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Abstract
Some singular rational travelling wave solutions of the Kadomtsev–Petviashvili
(KP) equation are determined by making use of the theory of symmetry
reductions. Solutions of KP of the form u(x − c1t, y − c2t), c1, c2 constants,
satisfy the equation (−c1ūx̄ − c2ūȳ + 6ūūx̄ + ūx̄x̄x̄ )x̄ = ūȳȳ , with x̄ = x − c1t ,
ȳ = y−c2t and ū(x̄, ȳ) = u(x−c1t, y−c2t). Some nonclassical symmetries of
this equation are determined: then, by considering the corresponding ordinary
differential equations, some solutions for the KP equation are obtained. But
in the case of the well known one-dimensional soliton, all the solutions we
construct in this way are rational functions. Moreover, the KP equation
reduces to the previous equation with c1 = c2 = 0 under a more general
symmetry group. Thus, we can use the solutions describing coherent structures
to construct large families of (x, y)-rational solutions.

(Some figures in this article are in colour only in the electronic version; see www.iop.org)

It is well known that there are a large number of applications, both in physics and mathematics,
of the Kadomtsev–Petviashvili (KP) hierarchy. Several methods in the context of integrable
systems have been developed in order to analyse it, describe large families of solutions and
study its reductions (see e.g. [1–4]). The first member of this hierarchy, the KP equation

(ut + 6uux + uxxx)x = uyy (1)

describes the evolution of quasi-one-dimensional shallow water waves when effects of the
surface tension and the viscosity are negligible [5, 6].

The first purpose of this paper is to apply the theory of symmetry reductions in partial
differential equations (PDEs) to find travelling wave solutions for the KP equation. In order
to do that we consider solutions of (1) of the form

u(x, y, t) = ū(x̄, ȳ), x̄ = x − c1t, ȳ = y − c2t

that is, a coherent structure in R
2 travelling with constant velocity (c1, c2). Introducing this

ansatz in (1) we find that the new function ū(x̄, ȳ) satisfies the equation

(−c1ūx̄ − c2ūȳ + 6ūūx̄ + ūx̄x̄x̄ )x̄ = ūȳȳ . (2)
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From now on, we drop the bar in the variables and we write u(x, y) instead of ū(x̄, ȳ).
The classical method for finding symmetry reductions of PDEs is the Lie group

method of infinitesimal transformations. The fundamental basis of this technique is that,
when a differential equation is invariant under a Lie group of transformations, a reduction
transformation exists. To apply the classical method to (2) one looks for fields of the form

V = ξ(x, y, u)
∂

∂x
+ η(x, y, u)

∂

∂y
+ φ(x, y, u)

∂

∂u
(3)

that leave invariant the set of solutions of (2). The machinery of Lie group theory provides a
systematic method to search for these special group invariant solutions. Most of the required
theory and description of the method can be found in [7–9]. As a generalization of the classical
Lie group method Blumann and Cole [10] developed the nonclassical method. In order to
apply this method to (2) one requires only the subset of solutions of (2) that satisfy the surface
condition

ξ(x, y, u)ux + η(x, y, u)uy = φ(x, y, u)

to be invariant under the transformation associated with (3). In this case it is still possible to
find a reduction transformation.

In this paper we make use of the nonclassical symmetries of equation (2) to reduce it to
some ordinary differential equations. Solutions of these equations lead to invariant solutions
of (2) and consequently to travelling wave solutions of the KP equation.

We start by looking for nonclassical symmetries admitted by (2). We distinguish two
cases depending on η �≡ 0 or η ≡ 0.

If η �≡ 0 we can assume without lack of generality that η ≡ 1. Then for the infinitesimals
ξ(x, y, u), φ(x, y, u) we get seven determining equations. When trying to solve these
equations we get that

ξ(x, y, u) = p1(y)x + p2(y)

φ(x, y, u) = −2p1(y)u + r(x, y)

where p1 satisfies the ODE

d2p1

dy2
+ 2p1

dp1

dy
− 4p3

1 = 0 (4)

and p2, r can be obtained from p1. Observe that equation (4) can be reduced to a quadrature.
Indeed, by setting p1 = dp

dy , multiplying by e−2p and integrating once we have(
d2p

dy2
+ 2

(
dp

dy

)2
)

e−2p = a, a arbitrary constant.

Now, the change of variables p = 2 ln q allows a new integration, which transforms the
previous equation into

dq

dy
=
√
a

6
q6 + b, b arbitrary constant.

This equation is equivalent to a quadrature. However, solutions in this way are not useful for
reducing equation (2). We restrict ourselves to the particular cases a = 0 or b = 0, which,
taking into account that p1 = 2 q ′

q
, lead to

If a = 0, p1(y) = 2

y − y0

If b = 0, p1(y) = − 1

y − y0
.
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Taking into account that (2) is an autonomous equation, the translation in the previous solution
is not relevant. For the sake of simplicity we take y0 = 0. Thus, we consider for (4) the
solutions

p1(y) = 0, p1(y) = − 1

y
, p1(y) = 2

y
.

Analysing separately these three cases we have:

Symmetry 1.1. p1(y) = 0 leads to

ξ(x, y, u) = k1 + k2y, η(x, y, u) = 1 φ(x, y, u) = k2
2y

3
+
k1k2

3
− c2k1

6
(5)

being k1, k2 arbitrary constants. It is clear that (5) is a classical symmetry of (2).

Symmetry 1.2. p1(y) = − 1
y

leads to

ξ(x, y, u) = −x

y
+ c2 + k1y

4, η(x, y, u) = 1

φ(x, y, u) = −x2

y3
+
c2x

y2
− 2c1 + c2

2

6y
+

2u

y
+ k1

(
xy2

3
− c2y

3

6

)
+

2k2
1y

7

3

(6)

where again k1 is an arbitrary constant.

Symmetry 1.3. p1(y) = 1
2y leads to

ξ(x, y, u) = x

2y
+
c2

4
+ k1y, η(x, y, u) = 1

φ(x, y, u) = −u

y
+

4c1 − c2
2

24y
+
k1x

3y
+

2k2
1y

3
− dk1

6
.

(7)

We point out that, in the particular case that we choose the arbitrary constant k1 as zero, the
symmetry (7) becomes a classical symmetry.

If η ≡ 0, we have that ξ �≡ 0, then we can take without lack of generality ξ ≡ 1. In this
case we obtain three determining equations for φ. From these equations one sees that

φ(x, y, u) = h
(
x − c2

2
y
)
u + ϕ(x, y)

where h satisfies the equation

h′′ + 5hh′ + 2h3 = 0. (8)

Proceeding in the same way as for equation (4), we can also reduce this equation to a quadrature.
However, also in this case, solutions are not manageable, so we just consider the particular
solutions h(s) = 0, h(s) = 2

s
and h(s) = 1

2s . If we choose h(s) = 0 we find

ϕ(x, y) = ϕ1(y)x + ϕ2(y)

with

ϕ′′
1 − 18ϕ2

1 = 0

ϕ′′
2 − 18ϕ1ϕ2 + c2ϕ

′
1 = 0.

(9)

The general solution of the second equation in (9) involves inverse functions of elliptic integrals,
but it is easily seen that ϕ1(y) = 0 and ϕ1(y) = 1

3y2 verify this equation. Thus, solving the
third equation in (9) we have:

Symmetry 2.1.

ξ(x, y, u) = 1, η(x, y, u) = 0, φ(x, y, u) = k1y + k2 (10)
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with k1 and k2 being arbitrary constants. For the case k1 = k2 = 0 (10) is a classical symmetry.

Symmetry 2.2.

ξ(x, y, u) = 1 η(x, y, u) = 0 φ(x, y, u) = x

3y2
+ k1y

3 − c2

6y
(11)

where k1 is a constant.

If we choose h(s) = 2
s
, the equations for ϕ can be solved and we have

Symmetry 2.3.

ξ(x, y, u) = 1 η(x, y, u) = 0 φ(x, y, u) = 2u + c2
2−4c1

12

x − c2
2 y

+
8

(x − c2
2 y)

3
. (12)

Finally, if we choose h(s) = 1
2s , equations for ϕ become incompatible.

Next, we will use symmetries (5)–(7), (10)–(12) to reduce (2) to the corresponding ODEs.
In order to perform these reductions we first need to obtain the similarity variables, i.e. the
first integrals of the dynamical system

ẋ = ξ(x, y, u)

ẏ = η(x, y, u)

u̇ = φ(x, y, u).

We proceed in this way and we have:

Reduction 1.1. As was said above the similarity variables can be computed as the first integrals
of the dynamical system

ẋ = k1 + k2y

ẏ = 1

u̇ = k2
2y

3
+
k1k2

3
− c2k1

6
or, equivalently, as the arbitrary constants in the general solutions of the system

dx

dy
= k1 + k2y,

du

dy
= k2

2y

3
+
k1k2

3
− c2k1

6
.

For this case, both equations in the previous system are nothing but quadratures. Thus we see
that the similarity variables are given by

z = x − k1y − k1y
2

2

u(x, y) = k2
2y

2

6
+

(
k1k2

3
− c2k2

6

)
y + w(z).

Consequently (2) becomes (after integrating once)

−k3
2

3
z + k2w − (c1 + c2k1 + k2

1)w
′ + 6ww′ + w′′′ = k3 (13)

where k3 is an arbitrary constant.
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Reduction 1.2. As in the previous case, we can obtain the similarity variables z and w(z) as
the arbitrary constants in the general solution of the system

dx

dy
= −x

y
+ c2 + k1y

4

du

dy
= −x2

y3
+
c2x

y2
− 2c1 + c2

2

6y
+

2u

y
+ k1

(
xy2

3
− c2y

3

6

)
+

2k2
1y

7

3
.

Solving the first equation we have

x = A

y
+

1

6
(3c2y + k1y

5), A arbitrary constant

and using it in the second equation we obtain

u = 4c1 − c2
2

24
+

25k2
1y

8

216
+
A2

6y4
+ By2 B arbitrary constant.

Consequently, the similarity variables z and w(z) are given by

z = −1

6
y(−6x + 3c2y + k1y

5)

u(x, y) = 4c1 − c2
2

24
+

25k2
1y

8

216
+
z2

6y4
+ y2w(z).

(14)

Thus the reduced equation is

175k2
1z− 180k1w − 45k1zw

′ − 162ww′ − 27w′′′ = C (15)

with C being an arbitrary constant.

Reduction 1.3. Proceeding in the same way as above, we see now that the similarity variables
z and w(z) are

z = 6x − 3c2y − 4k1y
2

6
√
y

u(x, y) = 1

216
(36c1 − 9c2

2 + 64k2
1y

2 + 48k1
√
yz) +

w(z)

y

(16)

and the reduced equation is

w(4) + 6(ww′)′ = 2w +
7z

4
w′ +

z2

4
w′′. (17)

Reduction 2.1. From (10) it is easily seen that the similarity variables are

z = y, u(x, y) = (k1y + k2)x + w(y) (18)

and the reduced equation is,

w′′ − 6(k1y + k2)
2 + c2k1 = 0. (19)

Reduction 2.2. From (11) we have

z = y u(x, y) = x2

6y2
+

(
k1y

3 − c2

6y

)
x + w(y) (20)

where w satisfies the reduced equation

w′′ − 2w

y2
− 6k2

1y
6 + 5c2k1y

2 +
c1

3y2
= 0. (21)
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Reduction 2.3. The similarity variables are in this case z = y and

u(x, y) = 4c1(2x − c2y)
2 − 192 − 4c2

2x
2 + 4c3

2xy − c4
2y

2

24(2x − c2y)2
+ (2x − c2y)

2w(y) (22)

and the reduced equation is

w′′ − 144w2 = 0. (23)

Before proceeding further we remark that, although the infinitesimals in symmetries (6)
and (7) depend on both components of the velocity (c1, c2), the independent similarity variable
z depends only on c2 and the dependency of u(x, y) in (14) and (16) on c1 is just through an
additive term. This difference between c1 and c2 is also clear for symmetries (11) and (12)
and the corresponding reductions (20) and (21), and (22) and (23). That is related to the fact
that the KP equation describes the evolution of quasi-one-dimensional water waves. Thus the
role played in the symmetry reductions for c1 and c2 is, as expected, very different.

Finally, we want to obtain solutions of (1) by using the reductions we have used until now.
By analysing the reduced equations we have:

Equation (13). For the particular case k2 = k3 = 0, (13) can be integrated once and we have
the autonomous equation

3w2 − (c1 + c2k1 + k2
1)w + w′′ = k4 k4 arbitrary constant.

Thus, its order can be reduced and we get

w′ =
√
k5 + 2k4w + dw2 − 2w3 d = k2

1 + c2k1 + c1 k5 arbitrary constant.

In general, the solution of these equations involve inverse functions of elliptic integrals.
However, for the case k4 = k5 = 0 (d > 0) we have

w(z) = d

2
sech2

[√
d

2
z + k

]

with k being an arbitrary constant. Thus, the associated solution of (2) is given by

u(x, y) = d

2
sech2

[√
d

2
(x + k1y) + k

]
(24)

and the corresponding solution of KP, u(x − c1t, y − c2t) is the well known one-dimensional
soliton solution for the KP equation.

Equation (15). If we take in (15) k1 = 0 and integrate once, we find

w′′ + 3w2 = − C

27
z + D (25)

with D a new arbitrary constant. Note that equation (25) is, with an appropriate change of
variables, the first Painlevé equation (P ′′ = P 2+x). By choosingC = 0, we get an autonomous
equation. Consequently, its order can be reduced. Thus we have

w′ =
√

2w(D − w2) + E (26)

with E being an arbitrary constant. In this way we have reduced the solution of (25) with
C = 0 to a quadrature. However, in general, this solution involves inverse functions of elliptic
integrals. The simplest case corresponds to D = E = 0, for which the solution of (26) is
given by

w(z) = − 2

(z + k)2
k arbitrary constant.
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Figure 1. Solution (27) with k = 0, c1 = 1, c2 = 3
2 .

Taking into account (14) we have the solution of (2):

u(x, y) = 4c1 − c2
2

24
+

1

6

(
x

y
− c2

2

)2

− 2y2[
y
(
x − c2y

2

)
+ k
]2 (27)

and the corresponding travelling wave solution of the KP equation is given from (27) as
u(x − c1t, y − c2t). Observe that the solution of (2) we are analysing blows up in

• Two straight lines if k = 0:

y = 0 and x = c2y

2
.

• A straight line and a hyperbola if k �= 0:

y = 0 and y
(
x − c2y

2

)
= −k.

This fact can be appreciated in figures 1 and 2. Note also that (27) depends on c1 just through
an additive constant while it depends on c2 in a stronger way.

For arbitrary k1 and C = 0 two particular solutions of (15) are

w(z) = 5k1

9
z and w(z) = −35k1

18
z

and the corresponding solutions for (2) are given by

u(x, y) = 4c1 − c2
2

24
+

25k2
1y

8

216
+

5

54
k1y

3(6x − 3c2y − k1y
5)

+
1

216y2
(6x − 3c2y − k1y

5)2

u(x, y) = 4c1 − c2
2

24
+

25k2
1y

8

216
− 35

108
k1y

3(6x − 3c2y − k1y
5)

+
1

216y2
(6x − 3c2y − k1y

5)2.

(28)
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Figure 2. Solution (27) with k = 1, c1 = 1, c2 = 3
2 .

These solutions blow up at the line y = 0 and increase as |y| increases for any arbitrary value
of x. Only the particular case k1 = 0 (for which both solutions coincide) avoids this increasing
for large values of |y|.
Equation (17). If we put w = v′ in (17) the resulting equation can be trivially integrated
twice. Thus we reduce the order and (17) becomes the third order equation:

v′′′ + 3(v′)2 − z2

4
v′ − 3z

4
v = Cz + D.

Unfortunately, we have not been able to obtain further order reductions. For simple inspection
of (17) one finds the particular solution

w(z) = − 2

z2

and consequently the solution of (2):

u(x, y) = 1

216
(36c1 − 9c2

2 + 48k1x − 24k1c2y + 32k2
1y

2)− 72

(6x − 3c2y − 4k1y2)2
. (29)

It is clear that this solution blows up at

• a straight line if k1 = 0: 2x − c2y = 0,
• a parabola if k1 �= 0: 6x = 3c2y + 4k1y

2,

and in the case k1 �= 0 (29) increases for large values of |y|, although its increase is much
slower than for (28). We plot this solution for k1 = 0 and k1 �= 0 in figures 3 and 4 respectively.

Equation (19). Equation (19) can be trivially integrated, and using (18) we obtain the solution
of (2)

u(x, y) = k2
1

2
y4 + 2k1k2y

3 − 1

2
(c2k1 − 6k2

2)y
2 + k3y + k4 + (k1y + k2)x (30)

where k3 and k4 are arbitrary constants.
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Figure 3. Solution (29) with k1 = 0, c1 = 1, c2 = 1.
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Figure 4. Solution (29) with k1 = 1, c1 = 1, c2 = 1.

Equation (21). Equation (21) can be integrated by standard means. Then using (20) we obtain
the solution of (2)

u(x, y) = x2

6y2
+

(
k1y

3 − c2

6y

)
x +

c1

6
+
k2

y
+ k3y

2 − c2k1

2
y4 +

k2
1

9
y8. (31)

Equation (23). As in some previous cases, the general solution of (23) involves inverse
functions of elliptic integrals. However, a solution is given by w(y) = 1

24y2 . Using (22) we
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have

u(x, y) = 4c1(2x − c2y)
2 − 192 − 4c2

2x
2 + 4c3

2xy − c4
2y

2

24(2x − c2y)2
+
(2x − c2y)

2

24y2
. (32)

This solution blows up in two lines: y = 0 and x = c2
2 y.

Finally, note that, as the equation (2) is invariant under translation, we can generate new
solutions by putting x → x − x0, y → y − y0 in any of the solutions we have obtained.

Summarizing, by making use of the nonclassical symmetries of a reduced equation of the
KP equation, we have been able to find several rational solutions of KP that describe coherent
structures, i.e. solutions whose temporal evolution consists in a movement with constant
velocity (c1, c2). Indeed, expressions of the form

u(x − c1t, y − c2t),

with u given by (24), (27)–(31) or (32) are solutions of the KP equation.
Moreover, we can construct large families of (x, y)-rational solutions of the KP equation,

starting with our solutions (27)–(32) of (2) in the following way: in [11], Clarkson and
Winternitz apply the direct method (see, e.g., [12] for a description of this method) in order to
reduce the KP equation to PDEs with two independent variables. In particular, they find that
making the ansatz

z1(x, y, t) = x f (t) +
h(t)

2
+
y2 f ′(t)

2
+
y g′(t)
2 f (t)

z2(x, y, t) = y f (t)2 + g(t)

u(x, y, t) = f (t)2 w(z1(x, y, t), z2(x, y, t))− x f ′(t)
6 f (t)

−−g′(t)2 + 2 f (t)3 h′(t)
24 f (t)4

− y2 (−2 f ′(t)2 + f (t) f ′′(t))
12 f (t)2

−y (−3 f ′(t) g′(t) + f (t) g′′(t))
12 f (t)3

(33)

where f , g, h are arbitrary functions of t , the new dependent variable w satisfies the equation

wz2z2 = (6wz1w + wz1z1z1)z1 . (34)

It is clear that (34) coincides with our equation (2) if we put c1 = c2 = 0. Thus, by introducing
our solutions (27)–(32) as the w function in (33), we get families of solutions of KP which
are rational functions in the spatial variables (x, y) and depend on t through three arbitrary
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functions. For example, substituting (27), (29) and (32) in (33) we obtain

u(x, y, t) = −x f ′(t)
6 f (t)

+ f (t)2
(
x f (t) + h(t)

2 + y2 f ′(t)
2 + y g′(t)

2 f (t)

)2

6 (y f (t)2 + g(t))
2

−f (t)2 2 (y f (t)2 + g(t))
2

[
k + (y f (t)2 + g(t))

(
x f (t) + h(t)

2 + y2 f ′(t)
2 + y g′(t)

2 f (t)

)]2

−−g′(t)2 + 2 f (t)3 h′(t)
24 f (t)4

− y2 (−2 f ′(t)2 + f (t) f ′′(t))
12 f (t)2

−y (−3 f ′(t) g′(t) + f (t) g′′(t))
12 f (t)3

u(x, y, t) = −x f ′(t)
6 f (t)

− 72f (t)2[− 4 k1 (y f (t)2 + g(t))2 + 6x f (t) + 3h(t) + 3y2 f ′(t) + 3 y g′(t)
2 f (t)

]2

+ 4
27f (t)

2 k1
2 (y f (t)2 + g(t))

2

+
2

9
f (t)2 k1

(
x f (t) +

h(t)

2
+
y2 f ′(t)

2
+
y g′(t)
2 f (t)

)

−−g′(t)2 + 2 f (t)3 h′(t)
24 f (t)4

− y2 (−2 f ′(t)2 + f (t) f ′′(t))
12 f (t)2

−y (−3 f ′(t) g′(t) + f (t) g′′(t))
12 f (t)3

u(x, y, t) = −x f ′(t)
6 f (t)

− 2f (t)2(
x f (t) + h(t)

2 + y2 f ′(t)
2 + y g′(t)

2 f (t)

)2

+

(
x f (t) + h(t)

2 + y2 f ′(t)
2 + y g′(t)

2 f (t)

)2

6 (y f (t)2 + g(t))
2 − −g′(t)2 + 2 f (t)3 h′(t)

24 f (t)4

−y2 (−2 f ′(t)2 + f (t) f ′′(t))
12 f (t)2

− y (−3 f ′(t) g′(t) + f (t) g′′(t))
12 f (t)3

.

(35)

We plot the solution (35) in figure 5 for the choice k = 1, f (t) = t3 sin(t), g(t) = t2 cos(t),
h(t) = t sin(t) and t = −2 (figures 5(a)), t = 1 (figure 5(b)) and t = 4 (figure 5(c)).

Note that all our solutions are invariant solutions under an infinite-dimensional subgroup
of the Lie symmetry group of the KP equation. Using other subgroups (corresponding to
Lie symmetries or nonclassical symmetries), new reductions can be performed, and invariant
solutions under these subgroups can be obtained.

Remark. We have obtained, using the symmetry reduction procedure, some families of
(x, y)-rational solutions of the KP equation. It is well known that this equation is integrable.
Consequently, a lot of methods in the theory of integrable systems are available to find exact
solutions of this equation: Hirota tau functions, methods in quantum field theory, vertex
operators, Lax pairs, Grassmannian approach, etc. In particular, rational solutions have been
constructed using these techniques. For example, in [13] Kac uses the description of the KP
hierarchy through the bilinear identity and the vertex operators in order to show that any Schur
polynomial is a τ -function for the KP hierarchy. Jimbo and Miwa [14] use fermionic fields to
characterize polynomial τ functions for the KP hierarchy. More recently, Wilson [15] shows
that the rational solutions of the KP hierarchy vanishing as |x| → ∞ are parametrized by a
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Figure 5. (a) Solution (35) with k = 1 f (t) = t3 sin t , g(t) = t2 cos t , h(t) = t sin t and
t = −2. (b) Solution (35) with k = 1 f (t) = t3 sin t , g(t) = t2 cos t , h(t) = t sin t and t = 1.
(c) Solution (35) with k = 1 f (t) = t3 sin t , g(t) = t2 cos t , h(t) = t sin t and t = 4.

certain Grassmannian, and he uses this description to construct rational solutions.
Thus all the solutions constructed in the above works vanish as |x| → ∞. These solutions

are related to the Calogero–Moser system [16], a classical particle system with inverse square
potential.

The solutions in the present work do not vanish as |x| → ∞. In fact, they are of the form

u(x, y, t) = a(y, t)x2 + b(y, t)x + c(y, t) +
k

(x − d(y, t))2

where k = −2 or 0. Note that some particular solutions of this type have been obtained in [17]
by using a pair Lax approach and imposing the condition that L4 and L6

+ are commuting
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Figure 5. (Continued.)

differential operators (L being the pseudo-differential Lax operator). It can be easily checked
that the coefficients a, b, c and d satisfy the system

ayy = 36a2

byy = at + 36ab

cyy = bt + 6b2 + 12ac

dyy = 12ad + 6b

dt + d2
y − 6ad2 − 6bd − 6c = 0

if k = −2 and the system consisting of the first three previous equations if k = 0. Moreover,
acting with the symmetry group of the KP equation on the rational solutions in [13,14] or [15],
we can construct solutions of the form

u(x, y, t) = a(y, t)x2 + b(y, t)x + c(y, t)− 2
n∑
i=1

1

(x − xi(y, t))2
.

For these solutions, xi, i = 1, . . . , n, a, b, c satisfy a generalized Calogero–Moser system.
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