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KP THEORY OF EGOROV NETS

M. Mañas,1 L. Mart́ınez Alonso,1 and E. Medina2

The theory of multicomponent KP hierarchies is used to characterize explicit examples of Egorov nets. A

∂̄ dressing method for Cauchy propagators is found to be particularly efficient.

1. Introduction

Two decades ago, it was found that the theory of orthogonal nets

ds2 =
M∑
i=1

H2
i (dui)2

is closely related to the theory of integrable systems of the hydrodynamic type in 1+1 dimensions [1–3].
Moreover, a particular type of orthogonal nets (the ∂-invariant Egorov nets) was relevant for classifying
topological quantum field theories [4]. In this work, we describe some recent developments regarding the
application of the KP theory to the theory of Egorov nets. The relevant underlying system of partial
differential equations is [5–7]

∂βij

∂uk
− βikβkj = 0, i, j, k = 1, . . . , N, with i, j, k different,

∂βij

∂ui
+
∂βji

∂uj
+

∑
k=1,...,N

k �=i,j

βkiβkj = 0, i, j = 1, . . . , N, i �= j,

where βij := H−1
i ∂Hj/∂ui, with the conditions

βij = βji, ∂Hi = 0, ∂ :=
∑

j

∂

∂uj
.

In this context, an important mathematical structure, the class of Frobenius manifolds, was proposed [2, 4,
8–10]. Locally, a Frobenius manifold is determined [4] by a flat metric,

ds2 =
N∑

i,j=1

ηij dxi dxj ,

and a commutative associative algebra structure,

∂i · ∂j =
∑

k

ckij(x)∂k, ∂i :=
∂

∂xi
, xi :=

∑
k

ηikxk,
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with a unity ∂1. The metric ds2 must be invariant with respect to this product, and the deformed connection

∇iX
j := ∂iX

j + z
∑

k

cjik(x)Xk, (1)

where z is a spectral parameter, should have zero curvature.
Much of the structure of Frobenius manifolds is encoded in the systems of deformed flat coordinates

θk(z,x) [4, 8–10] for connection (1)

∇i∇jθk = 0

or, equivalently,

∂i∂jθk = z
∑

l

clij(x)∂lθk. (2)

On the other hand, it follows from the assumptions on (η, ckij(x)) that there exists a function F = F (x)
(the free energy function) such that

cijk = ∂i∂j∂kF,

and because of the associativity property of the algebra, F satisfies the Witten–Dijkgraff–E. Verlinde–
H. Verlinde (WDVV) equations [11, 12]

∑
r,s

∂i∂j∂rFη
rs∂s∂m∂kF =

∑
r,s

∂i∂m∂sFη
sr∂r∂j∂kF. (3)

In a system of deformed flat coordinates normalized by

θi(0,x) = xi, i = 1, . . . , N,

Eq. (2) implies [4] that a free energy function can be derived from

∂iF (x) =
∂θi

∂z
(0,x).

Furthermore, the coefficients of the expansions

θi(z,x) =
∑
p≥0

hi,p(x)zp (4)

determine an infinite family of functionals

Hi,p[x] :=
∫

hi,p+1(x)dt,

which are in involution with respect to the Poisson bracket

{xi(t1), xj(t2)} := ηijδ′(t1 − t2).

The corresponding Hamiltonian systems constitute an integrable hierarchy of systems of the hydrodynamic

type.
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2. KP hierarchies and the Grassmannian

The N -component KP hierarchy can be introduced as a family of flows in an infinite-dimensional
Grassmannian [13, 14]. Let D(r) and γ(r) respectively denote the disk {z ∈ C : |z| ≤ r} and its boundary
{z ∈ C : |z| = r}, and let Hγ(r) be the set of Laurent series

∞∑
n=−∞

anz
n

with the coefficients an ∈ MN (C) (the ring of N×N complex matrices), which converge on the circle γ(r).
Next, two different Grassmannians Grγ(r) and Gr∗γ(r) are required.

Definition 1. The elements of Grγ(r) are the subsets W of Hγ(r) such that

1. W is a MN(C) left-module and

2. the projection operator P+ : W −→ H+
γ(r) from W into

H+
γ(r) =

{
w ∈ Hγ(r) : w =

∞∑
n=0

anz
n

}

is a bijective map.

Similarly, Gr∗γ(r) is given by the subsets V of Hγ such that

1*. V is a MN(C) right-module and

2*. the projection operator P+ : V −→ H+
γ(r) is a bijective map.

There is a map

Grγ(r)
∗−→ Gr∗γ(r), W �→W ∗,

such that for each given W ∈ Grγ(r), the subspace W ∗ ∈ Gr∗γ(r) is the set of those v ∈ Hγ(r) satisfying

∫
γ(r)

w(z)v(z) dz = 0 ∀w ∈ W.

Typical elements in the Grassmannians are provided by the ∂̄ method. Given an appropriate N×N
matrix distribution R(z, z′) with support in D(r) × D(r), the corresponding W ∈ Grγ(r) is the set of
restrictions to γ(r) of the solutions w(z) of

∂w

∂z̄
(z) =

∫
D(r)

w(z′)R(z′, z) d2z′.

Then W ∗ ∈ Gr∗γ(r) solves

∂v

∂z̄
(z) = −

∫
D(r)

R(z, z′)v(z′) d2z′.

Definition 2. Given W ∈ Grγ(r), its associated KP Baker function is the unique element ψ ∈ W that
admits a convergent expansion of the form

ψ(z,u) = χ(z,u)ψ0(z,u), χ(z,u) = IN +
∑
n≥1

an(u)
zn

, u ∈ U(r)N , z ∈ γ(r).
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Also, the adjoint KP Baker function is the unique element ψ∗ ∈ W ∗ with the expansion

ψ∗(z,u) = ψ0(z,u)−1χ∗(z,u), χ∗(z,u) = IN +
∑
n≥1

a∗n(u)
zn

, u ∈ U(r)N , z ∈ γ(r).

Here, IN :=
∑N

i=1 Ei denotes the identity matrix in MN (C). We note that for all u ∈ U(r)N , both
χ(z,u) and χ∗(z,u) are analytic functions of z on the domain C \D(r).

The Baker function satisfies the so-called N -component KP hierarchy. This hierarchy is an infinite
system of linear equations

∂ψ

∂ui,n
= Pi,n(u, ∂)ψ, i = 1, . . . , N, n ≥ 1, ∂ := ∂1 + · · · + ∂N , (5)

where Pi,n(u, ∂) is a family of linear differential operators in ∂.
The first few members of hierarchy (5) are

∂ψ

∂ui,1
= Ei∂ψ + [a1, Ei]ψ, i = 1, . . . , N,

which can be rewritten as
∂ψi

∂uk
= βikψk, i �= k, (6)

with

ψi := (ψi1, . . . , ψiN ), uk := uk,1, β = a1.

Analogously, the adjoint Baker function satisfies the linear system

∂ψ∗
j

∂uk
= ψ∗

kβkj , j �= k, (7)

where

ψ∗
i :=


ψ∗

1i

...

ψ∗
Ni

 .

The compatibility of either (6) or (7) implies the Darboux system of equations for a conjugate net. More-
over, (6) and (7) show that for a given set of rotation coefficients βij , there is an associated family of con-
jugate nets with tangent vectors and Lamé coefficients given by (Xi)j := Xij and Hi = Hli, l = 1, . . . , N ,
where

X(u) :=
∫

C

ψ(z,u)N(z) d2z, H(u) :=
∫

C

M(z)ψ∗(z,u) d2z.

Here, N(z) and M(z) are appropriate N×N matrix distributions.

3. The Cauchy propagator

Definition 3. Given W ∈ Grγ(r), its associated Cauchy propagator is the Green’s function Ψ =
Ψ(z, z′,u) of the ∂̄ operator,

∂Ψ
∂z̄

(z, z′,u) = πδ(z − z′), z, z′ ∈ C \D(r), u ∈ U(∞)N ,
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satisfying the boundary conditions that

1. for every fixed u ∈ U(∞)N and z′ ∈ C \D(r), the restriction of Ψ to γ(r), as a function of z, is
an element of W and

2. as z −→ ∞,

Ψ(z, z′,u) = O
(

1
z

)
ψ0(z,u).

The next theorem [2] relates the Cauchy propagator to the Baker function. The notation

[z] = ([z]1, . . . , [z]N), [z]i =
(

1
z
, . . . ,

1
nzn

, . . .

)
is used.

Theorem 1. The Cauchy propagator associated with an element W of Grγ(r) can be written in terms

of the KP wave functions ψ and ψ∗ as

Ψ(z, z′,u) =


− 1
z′
ψ∗(z′,u)ψ(z,u+ [z′]) for |z| ≤ |z′|,

1
z
ψ∗(z′,u− [z])ψ(z,u) for |z′| ≤ |z|.

The entries of Ψ satisfy the differential equation

∂Ψjk

∂ui
(z, z′,u) = ψ∗

ji(z
′,u)ψik(z,u). (8)

As a consequence of (8), the net function of the conjugate net with tangent vectors and Lamé coefficients
respectively given by (Xi)j := Xij and Hi =Hli, l = 1, . . . , N , is given by the lth row of the matrix function

x :=
∫

C×C

M(z′)Ψ(z, z′)N(z) d2z d2z′ + x0,

where x0 is an arbitrary constant matrix.

4. Egorov reduction

Definition 4. An element W ∈ Grγ(r) satisfies the Egorov reduction if

1. for every w ∈ W , the function w̃(z) := zw(z) is also in W and

2. for every v ∈ W ∗, the function ṽ(z) := v(−z)t is in W.

The next theorem was proved in [15].

Theorem 2. If W ∈ Grγ(r) satisfies the Egorov reduction, then for any nonsingular matrix N , the

functions

θi(z,u) :=
(
N t

(
Ψ(z, 0,u) − 1

z

)
N

)
1i

, i = 1, . . . , N, (9)

are a system of normalized deformed flat coordinates for a Frobenius manifold determined by

1. the ∂-invariant Egorov metric

ds2 =
N∑

i=1

H2
i (dui)2, Hi(u) :=

(
ψ(0,u)N

)
i1
,
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2. the system of flat coordinates

xi := θi(0,u), i = 1, . . . , N,

ds2 =
N∑

i,j=1

ηij dxi dxj , η = (N tN )−1,

3. the structure constants

clij =
N∑

k=1

∂uk

∂xi

∂uk

∂xj

∂xl

∂uk
.

We note that as a consequence of (9) and (4), every W ∈ Grγ(r) that satisfies the Egorov reduction
determines a hierarchy of systems of the hydrodynamic type with Hamiltonian densities given by

hi,p(x) =
1

(p + 1)!
∂p+1

∂zp+1

(
N tzΨ(z, 0,u)N

)
1i

∣∣∣
z=0

.

5. Dressing conjugate nets

We now consider the dressing method for conjugate nets [16]. Let D(r) and D(r̃) be two disks centered
at the origin with r < r̃. Let γ(r) and γ(r̃) denote their respective boundaries and A denote the annulus
D(r̃) −D(r).

Definition 5. A matrix distribution R = R(z, z′) with support in A × A determines a dressing

transformation

TR : Grγ(r) �→ Grγ(r̃), W �→ W̃ ,

where for every W ∈ Grγ(r), the corresponding W̃ ∈ Grγ(r̃) is the set of boundary values on γ(r̃) of matrix
functions w = w(z) satisfying the ∂̄ equation

∂w

∂z̄
(z) =

∫
A

w(z′)R(z′, z) d2z′, z ∈ A,

and such that the restriction of w to γ(r) is an element of W .

For the case of a separable kernel

R(z, z′) = π

m∑
k=1

n∑
l=1

Ck�fk(z)g�(z′),

the dressing of the Cauchy propagator can be explicitly performed. Here, Ck� are constant complex N×N
matrices, and fk and g� are scalar distributions. In order to determine the corresponding transformation,
it is useful to introduce the notation

µk(z) :=
∫

A

Ψ(z′, z)fk(z′) d2z′, k = 1, . . . ,m,

ν�(z) :=
∫

A

Ψ(z, z′)g�(z′) d2z′, 4 = 1, . . . , n,

ω�k :=
∫

A×A

Ψ(z′, z′′)fk(z′)g�(z′′) d2z′ d2z′′, k = 1, . . . ,m, 4 = 1, . . . , n.
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We also define the matrices

µ = (µ1, . . . , µm) : A → MN×mN(C), ν =


ν1

...

νn

 : A → MnN×N(C),

C = (Ckl) ∈ MmN×nN(C), ω = (ω�k) ∈ MnN×mN(C).

It then follows that [16]

Ψ̃(z, z′) = Ψ(z, z′) + µ(z′)C(1 − ωC)−1ν(z).

6. Dressing Egorov nets

The Egorov reduction is preserved under the dressing if

v ∈ W̃ ∗ ⇒ vt(−z) ∈ W̃ .

For kernels satisfying

zR(z, z′) = z′R(−z′,−z)t,

R(z, z′) = R(−z′,−z)t,

the corresponding dressing transformations preserve this reduction. Furthermore, these conditions imply

R(z, z′) = R0(z)δ(z − z′), R0(z) = R0(−z)t.

Separable kernels of this type are

R0(z) = π

n∑
k=1

[Ckδ(z − pk) + Ct
kδ(z + pk)],

where Ck are complex N×N matrices and pk ∈ C, i.e.,

R(z, z′) = π
n∑

k=1

[Ckδ(z − pk)δ(z′ − pk) + Ct
kδ(z + pk)δ(z′ + pk)].

The corresponding dressing transformation, which in principle may suffer from singularity problems,
becomes well-defined provided

C2
k = 0, k = 1, . . . , n.

Explicit examples of Egorov nets and their corresponding Frobenius manifolds can thus be characterized
by dressing the vacuum solution [15]. For example, the free energy function

F (x1, . . . , xN ) =
1
6
x3

1 +
1
p

(x2
2 + · · · + x2

N ) +
x1

2
(x2

2 + · · · + x2
N ) +

+
1

6p3
[1 + 2p2(x2

2 + · · · + x2
N )]

√
1 − p2(x2

2 + · · · + x2
N ) −

−
N∑

j=2

x2
j

2p
log

[
− 2xj

cj

1 +
√

1 − p2(x2
2 + · · · + x2

N )
x2

2 + · · · + x2
N

]
satisfies WDVV associativity equations (3).
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