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Abstract
Thickness inhomogeneities in thin films have a large influence on their optical
transmission and reflection spectra. If not taken into account, this may lead to rather
large calculated values for the absorption coefficient or the erroneous presence of an
absorption-band tail, as well as to significant errors in the calculated values of the
refractive index and the film thickness. The effect of thickness variation on the
optical reflection spectrum of a thin dielectric film covering a thick non-absorbing
substrate, is analysed in detail in this paper, and analytical expressions are presented
for such a reflection spectrum and its upper and lower envelopes. A method is
suggested for determining the refractive index n(λ) and the extinction coefficient
k(λ), as well as the average thickness and the thickness variation, of a thin dielectric
film with variable thickness, by using only the two envelopes of the corresponding
shrunk reflection spectrum. This method is used for the geometrical and optical
characterization of thermally-evaporated amorphous chalcogenide films, deposited
on glass substrates.

1. Introduction

The optical properties of thin dielectric films have been
investigated thoroughly during the last decades [1–4]. Thin-
film thickness inhomogeneities such as wedge shaping and
surface roughness have also been studied, but mostly when
the transmission spectrum is utilized [5–7]. In this paper
we present formulae for the reflection spectrum of a thin
dielectric film with variable thickness covering a thick non-
absorbing substrate, as well as its top and bottom envelopes.
The effect of the thickness variation on the interference
fringes of the reflection spectrum is analysed in detail, and
a method is presented for calculating the optical constants
n(λ) and k(λ), the average thickness t̄ , and the thickness
variation �t , of a non-uniform thin dielectric film, only from
the corresponding shrunk reflection spectrum that otherwise
would have been useless. It is shown that the errors made

in the computation of the above film characteristics, are
limited within 1%, when this method is employed. The
algorithm of the calculations has been successfully applied
for the geometrical and optical characterization of thermally-
evaporated amorphous chalcogenide films, deposited on glass
substrates.

2. Assumptions and formulation of the method

The proposed method for the geometrical and optical
characterization of thin dielectric films with variable thickness,
is based mainly on the following assumptions.

(i) A thin isotropic dielectric layer covers a thick non-
absorbing substrate, and this optical system is immersed
in air.

(ii) Radiation of mean wavelength λ and spectral half-width
�λ, is normally incident on the sample.
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Figure 1. Sketch of a wedge-shaped thin film on a thick transparent
substrate. The illuminated area is illustrated by a white rectangle
positioned in the central region of the film. The radiation is incident
normally to the sample.

(iii) Interference of internally-reflected radiation occurs in the
thin film (�λ � λ2/(2nt)), and is negligible in the
substrate (�λ � λ2/(2sts)), where n and t are the
refractive index and the thickness of the film, respectively,
and s and ts are the corresponding parameters for the
substrate.

(iv) The refractive index of the film is larger than the refractive
index of the substrate, i.e. n > s.

(v) The film is weakly absorbing in the studied spectral region,
i.e. n2 � k2 and s2 � k2, where k is the extinction
coefficient of the film.

It has been shown in [8, 9], that when the above
assumptions are satisfied, and the thickness of the dielectric
film is uniform, the reflectance of such a two-layer optical
system is expressed as follows:

R = (ad)2 + (bcx)2 − 2abcdx cos(φ)

(bd)2 + (acx)2 − 2abcdx cos(φ)

+
gx2

(bd)2 + (acx)2 − 2abcdx cos(φ)

× 1

b3f + a3ex2 − 2abcdx cos(φ)
(1)

where

a = n− 1 b = n + 1 c = n− s d = n + s

e = n− s2 f = n + s2 g = 64s(s − 1)2n4

x = exp(−αt) φ = 4πnt/λ α = 4πk/λ.

The formula for the reflectance of this system, when the
dielectric film is non-uniform, can be derived from (1). If the
thickness varies linearly over the film surface, this thickness
can be considered to change within the interval [t̄−�t, t̄+�t],
over the illuminated area, as shown in figure 1. The reflection
spectrum has to be measured in such a way that the same
area is illuminated at all wavelengths. In this case �t can be
considered to be independent of the wavelength. It is important
to note that similarly to [5], the theory developed in this paper
is also valid when some irregularities occur periodically over
the illuminated area, in the form of surface roughness. Hence,
the analytical expression for the reflectance of this particular
optical system, is obtained by integrating equation (1) over t .
However, this is prohibitively difficult analytically, because x
depends on t , and an acceptable approximation is to consider
x to equal its average value over the range of integration with

respect to t , [t̄−�t, t̄+�t]. This approximation is an excellent
one when �t � t̄ . The optical absorbance x is then redefined
as x = exp(−αt̄), and the integration of equation (1) with
respect to t (or equivalently, φ) gives place to:

R�t ≈ 1

φ2 − φ1

∫ φ2

φ1

R dφ (2)

where the integration boundaries are φ1 = 4πn(t̄−�t)/λ and
φ2 = 4πn(t̄ + �t)/λ.

Solving the integral from (2) gives the following analytical
expression for the reflectance:

R�t = 1 − 1

θ(L1 − L0)

×
{
gx2

L3L4

[
tan−1

(
L3

L4
L9

)
− tan−1

(
L3

L4
L8

)]

+
(L0 − L5)(L1 − L0)− gx2

L6L7

×
[

tan−1

(
L6

L7
L9

)
− tan−1

(
L6

L7
L8

)]}
(3)

where the following auxiliary variables are used

θ = 4πn�t/λ L0 = b2d2 + a2c2x2

L1 = b3f + a3ex2 L2 = 2abcdx

L3 = (L2 + L1)
1/2 L4 = (L1 − L2)

1/2

L5 = a2d2 + b2c2x2 L6 = (L0 + L2)
1/2

L7 = (L0 − L2)
1/2 L8 = tan(φ1/2)

L9 = tan(φ2/2).

Equation (3) is valid for each wavelength λ, from the spectral
region of medium absorption to transparency.

To illustrate the theory presented here, three films with
the following geometrical and optical characteristics are
considered.

(i) Average thickness of the films, t̄ = 1000 nm.
(ii) Wedging parameter, �t = 0, 20 and 40 nm.

(iii) Refractive index of the films, n(λ) = 2.6 + (3 × 105/λ2)

(λ in nm).
(iv) Extinction coefficient of the films, k(λ) = (λ/4π) ×

10[(1.5×106/λ2)−8] (λ in nm).
(v) Refractive index of the substrate, s = 1.51 (constant).

(vi) Wavelength, λ = 500 ÷ 900 nm.

The above values of n(λ) and k(λ) represent typical values of
α-Si:H [5, 8].

It has been shown in [5] that increasing the wedging
parameter �t , results in increased shrinking of the
transmission spectrum of a wedge-shaped thin dielectric layer
on a thick transparent substrate. The analogy between the
mathematical formulation of the transmittance and reflectance
of such an optical system, indicates that increasing �t

should also lead to increased shrinking of the reflection
spectrum. Unfortunately, the tan−1[. . . tan[. . .]] functions
introduce discontinuities around the maxima of the reflection
spectrum R�t , calculated from equation (3), which are similar
to the discontinuities formulated in [5] for the corresponding
transmission spectrum. Reflection spectra R�t , plotted
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Figure 2. Calculated reflection spectra R�t and their lower
envelopes R�m for three α-Si:H films on a glass substrate, with the
geometrical and optical characteristics presented in items (i)–(vi).

from (3), with the geometrical and optical characteristics given
above (see (i)–(vi)), are presented in figure 2. It is seen that the
simulated spectra, for �t = 20 and 40 nm, have reasonable
values of the reflectance, 0 � R�t � 1, only around the
minima, and this usable region decreases with increasing �t .

The analytical expression for the lower envelope can be
obtained, taking into account that the tangent points λtan
between the reflection spectrum and its two envelopes, are
characterized by the dependence [5]:

2nt̄ = mλtan (4)

where the order numberm is an integer for λtan from the lower
envelope of the reflection spectrum, R�m, and half-integer
for λtan from the upper envelope, R�M . Then, the auxiliary
variables L8 and L9 can be rewritten as follows:

L8 = tan

(
φ1

2

)
= tan

(
2πn(t̄ −�t)

λ

)

= tan

(
πm

(
1 − �t

t̄

))
= − tan

(
2πn�t

λ

)

= − tan

(
θ

2

)

L9 = tan

(
φ2

2

)
= tan

(
2πn(t̄ + �t)

λ

)

= tan

(
πm

(
1 +

�t

t̄

))
= + tan

(
2πn�t

λ

)

= + tan

(
θ

2

)
. (5)

The substitution of L8 and L9 from (5) into equation (3) gives
an analytical expression for the lower envelope:

R�m = 1 − 2

θ(L1 − L0)

{
gx2

L3L4
tan−1

(
L3

L4
L10

)

+
(L0 − L5)(L1 − L0)− gx2

L6L7
tan−1

(
L6

L7
L10

)}
(6)

where L10 = tan(θ/2). The lower envelopes corresponding to
the reflection spectra R�t shown in figure 2, are also plotted in
this figure.

As mentioned before, the reflection spectra calculated
from (3) have erroneous values, R�t > 1, around all
the maxima of the spectra for �t = 20 and 40 nm.
Correspondingly, the following auxiliary function

Rπ = (ad)2 + (bcx)2 + 2abcdx cos(φ)

(bd)2 + (acx)2 + 2abcdx cos(φ)

+
gx2

(bd)2 + (acx)2 + 2abcdx cos(φ)

× 1

b3f + a3ex2 + 2abcdx cos(φ)
(7)

is used to derive the analytical expression for the upper
envelope of the spectrum, R�M , instead of (1). This new
function is obtained by a phase shift of π radians of the
function R from (1), and has the very useful property that
its maxima/minima, are positioned at the same wavelengths
as the corresponding minima/maxima of the function R.
Furthermore, Rπ replaces R in (2), and the result of its
analytical integration

Rπ�t ≈ 1

φ2 − φ1

∫ φ2

φ1

Rπ dφ = 1 − 1

θ(L1 − L0)

{
gx2

L3L4

×
[

tan−1

(
L4

L3
L9

)
− tan−1

(
L4

L3
L8

)]

+
(L0 − L5)(L1 − L0)− gx2

L6L7

×
[

tan−1

(
L7

L6
L9

)
− tan−1

(
L7

L6
L8

)]}
(8)

is similar to the reflection spectrum R�t , calculated from (1).
The reflection spectra Rπ�t are simulated from (8),

using all the geometrical and optical characteristics given
above (see (i)–(vi)). These reflection spectra are presented
in figure 3. It can be seen that, for �t = 20 and 40 nm, the
simulated spectra have reasonable values of the reflectance,
0 � Rπ�t � 1, only around the maxima of the spectra and,
similarly to R�t , the usable region decreases with increasing
�t .

Following the procedure for deriving the lower envelope
by (6), the upper envelope of the reflection spectrum, R�M , is
expressed as follows

R�M = 1 − 2

θ(L1 − L0)

[
gx2

L3L4
tan−1

(
L4

L3
L10

)

+
(L0 − L5)(L1 − L0)− gx2

L6L7
tan−1

(
L7

L6
L10

)]
. (9)

On the other hand, the upper envelopes corresponding to the
reflection spectra Rπ�t shown in figure 3, are also plotted in
this figure.
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Figure 3. Calculated reflection spectra Rπ�t and their upper
envelopes R�M for three α-Si:H films on a glass substrate, with
�t = 0, 20 and 40 nm.

Equations (6) and (9) represent a system of two
transcendental equations for every wavelength λ, from the
spectral region of medium absorption to transparency, which
can be expressed in the following implicit form:

R�M = R�M(n, x,�t) R�m = R�m(n, x,�t) (10)

and its solution is used in the proposed method. The range of
validity of the system of equations (10) is: 0 < �t < λ/4n.
The reason for the upper limit in the wedging parameter, is the
presence of new discontinuities in the expressions for the top
and bottom envelopes. Above this limit, i.e. �t � λ/4n, both
envelopes would intersect and, therefore, R�M � R�m [9].

Finally, it is interesting to point out that the theory
presented here is, in principle, also valid for n < s. In
such a case, the multiply-reflected beams at the surface of
the substrate will be accompanied by a phase change of π
radians. This would lead to a change in the relative position
of the reflection spectrum of the film-on-substrate system,
with respect to the reflection spectrum of the bare substrate:
the latter being now above the former. In addition, the
mathematical expressions of the envelopes will be exchanged,
i.e. the upper envelope, R�M , would be now described
by (6), rather than (9), and, therefore, the integer (instead
of half-integer) order numbers would be associated with its
corresponding tangent points (just contrary changes would
occur in the lower envelope, R�m). However, common
substrates having a high refractive index, such as silicon
wafers or germanium substrates, also show high values of the
extinction coefficient and, thus, it cannot be neglected, as in
the case of the glass substrates.

Experimental reflection spectra
for the substrate

and the
film on substrate

Read and atR R
� �M m tan�

Draw envelopes andR R
� �M m

Compute approximations

and atn t1 tan� �

Determine the transparent region
where + =1, =T R R R'

Determine froms Rs

Compute average value of �t

Calculate final value of =t t3

Calculate final value of =n n3

Compute final value of =k k3

Compute approximations

and atn x2 1 tan�

Estimate extreme orders m1

Calculate thickness approximations t3

Determine exact extreme orders m

Calculate thickness approximations t2

Calculate thickness approximations t1

Compute average value t2

Compute average value t1

Figure 4. Block diagram of the complete algorithm for calculating
t̄ , �t , n(λ) and k(λ) of a non-uniform thin dielectric film covering a
thick transparent substrate, from its corresponding shrunk reflection
spectrum.

3. Algorithm of the calculation

A block diagram of the algorithm of the method for
determining the spectral dependences n(λ) and k(λ), and the
average film thickness t̄ and the thickness variation �t , is
presented in figure 4. The operation of the sequential steps
of this algorithm is explained below. After the scanning of
the experimental reflection spectrum, its two envelopes R�M

and R�m are computer drawn by employing the very useful
algorithm developed by McClain et al [10]. The refractive
index of the substrate s is calculated independently from
the reflection spectrum of the bare substrate Rs , using the
following relationship [8, 9]

s = 1 +
√
Rs(2 − Rs)

1 − Rs

. (11)

The present method requires that the reflection spectrum of
the sample contains a spectral region where the film can be
regarded as being transparent. This region can be found
by measuring both the transmission and reflection spectra,
and considering that R + T = 1, or R = R′, only in this
particular spectral region, where T is the transmission and R′

the reflection measured from the substrate side of the sample.
Taking into account that x = 1 in the transparent region,
the system of the two transcendental equations (10) can be
solved for n and �t , at every tangent point λtan between the
reflection spectrum and its two envelopes. These first values
of the refractive index obtained are denoted by n1. The final
value of the wedging parameter�t is determined by averaging
a certain set of �t values, as explained in the next section,
and then the system (10) is solved again to obtain the next
approximations n2 and x1, at all λtan. The experimental errors
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in R�M and R�m decrease notably the accuracy of these n2

values, calculated from the system (10) [9].
If n′

1(2) and n′′
1(2) are the refractive indices belonging to

the set of n1 (or n2) values, at two different tangent points λ′

and λ′′, and �m is the difference of their corresponding order
numbers, the thickness t1 (or t2) is expressed from equation (4),
as follows:

t1(2) = �m

2

λ′λ′′

(λ′n′′
1(2) − λ′′n′

1(2))
. (12)

When two alternative tangent points are used (both from the
upper envelope or from the lower envelope), then �m = 1.
Hence, an initial approximate value of the thickness, t̄1 (or a
new improved value t̄2), is obtained by averaging the set of t1
(or t2) values, calculated from (12). The order number of a
given tangent point m1 is now estimated from (4), using t̄1 (or
t̄2) and the corresponding n1 (or n2). As mentioned before, the
exact order numbers are consecutive half-integers for the upper
tangent points, and consecutive integers for the lower tangent
points. Therefore, the m1 values are conveniently rounded off
to their closest exact half-integer or integer order numbers,m’s.

The final average thickness of the non-uniform film t̄

(=t̄3) is obtained by averaging the values for t3 calculated
from (4), where n1’s (or n2’s), as well as their corresponding
m’s, are used. The final value of the refractive index n (=n3) is
obtained, at each tangent point, from (4) by substituting t̄ and
m. It must be indicated that when working with the reflection
spectrum rather than the transmission spectrum, some more
tangent points are used, which leads to a larger set of values of
n, corresponding to a wider spectral range.

The final value of the extinction coefficient k can be
determined from the absorbance x (= exp(−4πkt̄/λ)), by
three different approaches: using the previously obtained x1

values, or solving either (6) or (9) with respect to x, obtaining,
respectively, x2 and x3 values. The best results are achieved
employing the third approach, i.e. calculating the extinction
coefficient k3 from equation (9) for the upper envelope of the
reflection spectrum, R�M , and using the already known values
of �t , t̄ and n(λ). It is certainly recommended not to use the
lower envelope R�m described by equation (6), because it is
strongly sensitive to errors in the measured data [9].

4. Accuracy of the method

The proposed method for calculating the wedging parameter,
the average thickness, the refractive index and the extinction
coefficient, of a non-uniform thin dielectric film deposited on
a transparent substrate, is applied to two different reflection
spectra. The first one is a simulated reflection spectrum,
obtained using the geometrical and optical characteristics
introduced by (i)–(vi) above, and performing the integration (2)
numerically with �t = 30 nm. This reflection spectrum, and
its two envelopes, R�M and R�m, are shown in figure 5, which
also includes the reflection spectrum of the bare substrate, Rs .
The results obtained at the different steps of the calculation of
n and k, from the top and bottom envelopes of this spectrum,
are presented in table 1. The spectral region over which
the reflection spectrum has been simulated, is characterized
by considerable optical absorption at shorter wavelengths,
therefore, the hypothesis x = 1, used when solving the

Figure 5. Simulated reflection spectrum and the top and bottom
envelopes of a wedge-shaped thin film of α-Si:H with �t = 30 nm,
on a glass substrate. The reflection spectrum for the substrate alone
is also plotted. The order numbers, m’s, for some tangent points
have been marked.

system (10) for n and �t , is valid only for those tangent points
corresponding to longer wavelengths. This is confirmed by the
less accurate values of n1 and t1, which are derived from them.
The last two columns of table 1 contain the true values, ntr
and ktr , of the refractive index and the extinction coefficient
of the film, respectively. It is seen that the relative error
|n − ntr |/ntr made in the calculation of the refractive index
does not exceed 0.2%, and the relative error |k − ktr |/ktr is
certainly not larger than 1%. The geometrical parameters t̄ and
�t are also calculated with relative errors smaller than 0.5%.

It should be mentioned that the values of �t listed in
table 1, depart from the true value, �ttr = 30 nm, for shorter
wavelengths, which is due to the fact that the �t values
have been calculated considering x = 1 in the system (10),
and the computation assigns the effect of x < 1 to n1 and
�t . Furthermore, it has been shown in [9] that, for larger
wavelengths, the system (10) is very sensitive to x, which
also leads to overestimated �t values (see table 2, introduced
below). Therefore, to study initially the list of �t values and
to average next the subset showing a low scattering, is a good
practical criterion to determine accurately the final value of the
wedging parameter, �t .

The second reflection spectrum analysed corresponds
to a real amorphous chalcogenide thin film of chemical
composition As33S67, deposited by thermal evaporation in
vacuum onto a glass substrate [11], and was obtained by a
double-beam UV/Vis/NIR spectrophotometer (Perkin Elmer,
model Lambda-19). The experimental reflection spectrum of
this sample, its two envelopes, and the reflection spectrum
of the bare substrate, are all shown in figure 6(a). To
illustrate the advantage that there are some more tangent
points when using the reflection spectrum, in comparison with
the corresponding transmission spectrum, both experimental
reflection and transmission spectra belonging to the amorphous
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Table 1. Calculation of the wedging parameter, the average thickness, the refractive index and the extinction coefficient, of a hypothetical
α-Si:H film, based on the proposed method. The values of λtan, R�M and R�m correspond to the optical reflection spectrum from figure 5. It
is observed from the values of n1 and �t , that the hypothesis x = 1 is certainly not valid for the tangent points corresponding to the shorter
wavelengths. Therefore, the t̄1 value does not represent a good approximation of the average thickness of the film. The final value of the
wedging parameter, �t , was calculated by averaging only the underlined �t values. Less accurate values of t1 and t2, as well as the values
of k3 and ktr < 10−3, have been omitted in the table. (True average thickness, t̄tr = 1000 nm; true wedging parameter, �ttr = 30 nm;
average thickness, t̄1 = 1037 ± 32(3.1%) nm; average thickness, t̄2 = 998 ± 8(0.8%) nm; average thickness, t̄3 = 1002 ± 1(0.1%) nm;
calculated wedging parameter, �t = 30.2 ± 0.3(1.0%) nm.)

λtan �t t1 t2 t3
(nm) R�M R�m n1 (nm) (nm) n2 x1 (nm) m1 m (nm) n3 k3 ntr ktr

859 0.485 0.172 3.005 30.0 1007 2.999 
1 1003 6.99 7.0 1003 3.000 — 3.007 —
814 0.489 0.186 3.050 30.0 1019 3.044 
1 1004 7.49 7.5 1003 3.046 — 3.053 —
775 0.493 0.201 3.096 30.1 1024 3.092 
1 1005 7.99 8.0 1003 3.094 — 3.099 —
741 0.496 0.216 3.140 30.1 1045 3.140 
1 1002 8.48 8.5 1003 3.143 — 3.146 —
710 0.498 0.231 3.183 30.1 1089 3.186 0.997 1002 8.98 9.0 1003 3.189 — 3.195 0.001
683 0.498 0.246 3.221 30.3 — 3.235 0.990 1001 9.48 9.5 1003 3.238 0.001 3.243 0.001
658 0.496 0.260 3.252 30.4 — 3.281 0.979 1002 9.98 10.0 1003 3.283 0.001 3.293 0.002
636 0.491 0.273 3.271 30.8 — 3.330 0.958 1000 10.48 10.5 1003 3.332 0.002 3.342 0.003
616 0.482 0.284 3.269 31.4 — 3.379 0.922 995 10.98 11.0 1003 3.381 0.004 3.391 0.004
598 0.465 0.292 3.238 32.4 — 3.430 0.861 995 11.48 11.5 1002 3.432 0.007 3.439 0.007
581 0.441 0.297 3.171 34.0 — 3.479 0.767 998 11.99 12.0 1002 3.479 0.012 3.489 0.013
566 0.407 0.299 3.078 36.5 — 3.531 0.622 997 12.49 12.5 1002 3.530 0.021 3.536 0.022
552 0.371 0.303 2.991 39.7 — 3.582 0.433 975 12.99 13.0 1002 3.581 0.037 3.585 0.037
539 0.344 0.313 2.950 42.5 — 3.633 0.228 — 13.49 13.5 1001 3.631 0.063 3.633 0.062
526 0.333 0.325 2.963 43.5 — 3.683 0.075 — 14.02 14.0 1000 3.675 0.102 3.684 0.111

Table 2. Calculation of the wedging parameter, the average thickness, the refractive index and the extinction coefficient, of a real amorphous
chalcogenide film of composition As33S67, based on the proposed method. The values of λtan, s, R�M and R�m correspond to the optical
reflection spectra from figure 6(a). The final value of the wedging parameter, �t , was calculated by averaging only the underlined �t
values. Less accurate values of n1, t1, m1 and t3, as well as the values of k3 < 10−3, have been omitted in the table. (Average thickness,
t̄1 = 1603 ± 25(1.6%) nm; average thickness, t̄3 = 1613 ± 6(0.4%) nm; wedging parameter, �t = 29.5 ± 0.8(2.7%) nm.)

λtan (nm) s R�M R�m n1 �t (nm) t1 (nm) m1 m t3 (nm) n3 k3

2138 1.506 0.327 0.087 2.306 46.0 1615 3.46 3.5 1623 2.320 —
1873 1.506 0.328 0.087 2.309 35.3 1602 3.95 4.0 1622 2.322 —
1667 1.500 0.328 0.090 2.314 38.2 1603 4.45 4.5 1621 2.325 —
1503 1.503 0.329 0.092 2.322 36.7 1610 4.95 5.0 1618 2.330 —
1370 1.506 0.330 0.095 2.329 35.7 1611 5.45 5.5 1618 2.336 —
1259 1.508 0.330 0.098 2.336 34.7 1601 5.95 6.0 1617 2.342 —
1165 1.508 0.331 0.100 2.342 34.3 1559 6.45 6.5 1617 2.347 —
1085 1.510 0.332 0.103 2.352 33.4 1561 6.95 7.0 1615 2.354 —
1015 1.512 0.334 0.108 2.366 33.7 1605 7.47 7.5 1609 2.360 —

955 1.516 0.335 0.111 2.376 32.9 1633 7.98 8.0 1608 2.368 —
901 1.516 0.336 0.112 2.381 31.2 1616 8.47 8.5 1608 2.374 —
855 1.512 0.338 0.112 2.389 30.1 1612 8.96 9.0 1611 2.385 —
813 1.515 0.340 0.116 2.400 29.6 1630 9.46 9.5 1609 2.394 —
776 1.514 0.340 0.120 2.409 29.9 1613 9.95 10.0 1611 2.405 —
742 1.516 0.340 0.124 2.418 29.9 1569 10.45 10.5 1611 2.415 —
712 1.517 0.341 0.129 2.431 29.8 1569 10.95 11.0 1611 2.428 —
684 1.518 0.343 0.133 2.447 29.7 1633 11.47 11.5 1607 2.438 —
659 1.519 0.345 0.138 2.460 29.5 1625 11.97 12.0 1607 2.451 —
636 1.519 0.346 0.140 2.470 28.9 1582 12.45 12.5 1609 2.464 —
615 1.520 0.349 0.143 2.485 28.3 1575 12.95 13.0 1609 2.478 —
596 1.521 0.350 0.150 2.503 28.5 1645 13.46 13.5 1607 2.494 —
578 1.522 0.350 0.157 2.519 28.9 — 13.97 14.0 1606 2.508 —
562 1.522 0.351 0.162 2.531 29.0 — 14.44 14.5 1610 2.526 —
547 1.525 0.352 0.167 2.546 28.8 — 14.92 15.0 1611 2.543 —
534 1.525 0.352 0.172 2.559 28.7 — 15.36 15.5 1617 2.566 —
522 1.526 0.348 0.176 2.558 29.0 — 15.71 16.0 1633 2.589 0.001
510 1.524 0.340 0.179 — 29.7 — — 16.5 — 2.608 0.002
500 1.523 0.326 0.181 — 30.9 — — 17.0 — 2.635 0.004
490 1.527 0.306 0.186 — 33.1 — — 17.5 — 2.658 0.007
481 1.528 0.282 0.192 — 36.5 — — 18.0 — 2.684 0.013
473 1.527 0.261 0.202 — 40.3 — — 18.5 — 2.712 0.020
465 1.527 0.247 0.214 — 43.2 — — 19.0 — 2.739 0.027
458 1.528 0.239 0.222 — 45.0 — — 19.5 — 2.768 0.035
448 1.530 0.238 0.234 — 45.5 — — 20.0 — 2.777 0.036
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Figure 6. (a) Experimental reflection spectrum and its top and
bottom envelopes for an amorphous As33S67 film covering a glass
substrate. The reflection spectrum for the substrate alone is also
plotted. The order numbers, m’s, for some tangent points have been
marked. (b) Spectral dependence of the refractive index n(λ)
calculated from the reflection spectrum. The curve is drawn using
the Wemple–DiDomenico dispersion relationship. In the inset is
given a plot of the refractive-index factor (n2 − 1)−1 versus (h̄ω)2,
and the values obtained for the dispersion parameters, Eo and Ed ,
are also shown.

As33S67 film, have been plotted in the inset of figure 6(a). The
results from the calculation of �t , t̄ and n are presented in
table 2, and the spectral dependence of the refractive index is
displayed in figure 6(b). The n2 values are not listed in table 2
because they do not improve the n1 values, the reason being the
considerable effect of the experimental errors on the resolution
of system (10), with respect to n and x.

As shown in the inset of figure 6(b), in the transparent
region, the final values of the refractive index can be fitted to

the Wemple–DiDomenico single-oscillator formula [12, 13]:

n2(h̄ω) = 1 +
EoEd

E2
o − (h̄ω)2

(13)

where h̄ω is the photon energy, Eo the single-oscillator
energy and Ed the dispersion energy. On the other hand,
the experimental variation in n clearly departs from that
given by equation (13), at higher energies, thus, indicating
the onset of the optical absorption. It must be mentioned
that the proposed method was also successfully applied to
several samples containing chalcogenide thin films belonging
to binary systems, such as Ge–Se and Ge–S, for 400 nm �
λ � 2500 nm. In the cases investigated, the average
thickness and the thickness variation were independently
measured by a mechanical stylus instrument (Sloan, model
Dektak 3030). These mechanically measured values differ by
no more than 2% from the corresponding values calculated
from the reflection spectra.

5. Conclusions

Thickness inhomogeneities in thin films cause shrinking of
the optical transmission and reflection spectra. This may
erroneously lead to the conclusion that an absorption-band
tail exists in the long-wavelength region, and may result in
serious errors in the determination of the optical constants
(n, k). Correspondingly, analytical expressions are presented
for the reflection spectrum of a thin dielectric film with
variable thickness, covering a thick transparent substrate, as
well as for the top and bottom envelopes of this spectrum. A
method is suggested for the optical characterization of such a
thin dielectric films utilizing these mathematical expressions.
This devised method was used successfully for calculating
the optical constants of thermally evaporated amorphous
chalcogenide films, deposited on glass substrates. The method
also allows the determination of the average thickness and the
thickness variation of non-uniform films. These geometrical
parameters have been independently measured by mechanical
stylus instrument, and they are in excellent agreement with
the corresponding data obtained from the shrunk reflection
spectra.
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