + 32¢' +32¢° =0

Withtzy,g:%'.

5 The diffusion equation u; = (m’ll)T/z'u:L‘)
pese )

Next, we study the third order diffusion equation corresponding to the second
member of (10) i.e.

The first member of (10) has been considered in [2]. An important class of
solutions of (44) arises from its invariance under the scaling group X = 20, +
3t0,. Using this invariance we have

u=u(z), z=axt""3

where u satisfies the ODE

1

ZU, + 3(muz)zz

= 0. (45)

For applications it is important to reduce the order of (45). This equation
does not admit any point symmetry but the order can be reduced by using
potential symmetries. In fact, the associated system

v, —u=70

(46)

3 rigyrati=): +2u—v =0,

admits a group of transformations with infinitesimals
§=v, ¢=—-(+1), ¢Y=-z (47)

This symmetry group is a new symmetry group for (45) because £ depends
explicitly on v and v can not be expressed in terms of z, v and derivatives of
% to some finite order. This new group also allows us to reduce the order of
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(45). The canonical coordinates r = (2 + v?), w = arctan (2), corresponding
to (47), lead to express the ODE

Vzz
3 W +Z’l)z—’€)=0

in the form
—3r (1?2 + 1)y +9r%y (vr) 24+ 9720 %y =y —r 2y (r2y?4+-1)52 43135 +12ry° = 0,

where y = w,.

6 Conclusions

In this paper we have considered a family of diffusion PDE’s which admit
potential symmetries as well as point symmetries. An important class of so-
lutions of these equations arises from its invariance under the scaling group,
using this invariance we get a family of ODE’s. Knowing the importance of
reducing the order of these ODE’s, we have derived potential symmetries for
them. We have found:

e ODE’s, such as (45), which do not admit point symmetries, but whose order
can be reduced by using a potential symmetry.

e ODE’s, such as (12),(22) and (38), which just admit a one-parameter Lie
group of point symmetries and the corresponding reduced equations do not
admit Lie symmetries. Nevertheless we have used potential symmetries to
reduce the order by two as well as to linearize them.

Similar results, that will appear in a separated paper [4], have been obtained
for a generalized form of equation (11).
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