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C∞-symmetries and non-solvable symmetry algebras
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If an ordinary differential equation admits the non-solvable Lie algebra sl(2, R) as
symmetry algebra then, when the classical Lie method of reduction is applied, at least
one of its generators cannot be used to obtain a second order reduction. In this paper it is
proved that these generators can be recovered as C∞-symmetries of the reduced equations.
These C∞-symmetries can be used to new-order reductions if the order of the last reduced
equations is higher than one. As a consequence, a classification of the third-order equations
that admit sl(2, R) as symmetry algebra is given. This step by step method of reduction is
applied to the Chazy equation.
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1. Introduction

It is well known (Olver, 1986; Ovsiannikov, 1982; Stephani, 1989) that if an nth-order
differential equation admits a k-dimensional Lie algebra, G, as symmetry algebra then
its general solution can be obtained by means of the general solution of an (n − k)th-
order reduced equation and the solution of a kth-order auxiliary equation. If G is solvable,
then the general solution of the corresponding auxiliary equation can be obtained by k
successive quadratures. Nevertheless, if G is non-solvable, this step by step method of
reduction is no longer applicable. The main reason for this is that, in certain stage of
the reduction process, at least one of the generators of G cannot be used to proceed with
the order reductions. In this case we will say, roughly speaking, that the corresponding
symmetries have been lost, or that these generators are lost symmetries, for the reduced
equations.

In the literature, many recent studies about lost symmetries can be found (Abraham-
Shrauner & Guo, 1992, 1993; Abraham-Shrauner, 1993, 1995; Guo & Abraham-Shrauner,
1993; Govinder & Leach, 1995, 1997; Abraham-Shrauner et al., 1995a,b; Leach et al.,
1999). These lost symmetries are called type I hidden symmetries and they are difficult
to evaluate because there is no general method for determining them. Some indirect
methods for hidden symmetries have been introduced (Abraham-Shrauner, 1995) and some
non-local symmetries for some specific ordinary differential equations have been studied
(Krause, 1994; Govinder & Leach, 1995, 1997). Previously, Olver (1986) pointed out, in
two examples, the usefulness of what he called exponential vector fields (although they are
not well-defined vector fields), that can be considered the origin of the hidden symmetries
theory.
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The importance of the study of hidden symmetries lies in the fact that they can be
used to reduce the order of differential equations for which the classical Lie method is
not applicable. As an example, González-López (1988) introduced a family of second-
order differential equations that can be integrated, but whose point symmetry group is
trivial. There are many recent works that try to explain the integrability of these equations
(Govinder & Leach, 1995, 1997; Abraham-Shrauner et al., 1995a; Leach et al., 1999). The
central principle of these works is to increase the order of the equation by a transformation
which produces a Lie symmetry in the higher-order equation. The main difficulty of this
method is that the form of the transformations must be assumed a priori, and not all of
them are useful.

In Muriel & Romero (2001) we have introduced a new class of symmetries, that strictly
includes Lie symmetries, for which there exists an algorithm that lets us reduce the order of
an ordinary differential equation. They are called C∞-symmetries, and must satisfy a new
prolongation formula that provides a procedure to determine them. Many of the known-
order reduction processes, that are not consequence of the existence of Lie symmetries,
are a consequence of the invariance of the equation under C∞-symmetries. In particular,
the integrability of the family of equations that appears in González-López (1988) has
been explained by the existence of non-trivial C∞-symmetries. We have also found some
ordinary differential equations whose Lie symmetries are trivial and have no obvious order
reductions, but can be completely integrated using the new class of symmetries.

Type I hidden symmetries can be recovered as C∞-symmetries of the reduced
equations and, in particular, the C∞-symmetries that are consequence of the invariance
of the equation under exponential vector fields can be calculated through a well-defined
algorithm. While hidden symmetries are manifested as non-local symmetries of the
reduced equations, whose coordinate functions depend on integrals of the dependent and
independent variables, the C∞-symmetries of an equation are well-defined vector fields on
the space of the variables of the equation.

In this paper, we consider nth-order differential equations that are invariant under the
non-solvable Lie group SL(2, R). A base of generators {X1, X2, X3} of the Lie algebra
sl(2, R) can always be chosen such that the corresponding Lie brackets are given by

[X1, X2] = X1,

[X1, X3] = 2X2,

[X2, X3] = X3.

(1.1)

If we use, for instance, the vector field X1 (resp. X3) to reduce the order of the equation,
the Lie symmetry X2 is inheritable as Lie symmetry of the reduced equation, but X3
(resp. X1) is not inheritable as Lie symmetry. The worst option is to use X2 first to reduce
the order, because both X1 and X3, are not inheritable as Lie symmetries of the equation
obtained at the first step of the reduction. We prove here that the lost symmetries can be
recovered as C∞-symmetries for the reduced equations, and, in consequence, they can be
used to reduce successively the order of the equation by three.

In particular, the method provides a complete classification of the third-order
differential equations that admit the unimodular group SL(2, R) as symmetry group, and
we have obtained the simplest form of the first-order equations that appear in the last stage
of the reduction process.
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This step by step method of reduction is applied to the Chazy equation in the final
section of this paper. The Chazy equation is a simple example of an ordinary differential
equation whose solutions have a moveable natural boundary (Chazy, 1909). In recent years
the Chazy equation has assumed added importance because it appears as a reduction
of the self-dual Yang–Mills equations(Chakravarty et al. 1990). In Clarkson & Olver
(1996) and Clarkson (1997) the Chazy equation is studied from a symmetry point of
view. The symmetry group associated to the Chazy equation is the most complicated of
the three known actions of SL(2, C) on two-dimensional complex spaces, classified by
Lie. Clarkson & Olver (1996) describe a connection between these three actions via the
standard prolongation process, and use this to interrelate their differential invariants. It
allows them to construct fundamental differential invariants of the most complicated action
from those of the basic unimodular action. If the original equation is written in terms of
these fundamental invariants, its order is reduced by three. This method leads to a formula
for the solution of the Chazy equation in terms of solutions of the Lamé equation, that the
authors relate to a hypergeometric equation via an elliptic change of variables.

When the step by step method of reduction based on the C∞-symmetries is applied to
the Chazy equation, we obtain a Riccati equation, whose general solution can be expressed
in terms of the Legendre functions. The general solution of the Chazy equation can be
obtained from the general solution of the Riccati equation via two quadratures.

2. Notation and preliminary results

Let us consider an nth-order ordinary differential equation

∆(x, u(n)) = 0, (2.2)

with (x, u) ∈ M , for some open subset M ⊂ X × U � R
2. We denote by M (k) the

corresponding k-jet space M (k) ⊂ X × U (k), for k ∈ N. Their elements are (x, u(k)) =
(x, u, u1, . . . , uk), where, for i = 1, . . . , k, ui denotes the derivative of order i of u with
respect to x . We assume that the implicit function theorem can be applied to (2.2), and, as
a consequence, that this equation can locally be written in the explicit form

un = Ψ(x, u(n−1)). (2.3)

The vector field

A(x,u) = ∂

∂x
+ u1

∂

∂u
+ · · · +Ψ(x, u(n−1))

∂

∂un−1
(2.4)

will be called the vector field associated to (2.3).

2.1 Lie symmetries and order reductions

It is well known (Stephani, 1989) that a vector field X on M is a Lie symmetry of the
equation (2.3) if and only if there exists a function ρ ∈ C∞(M (1)) such that

[X (n−1), A(x,u)] = ρ A(x,u), (2.5)
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where X (n−1) denotes the usual (n − 1)th prolongation of the vector field X .
A Lie symmetry X can be used to reduce the order of the equation by one: we introduce

variables {y = y(x, u), α = α(x, u)} such that the vector field X can be written as X =
∂/∂α, in some open set of variables {y, α}, that will also be denoted by M . Let us observe
that we have used the same letter X for the vector field written in variables {y, α}. This
should not cause misunderstanding: in what follows, the set of variables that must be used
will be clear from the context.

Since X is a Lie symmetry of (2.3) it can be written in terms of variables {y, α} in the
form

αn = Φ(y, α1, α2, . . . , αn−1). (2.6)

It can easily be checked that the vector field associated to (2.6) is the vector field

A(y,α) = 1

Dx (y(x, u))
A(x,u), (2.7)

written in the new variables, where Dx denotes the total derivative operator with respect
to x .

If we set w = α1 in (2.6) we obtain a reduced equation

wn−1 = Φ(y, w, w1, . . . , wn−2), (2.8)

where (y, w) are in some open set M1 ⊂ R
2.

Let π(k)
X : M (k)→ M (k−1)

1 be the projection (y, α, α1, . . . , αk) �→ (y, w, . . . , wk−1) =
(y, α1, . . . , αk), for k ∈ N. A vector field V on M (k) will be called π

(k)
X -projectable if

[X (k), V ] = f X (k) (2.9)

for some function f ∈ C∞(M (k)). This implies that V must take the following form in the
variables {y, α(k)}:

V = ξ(y, α1, . . . , αk)
∂

∂y
+ η(y, α, α1, . . . , αk)

∂

∂α
+

k∑
i=1

ηi (y, α1, . . . , αk)
∂

∂αi
. (2.10)

The π
(k)
X -projection of V on M (k−1)

1 is the vector field

(π
(k)
X )∗(V ) = ξ(y, w, . . . , wk−1)

∂

∂y
+

k∑
i=1

ηi (y, w, . . . , wk−1)
∂

∂wi−1
. (2.11)

With this definition, it can be checked that the vector field A(y,α) is π
(n−1)
X -projectable

and its projection is the vector field A(y,w) associated to the reduced equation (2.8).

2.2 C∞-symmetries and order reductions

The concept of Lie symmetry for an ordinary differential equation can be generalized in
several ways: conditional symmetries, Lie–Bäcklund symmetries, etc. In Muriel & Romero
(2001) we have introduced the concept of C∞-symmetry. This concept is somewhat similar
to the concept of Lie symmetry, but it is based on a different way of prolonging vector
fields.
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DEFINITION 2.2.1 New prolongation formula. Let X = ξ(x, u)∂/∂x + η(x, u)∂/∂u
be a vector field defined on M , and let λ ∈ C∞(M (1)) be an arbitrary function. The
λ-prolongation of order n of X , denoted by X [λ,(n)], is the vector field defined on M (n)

by

X [λ,(n)] = ξ(x, u)
∂

∂x
+

n∑
i=0

η[λ,(i)](x, u(i))
∂

∂ui
, (2.12)

where η[λ,(0)](x, u) = η(x, u) and

η[λ,(i)](x, u(i)) = Dx (η
[λ,(i−1)](x, u(i−1)))− Dx (ξ(x, u))ui

+ λ(η[λ,(i−1)](x, u(i−1))− ξ(x, u)ui ) (2.13)

for 1 � i � n.

DEFINITION 2.2.2 Let ∆(x, u(n)) = 0 be an nth-order ordinary differential equation. We
will say that a vector field X , defined on M , is a C∞(M (1))-symmetry of the equation if
there exists a function λ ∈ C∞(M (1)) such that

X [λ,(n)](∆(x, u(n))) = 0 when ∆(x, u(n)) = 0. (2.14)

In this case we will also say that X is a λ-symmetry, or a C∞-symmetry if there is no
confusion.

Recall that if X is a 0-symmetry then X is a classical Lie symmetry.
In Muriel & Romero (2001) it is proved that a vector field X on M is a C∞(M (1))-

symmetry of (2.3) if and only if there exist two functions, λ, ρ ∈ C∞(M (1)), such that

[X [λ,(n−1)], A(x,u)] = λX [λ,(n−1)] + ρ A(x,u). (2.15)

We have also proved that if X is a C∞(M (1))-symmetry then there exists a procedure
to reduce the equation to an (n − 1)th-order equation and a first-order equation.

THEOREM 2.2.1 Let X be a λ-symmetry, with λ ∈ C∞(M (1)), of the equation
∆(x, u(n)) = 0. Let y = y(x, u) and w = w(x, u, u1) be two functionally independent
invariants of X [λ,(n)]. The general solution of the equation can be obtained by solving an
equation of the form ∆r (y, w(n−1)) = 0 and an auxiliary equation w = w(x, u, u1).

The equation ∆r (y, w(n−1)) = 0 can be constructed as follows: if y = y(x, u) and
w = w(x, u, u1) are two functionally independent invariants of X [λ,(n)], then the set

y, w, w1 = Dxw

Dx y
, . . . , wn−1 = Dxwn−2

Dx y
(2.16)

constitutes a complete system of functionally independent invariants of X [λ,(n)] and,
therefore, the equation can be written in terms of {y, w, w1, . . . , wn−1}.
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3. C∞-symmetries and conservation of symmetries for the Lie algebra sl(2, R)

Let us consider an nth-order differential equation

∆(x, u(n)) = 0 (3.17)

that admits the non-solvable Lie algebra sl(2, R) as symmetry algebra. A base of generators
{X1, X2, X3} of sl(2, R) such that the corresponding Lie brackets are given by (1.1) can
always be chosen. Since this Lie algebra is not solvable, the well-established Lie symmetry
methods of reduction (see, for instance, Olver, 1986) produce the loss of at least one Lie
symmetry at a certain step of the reduction.

Next we study how the lost symmetries can be recovered as C∞-symmetries for the
reduced equations, and how they can be used to reduce successively the order of (3.17)
by three when n > 3. It is sufficient to study the use of sequences that begin with X1,
because the study of the reduction process that begin with X3 is similar: the corresponding
transformation groups associated to X1 and X3 are equivalent under a point transformation.

3.1 Option A: use of the Lie symmetry X1

3.1.1 First step: use of the Lie symmetry X1. With the notation introduced in the
previous section, if the Lie symmetry X1 is used to reduce the order of (3.17), the reduced
equation

∆(y, w(n−1)) = 0 (3.18)

is obtained, where (y, w) ∈ M1.
Since [X (k)

1 , X (k)
2 ] = X (k)

1 , the vector field X (k)
2 is π

(k)
X1

-projectable, for k ∈ N. It can
be checked that

((π
(1)
X1

)∗(X (1)
2 ))(k−1) = (π

(k)
X1

)∗(X (k)
2 ). (3.19)

The corresponding projection on M1, namely (π
(1)
X1

)∗(X (1)
2 ) will be denoted by Y2. The

next result holds.

THEOREM 1 The vector field Y2 is a Lie symmetry of (3.18).

Proof. We must prove that

[Y (n−2)
2 , A(y,w)] = ρ2 · A(y,w) (3.20)

for some function ρ2 ∈ C∞(M (1)
1 ). By (3.19), it can be checked that

[Y (n−2)
2 , A(y,w)] = [((π(1)

X1
)∗(X (1)

2 ))(n−2), (π
(n−1)
X1

)∗(A(y,α))]
= [(π(n−1)

X1
)∗(X (n−1)

2 ), (π
(n−1)
X1

)∗(A(y,α))]
= (π

(n−1)
X1

)∗([X (n−1)
2 , A(y,α)]).

(3.21)

By hypothesis X2 is a Lie symmetry of the original equation. In variables {y, α(n−1)} we
can write
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[X (n−1)
2 , A(y,α)] = ρ̃2 · A(y,α), where ρ̃2 = −A(y,α)(X2(y)) ∈ C∞(M (1)). (3.22)

Since X (1)
1 (ρ̃2) = −A(y,α)(X (1)

1 (X (1)
2 (y))) = −A(y,α)(0) = 0, the function ρ̃2 ∈

C∞(M (1)) is X (1)
1 -invariant. Therefore, ρ̃2 = (π

(1)
X1

)∗(ρ2) for some ρ2 ∈ C∞(M1), and
thus

[Y (n−2)
2 , A(y,w)] = (π

(n−1)
X1

)∗(ρ̃2 A(y,α))

= ρ2 · (π(n−1)
X1

)∗(A(y,α)) = ρ2 · A(y,w). (3.23)

This concludes the proof. �

Let us denote by {z = z(y, w), β = β(y, w)} the change of variables such that Y2 takes
the canonical form Y2 = ∂/∂β. If we set µ = βz , the order of (3.18) is reduced by one:

∆(z, µ(n−2)) = 0, (3.24)

where (z, µ) ∈ M2 for some open set M2 ⊂ R
2.

Observe that the vector field X3 is not πX1 -projectable, hence at the first stage of the
reduction the Lie symmetry X3 has been lost. The symmetry X3 can be recovered, at
the second step of the reduction, as a C∞-symmetry of (3.24). In order to prove this, we
consider the map π such that the following diagram is commutative:

π

M (2) −−→ M2

π
(2)
X1
↓ ↑ π

(1)
Y2

M (2) ←−− M2
ϕ

(3.25)

where ϕ stands for the change of variables (y, w, wy) �→ (z, β, βz), and π
(1)
Y2

(z, β, βz) =
(z, µ) = (z, βz).

3.1.2 Second step: use of the Lie symmetry Y2. In the following theorem it is proved
how the vector field X3 can be recovered as a C∞-symmetry of the reduced equation (3.24).

THEOREM 2 There exists a function f3 ∈ C∞(M (1)) such that the vector field f3 X (2)
3 is

π -projectable and its projection on M2, (π)∗( f3 X (2)
3 ) is a C∞-symmetry of (3.24).

Proof. Let f̃3 ∈ C∞(M1) be such that Y2( f̃3) = − f̃3 and let us write f3 = (π
(1)
Y2

)∗( f̃3).

The function f3 is, by construction, an X (1)
1 -invariant function. The vector field f3 X (2)

3 is

π
(2)
Y2

-projectable because

[X (k)
2 , f3 X (k)

3 ] = 0. (3.26)
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TABLE 1

[·, ·] X (n−1)
1 X (n−1)

2 f3 X (n−1)
3 �A(y,α)

X (n−1)
1 0 X (n−1)

2 2 f3 X (n−1)
2 0

X (n−1)
2 0 0 0

f3 X (n−1)
3 0 λ̃3( f3 X (n−1)

3 )+ ρ̃3(�A(y,α))

We also have

[X (k)
1 , f3 X (k)

3 ] = 2 f3 X (k)
2 + X (k)

1 ( f3)X (k)
3 = 2 f3 X (k)

2 . (3.27)

Clearly, expressions (3.26) and (3.27) show that f3 X (k)
3 is a π(k)-projectable vector

field. Next we prove that its π -projection on M2, namely (π)∗( f3 X (2)
3 ), is a C∞-symmetry

of (3.24). We first observe that the vector field associated to (3.24) is

A(z,µ) = (π(n−3))∗(�A(y,α)), (3.28)

where � = 1/Dyz (see (2.7)) and � is X (2)
1 -invariant.

The vector field X3 is a Lie symmetry of the original equation, and in variables
{y, α(n−1)} we can write

[ f3 X (n−1)
3 , �A(y,α)] = λ̃3( f3 X (n−1)

3 )+ ρ̃3(�A(y,α)) (3.29)

for some functions λ̃3, ρ̃3.
Thus, we get

[(π(n−3))∗( f3 X (n−1)
3 ), (π(n−3))∗(�A(y,α))] = (π(n−3))∗([ f3 X (n−1)

3 , �A(y,α)])
= (π(n−3))∗(̃λ3( f3 X (n−1)

3 )+ ρ̃3(�A(y,α))).
(3.30)

Table 1 shows the corresponding Lie brackets.
Jacobi’s identity applied to the families of vector fields {X (n−1)

2 , f3 X (n−1)
3 , �A(y,α)}

and {X (n−1)
1 , f3 X (n−1)

3 , �A(y,α)}, leads to the following relations:

X (n−1)
2 (̃λ3) · f3 X (n−1)

3 + X (n−1)
2 (ρ̃3) · �A(y,α) = 0 (3.31)

and

X (n−1)
1 (̃λ3) · f3 X (n−1)

3 + X (n−1)
1 (ρ̃3) · �A(y,α) + 2(�A(y,α)( f3)+ λ̃3 f3)X (n−1)

2 = 0.
(3.32)

Equation (3.31) shows that the functions λ̃3 and ρ̃3 are X (n−1)
2 -invariant. From (3.32)

it follows that the functions λ̃3 and ρ̃3 are X (n−1)
1 -invariant.
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We set (π(n−3))∗(λ3) = λ̃3, (π
(n−3))∗(ρ3) = ρ̃3, and thus

[(π(n−3))∗( f3 X (n−1)
3 ), A(z,µ)] = λ3(π

(n−3))∗( f3 X (n−1)
3 )+ ρ3 A(z,µ). (3.33)

Write Z3 = (π(2))∗( f3 X (2)
3 ). By (2.15) and (3.33), Z3 is a λ3-symmetry of (3.24). �

3.1.3 Third step: use of the C∞-symmetry Z3. The (n − 2)th-order (3.24) obtained at
the second stage of the reduction process admits the vector field Z3 as a C∞-symmetry
and it can be used to reduce the order of the equation again.

3.2 Option B: use of the Lie symmetry X2

3.2.1 First step: use of the Lie symmetry X2. If the Lie symmetry X2 is used to reduce
the order of (3.17), we obtain an equation in the form

∆(y, w(n−1)) = 0. (3.34)

The Lie symmetries X1, X3 are lost for this reduced equation. However, they can be
recovered as C∞-symmetries. This result is proved in the following theorem.

THEOREM 3 There exist two functions f1, f3 ∈ C∞(M) such that the vector fields
f1 X (1)

1 and f3 X (1)
3 are π

(1)
X2

-projectable. Their projections on M1, (π
(1)
X2

)∗( f1 X (1)
1 ) and

(π
(1)
X2

)∗( f3 X (1)
3 ), are C∞-symmetries of (3.34).

Proof. Let f1, f3 ∈ C∞(M) be such that

X2( f1) = f1, X2( f3) = − f3. (3.35)

We have

[ f1 X (k)
1 , X (k)

2 ] = 0, [X (k)
2 , f3 X (k)

3 ] = 0 (3.36)

for k ∈ N; therefore the vector fields f1 X (1)
1 , f3 X (1)

3 are π
(1)
X2

-projectable. Let us denote

Yi = (π
(1)
X2

)∗( fi X (1)
i ) for i = 1, 3.

By using the prolongation formula given in Definition 2.2.1, it can be checked that
( f X (1))(k) = f (X)[λ,(k)], where λ = −D( f )/ f . Hence

((π
(1)
X2

)∗( fi X (1)
i ))(k) = Y [λi ,(k)]

i , λi = −Dy( fi )

fi
(i = 1, 3). (3.37)

Since X1 and X3 are Lie symmetries of the original equation, in variables {y, α(n−1)}
we can write

[ fi X (n−1)
i , A(y,α)] = λ̃i fi X (n−1)

i + ρ̃i A(y,α) (i = 1, 3) (3.38)

for some functions λ̃i , ρ̃i . It can be checked, by using Jacobi’s identity for the families of
vector fields {X (n−1)

2 , f1 X (n−1)
1 , A(y,α)} and {X (n−1)

2 , f3 X (n−1)
3 , A(y,α)}, that the functions
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λ̃i and ρ̃i are X (1)
2 -invariant. We define λi and ρi by (π

(n−1)
X2

)∗(λi ) = λ̃i and

(π
(n−1)
X2

)∗(ρi ) = ρ̃i for i = 1, 3. Therefore,

[Y [λi ,(n−1)]
i , A(y,w)] = [(π(n−1)

X2
)∗( fi X (n−1)

i ), (π
(n−1)
X2

)∗(A(y,α))]
= (π

(n−1)
X2

)∗(λ̃i fi X (n−1)
i + ρ̃i A(y,α))

= λi (π
(n−1)
X2

)∗( fi X (n−1)
i )+ ρi (π

(n−1)
X2

)∗(A(y,α))

= λi Y
[λi ,(n−1)]
i + ρi A(y,w). (3.39)

This concludes the proof. �

As a consequence of the previous theorem, any of the two C∞-symmetries, Y1 and Y3,
can be used to reduce the order of (3.34). We only study here the use of the C∞-symmetry
Y1, because the corresponding study for the vector field Y3 is similar.

3.2.2 Second step: use of the C∞-symmetry Y1. We choose a system of coordinates
{z = z(y, w), β = β(y, w)} such that Y1 can be written as ∂/∂β. Let µ = µ(z, β, βz) be
an invariant of Y1

[λ1,(1)] such that it is functionally independent of z. Thus, we obtain an
order reduction for (3.34) by using Y1, which can be written in explicit form as

µn−2 = Φ(z, µ(n−3)), (3.40)

where (z, µ) ∈ M2 for some open set M2 ⊂ R
2. Write π

[λ1,(k)]
Y1

: M (k)→ M (k−1)
2 for

the map (z, β, µ, µ1, . . . , µk−1) �→ (z, µ, µ1, . . . , µk−1). The vector field associated
to (3.40) is

A(z,µ) = (π
[λ1,(n−2)]
Y1

)∗(A(z,β,µ)), (3.41)

where A(z,β,µ) denotes the vector field

A(z,β,µ) = ∂

∂z
+ βz

∂

∂β
+ µ1

∂

∂µ
+ · · · + Φ(z, µ(n−3))

∂

∂µn−3
. (3.42)

THEOREM 4 There exists a function g3 ∈ C∞(M1) such that g3Y3 is π
[λ1,(1)]
Y1

-projectable

and its projection (π
[λ1,(1)]
Y1

)∗(g3Y3) is a C∞-symmetry of (3.40).

Proof. It can be checked that

[Y [λ1,(k)]
1 , Y [λ3,(k)]

3 ] = c1Y [λ1,(k)]
1 + c3Y [λ3,(k)]

3 (3.43)

for some functions c1, c3 ∈ C∞(M1). Let g3 ∈ C∞(M1) be a function such that Y1(g3) =
−c3g3. Then

[Y [λ1,(k)]
1 , g3Y [λ3,(k)]

3 ] = g3c1Y [λ1,(k)]
1 (3.44)

and, hence, g3Y [λ3,(1)]
3 is π

[λ1,(k)]
Y1

-projectable.
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Since Y3 is a C∞-symmetry of (3.34), in variables {z, β, µ} we can write

[g3Y [λ3,(n−2)]
3 , A(z,β,µ)] = λ̂3g3Y [λ3,(n−2)]

3 + ρ̂3 A(z,β,µ). (3.45)

By Jacobi’s identity for the vector fields {Y [λ1,(n−2)]
1 , g3Y [λ3,(n−2)]

3 , A(z,β,µ)} we get a
functional relation of the form

0 = F1Y [λ1,(n−2)]
1 + F2g3Y [λ3,(n−2)]

3 + F3 A(z,β,µ), (3.46)

where

F1 = Y [λ1,(n−2)]
1 (̂λ3) (3.47)

and

F3 = Y [λ1,(n−2)]
1 (ρ̂3). (3.48)

Thus, the functions λ̂3 and ρ̂3 are Y [λ1,(n−2)]
1 -invariant. Hence, if λ′3 and ρ′3 are such

that (π(n−2))∗(λ′3) = λ̂3 and (π(n−2))∗(ρ′3) = ρ̂3, we finally obtain

[(π [λ1,(n−2)]
Y1

)∗(g3Y [λ3,(n−2)]
3 ), A(z,µ)] = λ′3(π

[λ1,(n−2)]
Y1

)∗(g3Y [λ3,(n−2)]
3 )+ ρ′3 A(z,µ).

(3.49)

Therefore (π
[λ1,(1)]
Y1

)∗(g3Y [λ3,(1)]
3 ) is a λ′3-symmetry of (3.40), that will be denoted by Z3.

�

3.2.3 Third step: use of the C∞-symmetry Z3. The (n − 2)th-order equation obtained
at the second stage, once we have used the Lie symmetry X2 and the C∞-symmetry Y1,
admits the vector field Z3 as a C∞-symmetry, that can be used to reduce again the order of
the equation.

3.3 Recovery of solutions

The method of reduction by using C∞-symmetries allows us to reduce the order of any
equation admitting sl(2, R) as symmetry algebra by three successive order-one reductions.
As a consequence, the general solution of the original equation can be obtained through
the reduced one by solving three auxiliary first-order equations. Moreover, if the order
reduction process is carried out by following option A, two of these three first-order
equations can be solved by integration. From the general solution of (3.24), namely
µ = H(z), we obtain the general solution of (3.18) by integrating with respect to
z : β = ∫

H(z) dz = G(z). From β(y, w) = G(z(y, w)), w can locally be expressed as
w = G̃(y) and the general solution of (3.17) is obtained by integration with respect to
y : α = ∫

G̃(y) dy = F(y), that is, α(u, x) = F(y(x, u)) is the general solution of (3.34).
The solution of (3.24) is obtained from the solution of the last reduced equation by solving
the corresponding first-order auxiliary equation of Theorem 2.2.1.
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In the case of option B, the auxiliary equation that allows us to recover the general
solution of (3.34) from the solution of (3.40) can be solved by integration with respect
to y.

If the order of the original equation is three, after two order reductions, a first-order
differential equation is obtained. At this last step of the reduction, the Lie symmetry that
has been lost can be recovered as a C∞-symmetry. In the following section, we show how
the method of the C∞-symmetries is used to classify the first-order equations that appear
in the last step of the reduction process.

4. General method to solve a third-order equation admitting the non-solvable
symmetry algebra sl(2, R)

Let

∆(x, u(3)) = 0 (4.50)

be an arbitrary third-order equation admitting sl(2, R) as symmetry algebra.
There are four different actions of the group SL(2, R) on a two-dimensional real

manifold (González-López et al., 1992). Each one of these actions can be modelled by
the transformation group generated by the following vector fields:

Case 1: X1 = ∂

∂x
, X2 = x

∂

∂x
, X3 = x2 ∂

∂x
, (4.51)

Case 2: X1 = ∂

∂x
+ ∂

∂u
, X2 = x

∂

∂x
+ u

∂

∂u
, X3 = x2 ∂

∂x
+ u2 ∂

∂u
, (4.52)

Case 3: X1 = ∂

∂x
, X2 = x

∂

∂x
+ u

∂

∂u
, X3 = x2 ∂

∂x
+ 2xu

∂

∂u
, (4.53)

Case 4: X1 = ∂

∂x
, X2 = x

∂

∂x
+ u

∂

∂u
, X3 = (x2 − u2)

∂

∂x
+ 2xu

∂

∂u
. (4.54)

By means of a change of variables in (4.50), we can assume that the symmetry algebra
is generated by one of the vector fields {X1, X2, X3} given in (4.51)–(4.54). For each of
these four cases we have studied the different reduction processes described in the previous
section.

The results are summarized in Tables 2–5. The variables x, u are used for the original
equation; the variables y, α are the coordinates such that the vector field used in the first
reduction can be written in the canonical form ∂/∂α. We set αy = w and thus y, w are
the independent and dependent variables of the equation obtained at the first stage of
the reduction. In the second stage of the reduction, we use variables z, β, µ such that
the corresponding vector field is of the form ∂/∂β. Remember that µ coincides with βz

only in the case when the vector field is a Lie symmetry, otherwise µ is a first-order
invariant. In the boxes corresponding to inherited symmetries we show the symmetries, and
the corresponding function λ for which they are λ-symmetries. If λ = 0, the symmetries
are Lie symmetries. Every symmetry has been obtained by the method described in the
previous theorems. We have included an Appendix where the option B of case 1 is worked
out in full detail.
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TABLE 2 Case 1: X1 = ∂/∂x, X2 = x∂/∂x, X3 = x2∂/∂x

Use of X1 Use of X2

I y = u, α = x , y = u, α = ln(x),
Y2 = w∂/∂w Y1 = −w∂/∂w

λ2 = 0 λ1 = −w

Use of Y2 Use of Y1
II z = y, β = ln(w), z = y, β = − ln(w),

µ = βz µ = βz − e−β

Z3 = 2∂/∂µ, Z3 = −2∂/∂µ

λ3 = µ λ3 = −µ

Use of Z3 Use of Z3
III s = z, r = 1

2µ s = z, r = − 1
2µ

Reduced equation
rs = r2 + C(s)

We have omitted the symmetries corresponding to the vector field X3 because they can
be deduced from the tables: by using the following changes of variables, X1 is transformed
into X3, X3 into X1 and X2 into −X2:

Case 1: x̄ = −1

x
, ū = u; Case 2: x̄ = − 1

x
, ū = −1

u
;

Case 3: x̄ = −1

x
, ū = − u

x2
; Case 4: x̄ = − x

x2 + u2
, ū = u

x2 + u2
.

(4.55)

In every one of cases 1–4, C(s) is a function that depends on the original equation.
We emphasize that the reduction process has been performed step by step and, as a
consequence, the general solution of the original equation can be obtained from the reduced
one by solving two first-order differential equations. In the case of option A, these two
equations can be solved directly by integration, as was stated in Section 3.3.

In the case of option B, one of these equations can be solved by integration. If µ =
H(z) denotes the general solution of the last reduced equation, it can be checked that the
other corresponding auxiliary first-order equations are the following:

Case 1: βz − e−β = H(z),
Case 2: (1− eβ + eββz)H(z) = eββz ,
Cases 3, 4: βz = H(z)(β − z).

The auxiliary equations obtained for Cases 3 and 4 are linear, and the equations
corresponding to Cases 1 and 2 can easily be transformed into linear first-order equations.
In conclusion, the step by step process of reduction allows us to recover the general solution
of the original equations by integration or by solving first-order equations that are linear.
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TABLE 4 Case 3: X1 = ∂
∂x , X2 = x ∂

∂x + u ∂
∂u , X3 = x2 ∂

∂x + 2xu ∂
∂u

Use of X1 Use of X2

I y = u, α = x , y = x
u , α = ln(u),

Y2 = y ∂
∂y Y1 = ∂

∂y + w2 ∂
∂w

λ2 = 0 λ1 = −w

Use of Y2 Use of Y1
II z = w, β = ln(y), z = y + 1

w , β = y,

µ = βz µ = βz

β − z

Z3 = −2 z2 ∂

∂z
+ 2 µ z (3+ µ z)

∂

∂µ
Z3 = −2z2 ∂

∂z − 2zµ(−3+ zµ] ∂
∂µ

λ3 = µ λ3 = −µ

Use of Z3 Use of Z3

III s = 2

µ z3
+ 1

z2
, r = 1

2 z
, s = 1

z2
− 2

z3µ
, r = 1

2z
,

Reduced equation
rs = (4r2 − s)C(s)

4.1 Classification of equations

As a consequence of the step by step method of reduction, a complete classification of
the third order ordinary differential equations that admit the non-solvable Lie algebra
sl(2, R) as symmetry algebra can be carried out. If we write each of the first-order reduced
equations, obtained in Tables 2–5, in terms of the original system of coordinates, we obtain
the third-order differential equations that admit sl(2, R) as symmetry algebra. They are
shown in Table 6, together with the associated reduced equations.

5. The Chazy equation

In this section we apply the results obtained in the previous sections to the particular case of
the Chazy equation. The simplest of the equations introduced by Chazy (1909, 1910, 1911)
takes the form

vxxx = 2vvxx − 3v2
x . (5.56)

The Chazy equation is important since it is the simplest example of an ordinary
differential equation whose solutions have a moveable natural boundary. In recent years
the importance of the Chazy equation has increased because it appears as a reduction of
the self-dual Yang–Mills equations (Chakravarty et al., 1990).
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TABLE 6

Original equations Reduced equations

Case 1 u3 =
3 u2

2
2 u1
− 2 u3

1 C(u) rs = r2 + C(s)

Case 2 u3 =
3 u2

2
2 u1
+ u2

1

2 (u − x)2C((2 u1 + 2 u2
1 + u2 (−u + x))u−3/2

1 )
rs = (2+ 2r2 − rs)C(s)

Case 3 u3 = −1

8 u2C(u2
1 − 2 u u2)

rs = (4r2 − s)C(s)

Case 4 u3 =
3 u1 u2

2

1+ u2
1

+ (1+ u2
1)

2

2 u2C((1+ u2
1 + u u2)(1+ u2

1)
−3/2

)
rs = (s + sin(2r))C(s)

It is well known that the Chazy equation admits a three-dimensional symmetry group
with infinitesimal generators:

X1 = ∂

∂x
, X2 = x

∂

∂x
− v

∂

∂v
, X3 = x2 ∂

∂x
− (2xv + 6)

∂

∂v
. (5.57)

The corresponding Lie brackets are given by (1.1). By means of the map u = x + 6/v, the
Lie algebra (5.57) is mapped to the Lie algebra (4.52):

X1 = ∂

∂x
+ ∂

∂u
, X2 = x

∂

∂x
+ u

∂

∂u
, X3 = x2 ∂

∂x
+ u2 ∂

∂u
, (5.58)

and equation (5.56) becomes

(u − x)2uxxx = 6 (−ux + 2 ux
2 − ux

3 + u uxx + u ux uxx − uxx x − ux uxx x). (5.59)

5.1 Order reductions and recovery of solutions

The general solutions of the Riccati equations of the form

rs = (2+ 2r2 − rs)C(s) (5.60)

that arise as consequences of the order reduction processes corresponding to symmetry
algebras of type (4.53) can be obtained by standard methods. They can be transformed into
different well-known types of ordinary differential equations. By means of the map

r = − us

2uC(s)
, (5.61)

they take the form of the linear second-order equations (Kamke, 1971)

C(s)uss + (sC(s)2 − C ′(s))us + 4uC(s)3 = 0. (5.62)

When the changes of variables (1.A)–(3.A) in Table 3 are used to reduce the order of
the Chazy equation following the sequence X1�Y2�Z3, we get the following Riccati
equation:

2+ 2 r2 − r s + 3 rs (−16+ s2) = 0. (5.63)
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The equation obtained through the changes of variables (1.B)–(3.B), that is, following
the sequence X2�Y1�Z3, is

2+ 2 r2 − r s − 3 rs (−16+ s2) = 0 (5.64)

which can be transformed into (5.63) by changing r into 1/r . The reduction processes that
follow the sequences X3�Y2�Z3 and X2�Y3�Z1, and use the changes of variables of
Case 2 given in (4.55), lead to the same equation (5.63).

For (5.63) where C(s) = −1/(3(−16+ s2)), (5.62) takes the form

9(−16+ s2)2uss + 15s(−16+ s2)us + 4u = 0. (5.65)

We prove now that the general solution of (5.65) can be expressed in terms of the
Legendre functions. Denote by Pν(t) and Qν(t) the Legendre functions of the first and
second kind, respectively, that are solutions of the Legendre equation

(1− t2)ρt t − 2 ρt t + ν(ν + 1)ρ = 0. (5.66)

It can be checked that the general solution of (5.63) can be expressed as follows:

r(s) = k2 Q−1/6
( 1

4

)+ k1 P−1/6
( 1

4

)
k2 Q−5/6

( 1
4

)+ k1 P−5/6
( 1

4

) . (5.67)

From the general solution of (5.63), and through the change of variables (3.A), which
appears in Table 3, the step by step method of reduction allows us to obtain the general
solution of the Chazy equation by two successive integrations (see the changes of variables
(2.A) and (1.A) in Table 3).

The general solution of the reduced equation obtained by following option B is r̃(s) =
1/r(s), where r(s) is given by (5.67). In this case, in order to obtain the general solution
of the Chazy equation, we must solve the auxiliary first-order differential equation that
appears in Section 4.1:

(1− eβ + eββz)H(z) = eββz . (5.68)

This equation can easily be transformed into the linear first-order equation

β̄z = (1+ β̄(z − 1))H(z), (5.69)

where β̄ = eβ .

6. Conclusions

When the classical Lie method is used to reduce the order of any ordinary differential
equation admitting the three-dimensional non-solvable Lie algebra sl(2, R) as symmetry
algebra, then at least one of its generators is lost in the reduction process.

Nevertheless, in this paper we have proved that the method of reduction by using C∞-
symmetries can be applied to carry out three successive order-one reductions, if the order
of the original equation is n > 3.
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If n = 3, after two order reductions a first-order differential equation is obtained. At
this last step of the reduction, the Lie symmetry that has been lost can be recovered as
a C∞-symmetry. This fact allows us to give a complete classification of the third-order
equations that admit sl(2, R), as well as the corresponding reduced equations (first-order
equations).

The main consequence of this step by step method of reduction is that the general
solution of the original equation can be obtained from the reduced one by solving two
first-order differential equations. In the case of option A, these two equations can be solved
directly by integration. In the case of option B, one of these equations can be solved by
integration, and the other one can easily be transformed into a linear first-order equation.

Finally, in order to illustrate the main results, we have applied our method to the Chazy
equation. The step by step method of reduction leads to a Riccati equation, whose general
solution can be expressed in terms of the Legendre functions.
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Appendix

In this appendix we work out in more detail one of the cases of Section 4. Since option
A is the traditional method of reduction (except that Z3 is not a Lie symmetry), we study
option B of Case 1 to show how the method works in practice.

First step, use of X2. The vector field X2 = x∂/∂x can be written in the canonical form
X2 = ∂/∂α in coordinates y = u, α = ln(x). The first prolongations of the vector fields in
variables {y, α, αy} are given by

X (1)
1 = e−α ∂

∂α
− e−ααy

∂

∂αy
, X (1)

2 =
∂

∂α
, X (1)

3 = eα ∂

∂α
+ eααy

∂

∂αy
. (A.1)

A pair of functions f1 and f3 of Theorem 3 such that X2( f1) = f1 and X2( f3) = − f3
is given, in coordinates {y, α}, by f1 = eα and f3 = e−α . The corresponding vector fields

f1 X (1)
1 =

∂

∂α
− αy

∂

∂αy
, f3 X (1)

3 =
∂

∂α
+ αy

∂

∂αy
(A.2)
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are π
(1)
X2

-projectable (Theorem 3) and the projections on M1 are given, in variables
{y, w = αy}, by Y1 = −w∂/∂w and Y3 = w∂/∂w. The vector fields Y1 and Y3 are C∞-
symmetries for the functions

λ1 = −Dy( f1)

f1
= −eααy

eα
= −αy = −w, λ3 = −Dy( f3)

f3
= −e−ααy

e−α
= αy = w.

(A.3)

The corresponding first prolongations, in variables {y, w, wy}, are given by

Y [λ1,(1)]
1 = −w

∂

∂w
+ (w2 − wy)

∂

∂wy
, Y [λ3,(1)]

3 = w
∂

∂w
+ (w2 + wy)

∂

∂wy
. (A.4)

Second step, use of Y1. The vector field Y1 can be written in the canonical form Y1 =
∂/∂β, in coordinates {z = y, β = − ln(w)}. The first prolongations (A.4), in variables
{z, β, βz}, are given by

Y [λ1,(1)]
1 = ∂

∂β
− e−β ∂

∂βz
, Y [λ3,(1)]

3 = − ∂

∂β
− e−β ∂

∂βz
. (A.5)

A first-order invariant of Y [λ1,(1)]
1 is given by µ = βz − e−β . In coordinates {z, β, µ} :

Y [λ1,(1)]
1 = ∂

∂β
, Y [λ3,(1)]

3 = − ∂

∂β
− 2e−β ∂

∂µ
. (A.6)

According to the proof of Theorem 4,

[Y [λ1,(1)]
1 , Y [λ3,(1)]

3 ] = c1Y [λ1,(1)]
1 + c3Y [λ3,(1)]

3 , (A.7)

where c1, c3 ∈ C∞(M1). In this case it can easily be checked that c1 = c3 = −1. A
function g3 as in Theorem 4, that satisfies Y1(g3) = −c3g3 = g3, is given, in coordinates
{z, β}, by g3 = eβ . The vector field g3Y [λ3,(1)]

3 is π
[λ1,(1)]
Y1

-projectable and its projection,
in variables {z, µ}, is Z3 = −2∂/∂µ. The vector field Z3 is a C∞-symmetry and the
corresponding function λ′3 of Theorem 4 can be calculated from relation (3.49). It can be
checked that, in this case, λ′3 = −µ. In variables {z, µ, µz} the first prolongation is given
by

Z
[λ′3,(1)]
3 = −2

∂

∂µ
+ 2µ

∂

∂µz
. (A.8)

Third step, use of Z3. The vector field Z3 can be written in the canonical form Z3 = ∂/∂r
in coordinates {s = z, r = − 1

2µ}. The first prolongation in variables {s, r, rs} is given by

Z
[λ′3,(1)]
3 = ∂

∂r
+ 2r

∂

∂rs
. (A.9)
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A first-order invariant of Z
[λ′3,(1)]
3 is γ = rs − r2. In terms of {s, γ (n−3)}, where n is the

order of the original equation, we get an (n − 3)th-order reduced equation, that can be
expressed in the form

γn−3 = C(s, γ (n−4)). (A.10)

When n = 3, instead of (A.10) we obtain an equation of the form γ = C(s), that is, we
have obtained the general form of the first-order equations that appears after two order
reductions:

rs − r2 = C(s). (A.11)


