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Abstract

In this Letter we prove that, for some partial differential equations that model diffusion, by using the nonclassical method we
obtain several new solutions which are not invariant under any Lie group admitted by the equations and consequently which are
not obtainable through the classical Lie method. For these partial differential equations that model fast diffusion new classes of
symmetries are derived. These nonclassical potential symmetries allow us to increase the number of exact explicit solutions of
these nonlinear diffusion equations. These solutions are neither nonclassical solutions of the diffusion equation nor solutions
arising from classical potential symmetries. Some of these solutions exhibit an interesting behavior as a shrinking pulse formed
out of the interaction of two kinks. © 2001 Elsevier Science B.V. All rights reserved.

1. Introduction

It is known [23] that the diffusion processes appear
in many physics processes such as plasma physics,
kinetic theory of gases, solid state [3] and transport
in porous medium. One of the mathematical model for
diffusion processes is

up=(u"%uy) - (1)

In many metals and ceramic metals, the thermal co-
efficient of conductivity or diffusion coefficient, if u
represents mass concentration, can be approximated
as u~*. Its divergence for small u causes a much
faster spread of heat than in the linear case. In [23]
Rosenau presented a number of remarkable features
of the fast diffusion processes; for 1 < « < 2, the fam-
ily of fast diffusion (1) coexists with a subclass of
superfast diffusions where the whole process termi-
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nates within a finite time. The special case with o = |
emerges in plasma physics and reveals a surprising
richness of new physicomathematical phenomena. For
o = 0 Eq. (1) becomes the heat equation and foro < 0
Eq. (1) represents the porous medium equation.

In the past years we can observe a significant
progress in application of symmetries to the study of
nonlinear partial differential equations of physical im-
portance, as well as in finding exact solutions for such
equations. Lie classical symmetries admitted by non-
linear PDEs are useful for finding invariant solutions,
as well as to discover whether or not the equation
can be linearized by an invertible mapping and con-
struct an explicit linearization when one exists. The
first physically meaningful nonlinear evolution equa-
tion to be solved exactly was Burger’s equation. This
equation was mapped to the heat equation [12,19], by
a rather simple transformation. It should be remarked
that this equation possesses neither solitons nor infi-
nitely many conservations laws. Instead possess infi-
nitely many symmetries {20]. It seems [13] that the
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possession of infinitely many symmetries is the defin-
ing feature of an exact solvable equation. In [13] Fokas
apply the Lie-Bicklund symmetry approach to show
that the most general equation of the form

ur =gy + f(u,uy)

with g, # 0 which is exactly solvable of the normal
type is equivalent to the equation

ur = [(Bu+y) 2ux], +a(Bu +y) Cux,

where o, B, y are arbitrary constants parameters.

A complete group classification for the nonlinear
heat equation (1), with « # 1, was derived by Ovsian-
nikov [21] by considering the PDE as a system of
PDEs, and by Bluman [5]. A classification for Lie—
Bicklund symmetries was obtained by Bluman and
Kumei [6]. The importance of the effect of space-
dependent parts on the overall dynamics of (2) is well
known. In [15] a group classification problem was
solved for equation

ue = ("), + F OO U + g (o™, )

with n# 0, by studying those spatial forms which ad-
mit the classical symmetry group. Both the symmetry
group and the spatial dependence were found through
consistent application of the Lie group formalism.

Motivated by the facts that symmetry reductions for
many PDEs are known that are not obtained using the
classical Lie group method, or that the Lie classical
symmetry groups are rather trivial including at most
space and time translations and scale transformations
there have been several generalizations of the classical
Lie group method for symmetry reductions. Bluman
and Cole [5] developed the nonclassical method to
study the symmetry reductions of the heat equation.
The basic idea of the method is to require that the PDE
and the invariance surface condition

fuy +1u; —¢ =0, 3

which is associated with the vector field

V=E&x,t,u)ox +1(x,t,u)d; +d(x,t,u)dy, (€))

are both invariant under the transformation with in-
finitesimal generator (4). Since then, a great number
of papers have been devoted to the study of non-
classical symmetries of nonlinear PDEs in both one
and several dimensions. Classical and nonclassical

symmetries of the nonlinear equation (2) with n = 1
and g(x) = constant are considered by Clarkson and
Mansfield [9], and by Arrigo et al. [1] constructing
several new exact solutions. In [2] Arrigo and Hill ap-
plied the nonclassical method of Bluman and Cole to
study the nonlinear diffusion equation with a nonlinear
source

ue=[Dwu,] + Q). (5)

The authors determine those source terms admitting
nonclassical symmetry reductions for the case of ex-
ponential and power law diffusivity, that is,

D) =u™, D(u) = e*.

They only considered the case for which 7 # 0. In
previous works, we have obtained nonclassical sym-
metries for

up=(u") _+gu™, (6)

a porous medium equation with absorption [17], and
for

Uy = (u")xx + f(x)uy, ™)

a porous medium with convection [18].
Recently it has been shown [22] that the nonlinear
diffusion equation

ur =[D(wux], ®)

can be reduced to Fujita’s equation (that is, D(u) =
1/(a) + azu + azu?)) if it admits a class of generalized
conditional symmetries and some new exact solutions
of (1) have been obtained for « = 1 and « = 2
via the method of generalized conditional symmetries
developed by Fokas and Liu.

In [24], Zhdanov and Lahno have applied the non-
classical (or conditional) method to the one-dimen-
sional porous medium equation

u; — (uuy)y =0. €)]

The nonclassical method in the case for which 7 # 0
does not lead to any new symmetry but the classical
Lie symmetries.

According to these authors [24] the nonclassical
method for (9) as well as for the parabolic type PDEs
is inefficient. They claim that once obtained new non-
classical symmetries in the case for which 7 =0,
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performing the symmetry reductions gives rise to in-
variant solutions corresponding to the Lie symmetries
of (9).

One of the aims of this Letter is to prove that the
nonclassical method, in the case for which 7 = 0,
applied to (1) gives rise to new solutions of (1) which
are not group-invariant and consequently cannot be
obtained by Lie classical symmetries. This result is a
counterexample of the statement done in [24].

Nevertheless, an obvious limitation of group-theo-
retic methods based in local symmetries is that many
PDEs do not have local symmetries. It turns out that
PDEs can admit nonlocal symmetries whose infinites-
imal generators depend on the integrals of the depen-
dent variables in some specific manner. It also hap-
pens that if a nonlinear scalar PDE does not admit
an infinite-parameter Lie group of contact transfor-
mations it is not linearizable by an invertible con-
tact transformation. However, most of the interesting
linearizations involve noninvertible transformations,
such linearizations can be found by embedding given
nonlinear PDEs in auxiliary systems of PDEs [7].

In [6], Bluman introduced a method to find a new
class of symmetries for a PDE when it can be writ-
ten in a conserved form. These symmetries are nei-
ther point symmetries nor Lie-Bécklund symmetries,
they are nonlocal symmetries which are called poten-
tial symmetries. Potential symmetries were obtained
in [16] for the porous medium equation (2) when it
can be written in a conserved form.

Knowing that an associated system to the Boussi-
nesq equation has the same classical symmetries as
the Boussinesq equation, Clarkson [10] proposed as
an open problem if an auxiliary system of the Boussi-
nesq equation does possess more or less nonclassical
symmetries than the equation itself. Bluman claims [4]
that the ansatz to generate nonclassical solutions of the
associated system could yield solutions of the original
equation which are neither nonclassical solutions nor
solutions arising from potential symmetries.

In this Letter we will derive, for (1), a new class
of potential symmetries called nonclassical potential
symmetries, which are realized as nonclassical sym-
metries of an associated system. The significance of
these symmetries will be pointed out by the fact that
there are equations of great interest as some diffu-
sion equations (1) that model fast processes for which
no classical potential symmetries are admitted. Never-

theless, the nonclassical method applied to the corre-
sponding associated potential system lead to new sym-
metries nonclassical potential symmetries as well as
to new exact solutions. Some of these solutions exhibit
an interesting behaviour as a shrinking pulse formed
out of the interaction of two kinks.

2. Nonclassical symmetries

By requiring that both (1) and (3) are invariant
under the transformation with infinitesimal generator
(4) one obtains an overdetermined, nonlinear system
of equations for the infinitesimals & (x, ¢, u), T(x, t, u)
and ¢(x,t, u). The number of determining equations
arising in the nonclassical method is smaller than
for the classical method. Consequently, the set of
solutions is in general, larger than for the classical
method as in this method one requires only the subset
of solutions of (1) and (3) to be invariant under the
infinitesimal generator (4).

To obtain nonclassical symmetries of (1) we apply
the algorithm described in [11] for calculating the de-
termining equations. We can distinguish two different
cases:

In the case 7 # 0, without loss of generality, we may
set T(x,t,u) = 1. The nonclassical method applied to
(1) give rise to four nonlinear determining equations.

After solving the determining system we can assure
that for « # 1/2 we only recover the classical sym-
metries, consequently a complete classification of the
nonclassical symmetries of the governing equation has
been performed for 7 # 0 and we we can state:

Eq. (1) admits proper nonclassical symmetries with
T =1 only fora =1/2.

The corresponding determining equations gives rise
to

E=§&1(x,1),
¢ =d1(x, Du'? + g (x, Du,

where &1(x, 1), ¢1(x,t) and ¢2(x, t) are related by the
following conditions:

31 3 3
— 2¢) > + ——= =0,
PRI i vl o

32

) ¢1 _¢]2=0,

ax2
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02 2 0
2 4—d» =0
Y, +¢2 + 9x ¢2 ,
08 08
a5, 2L 4 B
£ 1o +4& ox + ™ 0,
02 3%
2—= 42— =0.
Si91+ x + 9x2

Choosing &] = ¢ = 0 and ¢y = ¢1(x) we obtain the
nonclassical symmetry

12

T=1, =—ul/?,
¢=13

£§=0,
and we get the nonclassical reduction that yields to the
exact solution

6t kr \ 2
u= (—2+k1x3+ —;) . (10)
X X

This solution (10), which has been already obtained
in [1], is not group-invariant, consequently it is unob-
tainable by Lie classical symmetries.

In the case T = 0, without loss of generality, we
may set £ = 1 and the determining equation for the
infinitesimal ¢ is

G — (frx + 6 buu + 20Pux )
+ (Baddy + 2ad’ ¢, )u —a(a + 1)¢> =0.  (11)

The complexity of this equation is the reason why we
cannot solve (11) in general. Thus we will proceed, by
making several ansatzs on the form of ¢ (x,t, u), to
solve (11). Due to the invariance under temporal and
spatial translations, the solutions that we obtain will
also be solutions by substituting x by x — xp and ¢
by t — tp. Due to the fact that for « =2 (1) can be
linearized and it is exactly solvable we are considering
o # 2. As far as we know, this is the first time that
nonclassical symmetries with T = 0 have been derived
for (1), in previous works [1] only the case with 7 # 0
has been considered.

Case 1. o # 2. Choosing ¢ = n(x,Hu*t! +
n2(x, H)u® and setting « 7 2 leads to the nonclassical
generator

¢___ua+l( X + ko )+k3ua.
@—20+h) 14k K

Solving the surface condition yields to the nonclassical
reductions leading to the exact solution

u =Kt1/a(x2_+_ﬂt2/(2—zx))—l/a (12)

with K = (2(2 — a)/a)!/? and B = constant. In the
particular case « = 1, this is the well known source
solution. For some special values of parameter o,
besides solution (12) we can obtain the following:

Case 2. o = 1. Choosing

¢ = (x,Hu” +m(x, Hu

we get that n)(x, t) and 72(x, t) must satisfy the fol-
lowing conditions:

Im  °m
_om_y 1
Py T ax2 (13)

ony dmp  9ny 3%

L g~ =0, 14
n ox + dt 0x 12 9x2 14
ani an1
0. 15
ar Moy (15)

By solving (13)—(15) several cases appear. In the fol-
lowing we show the infinitesimal generators ¢ corre-
sponding to 7 constant and the corresponding exact
solution .

Subcase 2.1. If k1 > 0, setting ./k; =k we get
2k kot
o= «/fkutan(f @x+h +k3)) — kau?,

2
Y V2 kcos(~/2kkat)
" ka(sin(v/2kx) — sin(~/2 kkot))

Subcase 2.2. If k| < 0, setting /—k; =k we get
2k(x +k :
¢=—2ku tanh(f x +2 2 +k3)) — kou?
o V2 kcosh(v/2 kkat)
ky(sinh(v/2 kx) — sinh(v/2 kkat))

y

Subcase 2.3. If k1 =0, we get

0= T x +k2tu ~kat,
. 2(t + ka) ’
(x — kot — 2kokq)(x + kat)
Subcase 2.4.
kyu u2(x —k2)
o= - T
Kehia/i

u= .
(kyx — )b/t 4+ kot
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These new solutions are unobtainable by Lie clas-
sical symmetries and this fact proves that the method
of nonclassical symmetries with T = 0 is effective for
the parabolic type equations in contradiction with the
statement done in [24]. “The conditional symmetries
of parabolic equations yield solutions which are noth-
ing else than group-invariant solutions.”

3. Proof of inexistence of other solutions, in the
casea =1

Let us find the general solution, if it exists, of
system (13)—(15). One first replaces (13) by its x-
primitive

1
—2G3+ 3m — ma =0, (16)

in which the function G> only depends on ¢. Then
one solves system (16), (14), (15) as a linear Cramer
system for a choice of three derivatives, e.g., the one
which eliminates 0;:

LI
o =—2G5+ > %))
2, 1,
me=—-m _2G2+ 5772 + 71,212 + 71 xxs (18)
Nt =Ml x- 19)

Then one enforces all the Schwarz cross-derivative
conditions (there is only one)

(M2.x): — (2,0)x = _4G2G/2 + n%nl,x — N1xxx =0.
(20)

The two ODEs (16), (20), when solved successively,
are enough to perform the complete discussion of the
original system (13)—(15). The general solution 7, of
(16) is

—2G (1) coth(G2(1) (x — go(1))),

if n2.x #0, 2
2Ga(t), ifn=0.

The insertion of this value in (20) defines a second-
order linear inhomogeneous ODE for 1 ;. One must
distinguish four cases, according as whether the so-
lution of each ODE is characteristic or not, i.e.,
(M,xxx> M2,x) = (0, #0), (#0,0), (0,7#0), (0,0).
The condition 1 x.x = 0, together with (15), has two

solutions
ky,
n=93_x-x (22)
t—to °
Hence the four cases:
1. N1 xxx # 0, n2.x # 0 (the generic case). Eq. (20)
is an inhomogeneous Lamé equation [14] for the

unknown 7y ,, with an irrational Fuchsian index n
solution of

1+ V17
nn+1)—4=0, nz%. (23)

Therefore any particular solution 7; has movable
critical singularities (on the manifold x — go(f) =
0), and must be discarded.
2. Nixxx # 0, m.x = 0. This implies Ga(r) # 0,
Eq. (20) integrates as
m= fi(t) + ()20 + f3(1)e 22,
(24)

but Eqs. (14) and (15) require f, = f3 =0, impos-
sible.

3. nixxx =0, 72, # 0. This implies G, =0, g, =0,
this is the solution denoted Subcase 2.1 (or Sub-
case 2.2, the same in the complex plane, or its de-
generacy Subcase 2.3).

4. 11 .xxx =0, n2.x = 0. This provides either n; = k|,
12 = kp, or the solution denoted Subcase 2.4.

4. Nonclassical potential symmetries

We consider the associated auxiliary system given
by

Ux = U,

v =u"%uy, (25)

augmented with the invariance surface condition

vy + v — Y =0, (26)

which is associated with the vector field

V=EXx,t,u,v)or +1(x,1,u,v)0
+¢(x’t7usv)au+1/f(x‘tvuv U)av- (27)

By requiring both (25) and (26) to be invariant under
the transformation with infinitesimal generator (27)
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one obtains an over determined, nonlinear system of
equations for the infinitesimals &§(x, ¢, u, v), T(x,¢,
u,v), yix,t,u,v), ¢(x,t,u,v). When at least one of
the generators of the group depend explicitly of the
potential, that is, if

E2 410+ ¢ £0, (28)

then (27) yields a nonlocal symmetry of (1).

A nonclassical potential symmetry of (1) is a non-
classical symmetry of the associated potential system
(25) that satisfies (28).

We can distinguish two different cases: v = 0 and
7 # 0. For 7 =0, although we are able to derive some
new generators, we do not get any new solution for (1).

In the second case, we set T = 1 without loss
of generality. The nonclassical method, with 7 # 0,
applied to (25) give rise to two nonlinear determining
equations for the infinitesimals. If we require that §, =
Y, = 0, we obtain

¢ =—Eu” + Yy —EU + Vs, (29)

where &(x,t,v) and ¥(x,t,v) are related by the
following nonlinear condition:

E6u(a —2)u " + &t + ayrpu®”!
— (Eayy + Eyoy — 26,9 — EEcor + 2£E,
+ Et)uoH—l
— (Eayr —ayy, — Y + Ecay — 25 Y)u”
— (Yoo — 2E00U” — Q¥ux — Exx)u — Yrax =0.

In this equation the coefficients of the different powers
of u must be zero. After solving the determining sys-
tem a complete classification of the nonclassical sym-
metries of the governing equation has been performed
for T # 0 and we we can state:

Case 1. « # 1, 2. The nonclassical method applied to
(25) does not yield any new symmetry different from
the ones obtained by Lie classical method.

Case 2. « = 2. We must remark that in this case equa-
tion vy = v,/ vf may be linearized and transformed
into the linear heat equation. Hence a nonclassical
point symmetry of the linear diffusion equation is a
nonclassical, nonlocal symmetry of (1). For example,
applying the nonclassical method applied to (25) give

rise to the nonclassical reduction

3x 3
f=—", 1=l Yp=-1. (30)
v v
These infinitesimals, as & depends explicitly on v =
f u(x)dx, correspond to a nonclassical potential sym-
metry. Nevertheless, the nonlocal nonclassical reduc-
tion (30) corresponds to a nonclassical symmetry ob-
tained for the diffusion equation [1]. Hence any non-
classical (or classical) nonlocal result for o« = 2 is
linked to an equivalent nonclassical (or classical) point
symmetry of the linear diffusion equation.

Case 3. o« = 1. By applying the nonclassical method
we get that ¢ adopts form (29), where & and ¥ are
related by the following conditions:

9%t 9
A e
2y oy 8k ot 3%t —ﬁ—o

’

R S AT A s R ) —
dv? 53v+3vw Eax—‘_ dvax  at

2 2
T AN I S
Jv ox

0x dvox dat dx?
oy %y
— - — =0.
v ax  0x?

Despite the fact that the former equations are too com-
plicated to be solved in general, special solutions can
be obtained:

1. For

£ =k, Y =2tan(v + kt + k1),

we obtain the similarity variable z = v — kt and the
family of invariant solutions is defined, implicitly,
by
logsec(z —2v —c¢)

k
where f satisfies the ODE

x— f(2)=0,

kf//_kz(f/)2_1=0.

Therefore, setting ¢ = v + kz, the family of invari-
ant solutions is defined, implicitly, by

n logsec(¢ + k1) logsec(z + k2)

. p k3 =0.
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Setting k; = k2 = 0 and k = 1 we get the explicit
solution
1
er —1
where @ = sec(t)a(x,t) — tan(tr)(e* + 1) and
a(x,t) = (62 —2cos(2t)e* + 1)1/2,
2. For

v=2arctan( ¢(xst))y

E=k  y=2tanlx+v+k),

we get the similarity variable z = v — x and, setting
= —x — v, the family of invariant solutions is
defined, implicitly, by

logsin(¢ + k1) — logsec(z + k2) — 4t — 4k3 = 0.
This solution can also be written in explicit form.

We must remark that in these two cases the in-
finitesimals depend explicitly on v = f u(x)dx, con-
sequently they correspond to nonclassical potential
symmetries. The new exact solutions obtained are un-
obtainable by using the classical or nonclassical sym-
metries of (1).

3. For

E=k, = -2k tanh(kl(x+kt+k2)),

we obtain the similarity variable z = x —k¢. Setting
O =x+kt +ky and { =x — kt + k3 we get the
explicit solution

v == (log2 — log(cosh(2k1 1)) + 1)

1

2%
1 A

— ~(tog(sechki22) + ks).

The corresponding exact solution of (1) adopts the
form

y— k) (tanh(k| (x — kt)) — tanh(k;(x + kt)))
= X .

We point out that although in this case the infini-
tesimals do not depend on v = f u(x) dx, and they
do not correspond to a nonclassical potential sym-
metry, they do no project on to any of the infinites-
imals corresponding to the classical or nonclassi-
cal generators of (1), consequently u is a new exact
solution of (1) which cannot be obtained by using
classical or nonclassical symmetries of (1).

This solution, which describes an unusual diffusion
process caused by flux suction at infinity, has been
derived by Rosenau in [23] using a different proce-
dure, and looks like the elastic interaction of two kinks
giving a shrinking appearance to diffusion. Its deriv-
ative looks like the interaction of two solitons solu-
tions. These are of special interest since such solu-
tions are in general associated with integrable equa-
tions. Moreover, in general two solitons solutions are
associated with Lie-Bécklund transformations, and al-
though some of these solutions have been obtained [8]
by means of nonclassical symmetries, to our knowl-
edge this is the first time that this kind of solution has
arisen from a nonclassical reduction of the associated
potential system.

5. Concluding remarks

We have proved that for the parabolic type equa-
tion (1) the nonclassical method yields to symmetry
reductions which are unobtainable by using the Lie
classical method and the exact solutions obtained are
not group invariant solutions. Consequently, in con-
tradiction with the statement done in [24], we have
proved that the nonclassical method is effective for
PDE:s of the parabolic type.

Furthermore, we have introduced new classes of
symmetries for some diffusion equations. If these
equations are written in a conserved form, then a
related system (25) may be obtained. The ansatz to
generate nonclassical solutions of (25) yields solutions
of (1) which are neither nonclassical solutions of
(1) nor solutions arising from potential symmetries.
Some of the solutions obtained by reduction from
the associated potential system exhibit an interesting
behaviour as a “shrinking pulse” formed out of the
interaction of two kinks. As far as I know this is the
first time that this kind of solution has arisen from
a nonclassical reduction of the associated potential
system.
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