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In a previous paper, we presented an approach to calculate relational division in fuzzy
databases, starting with the GEFRED model. This work centered on dealing with fuzzy
attributes and fuzzy values and only the universal quantifier was taken into account since
it is the inherent quantifier in classical relational division. In this paper, we present an
extension of that division to relax the universal quantifier. With this new system we can
use both absolute quantifiers and relative quantifiers irrespective of how the function of
the fuzzy quantifier is defined. We also include a comparison with other fuzzy division
approaches to relax the universal quantifier that have been published. Furthermore, in
this paper we have extended the fuzzy SQL language to express any kind of fuzzy
division. � 2001 John Wiley & Sons, Inc.

1. INTRODUCTION

Ž .On a theoretical level, there are many fuzzy relational database FRDB
models, which are based on the relational model and which can be extended to
allow the storage and�or treatment of vague and uncertain information. The
FRDB models are based on the concept of fuzzy relation. However, there are
several ways of representing and handling imprecise or uncertain information in
these fuzzy relations. Moreover, these models can be mixed to allow a greater
flexibility.

Ref. 1 lists a compendium of FRDB models and their main characteristics.
In Refs. 2 and 3 a brief summary of the most important ways of introducing
fuzzy information into the fuzzy relations was presented. What the best method
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is will depend on the circumstances. The two most used ways are:

Ž .1 Fuzzy values in the attributes: It is possible to store fuzzy values as attribute
values in a relation and to operate with them. The fuzzy values are mainly fuzzy

Ž .numbers, possibility distributions, or different labels scalars with a similarity
relation between each two labels. This type of fuzzy relations is used in Refs.
3�13. In particular, the GEFRED model7 represents a synthesis among the
different models which have appeared to deal with the problem of the represen-
tation and management of fuzzy information in relational databases and this
model allows all data types in Table I to be represented. The unknown,
undefined, and NULL types are defined in Umano11 and Fukami et al.14

Ž .2 Grade for every value of an attribute or for a tuple: This implies that every
Žvalue of every attribute or the whole tuple can have an associated grade or

. � �degree , generally in the interval 0, 1 , that measures the level of fuzziness of
� �this value. The domain of these grades is usually limited to the interval 0, 1 ,

�but other values can be allowed, as, for example, possibility distributions in 0,
�1 , since it may be difficult to know all the degrees precisely and therefore this

grade is pervaded with uncertainty and imprecision.15 The semantics of these
degrees can vary. Therefore, the most important meanings of these grades may

Ž . 7,15,16be fulfillment degree of a property or condition , membership degree
Ž . 8,9,12,17,18measuring the level of membership of an object to a set , and impor-

Ž . 8,15,16tance degree of every object . In some contexts, fulfillment and member-
ship degree may be considered to be the same thing, since the membership
degree to a set S may measure to what extent the property S is fulfilled.

ŽIt is usual to mix some of these ways or several variations such as
9.associating two values per tuple with the meaning of necessity and possibility .

However, if some of these ways are used, although a greater flexibility is
achieved, the database semantic becomes very difficult to understand. In this
paper we will focus on the use of fuzzy relations, considering fuzzy values in the

Table I. Data types for GEFRED FRDB model.

1. A single scalar
Ž .e.g., Size � Big, represented by the possibility of distribution 1�Big .

2. A single number
Ž .e.g., Age � 28, represented by the possibility of distribution 1�28 .

3. A set of mutually exclusive possible scalar assignations
Ž � 4 � 4.e.g., Behavior � Bad,Good , represented by 1�Bad,1�Good .

4. A set of mutually exclusive possible numeric assignations
Ž � 4 � 4.e.g., Age � 20, 21 , represented by 1�20, 1�21 .

Ž .5. A possibility distribution in a scalar domain with a similarity relation
Ž � 4.e.g., Behavior � 0.6�Bad,1.0�Average .

6. A possibility distribution in a numeric domain
Ž � 4 .e.g., Age � 0.4�23, 1.0�24, 0.8�25 , fuzzy numbers or linguistic labels .

� �7. A real number belonging to 0, 1 , referring to the degree of matching
Ž .e.g., Quality � 0.9 .

8. An unknown value with possibility distribution
� 4unknown � 1�u: u � U on domain U, considered.

9. An undefined value with possibility distribution
� 4undefined � 0�u: u � U on domain U, considered.

� 410. A null value given by null � 1�Unknown,1�Undefined .
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attributes and an optional grade for each attribute with the meaning of fulfill-
Ž .ment degree or compatibility degree of a concrete condition.

Before studying fuzzy division, let us look at a definition, in a classical
sense, for the operator of relational algebra, the so-called relational division:

Ž . Ž .DEFINITION 1. Let R and R� be relations with headers A, B and B , respec-
ti�ely, where A and B are simple attributes or sets of attributes. Then, the relational

Ž .di�ision of R by R�, denoted by R � R�, is a relation with header A whose body is
Ž . Ž .formed by all the tuples A : a so that a tuple A : a, B : b exists in R for e�ery

Ž .tuple B : b in R�.
So, we may say that tuples in relation R � R� comply with the di�ision

requirements.

Sometimes, the former definition is extended to take into account the case
when the relation R� also has attributes which are not common to R. In this

Ž . Ž .case, if B, C is the header of R�, the division results are tuples A : a, C : c so
Ž . Ž .that a tuple A : a, B : b exists in R for all tuples B : b, C : c in R�. This result

� � Žis equivalent to computing the division of R by R� B the projection of R� onto
.B and afterwards by computing the cartesian product of the resulting relation

� � Ž . Ž � �. � �and R� C the projection of R� onto C , denoted by R � R� B � R� C .
We can therefore give the following definition for any kind of division:

Ž . Ž .DEFINITION 2. Let R and R� be relations with headers A, B, C and B, D ,
respecti�ely, where A, B, C, and D are simple attributes or sets of attributes denoted

� 4by, for example, A � A , . . . , A . We can therefore define the general relational1 n
di�ision of R by R�:

� � � � � �R � R� � R A , B � R� B � R� X 1Ž .Ž .A , B , X

� 4where X is a set of R� attributes: X � B 	 D .

If C, D, and X are empty sets, then Eq. 1 is the usual division. If C is not
Ž .empty, then we select the important R attributes A and we ignore the other

Ž .attributes C . This allows us to perform the division using any set of attributes
and not only those which are not common to R�. If X is not empty, then we

Ž .select some R� attributes X to obtain how A values are related with them,
Ž .through R and R� using the division semantic .

Of course, B implies an implicit matching between R and R� attributes
with the same domain, whatever their attribute names. General relational
division allows division between any two relations with the only requirement
being that they have at least one attribute with the same domain.

Ž .Relational division uses the universal quantifier for all, � , selecting tuples
of the first relation which are related, in some way, to ‘‘all’’ tuples in the second
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relation. In this article, we provide a solution by using fuzzy quantifiers in
classical or fuzzy databases.

19 ŽFuzzy quantifiers may be absolute like ‘‘many’’, ‘‘very few’’, ‘‘approxi-
. Žmately x ’’ . . . or relative like ‘‘most’’, ‘‘almost all’’, ‘‘approximately less than

.half’’ . . . . Absolute quantifiers are defined as fuzzy sets over nonnegative
� �integers, while relative quantifiers are fuzzy sets over the real interval 0, 1 .

Linguistic quantifiers have been widely used in database contexts to process
flexible queries: for example, the method presented by Zadeh,19 the method

Ž . 20 21using ordered weighted averaging OWA operators presented by Yager or
22 Žthe method presented by Vila et al. in this paper there is also a comparative

.study of Zadeh’s and Yager’s methods . These studies are useful when comput-
Ž .ing the fulfillment degree or truth degree of sentences which include linguistic

Ž . Ž .quantifiers absolute or relative and properties vague or not . For example,
they compute the fulfillment degree of the following kind of sentences: ‘‘Most
students are good at mathematics.’’ A survey of methods for evaluating quantified
sentences and some new methods are shown in Refs. 23 and 24.

However, these methods only return a fulfillment degree and they do not
return the set of tuples which comply with the sentence and the fulfillment
degree of each one. In this paper, we formalize a method to carry out fuzzy

Ž .division using any fuzzy quantifier absolute or relative whatever the definition
of its function is, i.e., irrespective of how the function of the fuzzy quantifier is
defined. This system returns the set of tuples which comply with the sentence as
well as with the fulfillment degree of each one. This will allow us to set a
threshold, u, to select only those tuples whose fulfillment degrees are greater
than or equal to u.

This system is based on the generalized fuzzy division method,2,3,25 summa-
rized in the following section. Refs. 2 and 3 include a comparison with other
fuzzy division approaches that have been published8,12,16. We then explain how
fuzzy quantifiers may be used to relax the universal quantifier of the division.
We include a comparison with other approaches13,15,18 which use fuzzy quanti-

Ž . 2,26,27fiers. We also define a new syntax based on the fuzzy SQL FSQL language,
to express any kind of fuzzy division. Finally, we offer some conclusions and
future lines of work.

2. GENERALIZED FUZZY DIVISION WITH THE CLASSICAL
UNIVERSAL QUANTIFIER

In Ref. 3, generalized fuzzy division was presented. This is a method used to
calculate relational division in fuzzy databases, starting with the GEFRED
model.7 To define this generalized fuzzy division, two new operators are defined.
It has been shown that these two operators are useful in other applications,
providing solutions for questions other than those of fuzzy division.

Below, we will offer a brief explanation of these two operators and how
they are used in generalized fuzzy division.
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2.1. Qualified Fuzzy Intersection: 
Q

D EFINITION 3. Let R and R� be two fuzzy relations such that both are base
� 4 Žrelations of the database and both ha�e the same attributes A , . . . , A compati-1 n

˜ ˜. � 4ble with respect to the union . Tuples of R are d , . . . , d with i � 1, . . . , m; tuplesi1 in
�̃ �̃� 4of R� are d , . . . , d with k � 1, . . . , m�, with m and m� being the cardinalities ofk1 k n

R and R�, respecti�ely.
Then, the quantified fuzzy intersection of R by R�, denoted by R 
 R�, will beQ

equal to R, adding a compatibility degree to its attributes K with i � 1, . . . , m fori
each tuple in R.

The �alue K is the possibility degree of tuple i in R existing in R�. The �aluesi
K , with i � 1, . . . , m, are computed indi�idually in the following way: � i � 1, . . . , mi

� ˜ �̃K � max min � d , d 2Ž .½ 5ž /i ic w c½ 5
w�1, . . . , m� c�1, . . . , n

where �� is a fuzzy comparator representing the ‘‘ fuzzy equal’’ or ‘‘possibly equal’’.

Some observations are:

� �The operator � will be used to measure the equality of two values. One
definition of this comparator, for possibility distributions, may be, for example,

�� p , p� � sup min � d , � d 3Ž . Ž . Ž .Ž .˜ ˜ � 4Ž .p p�˜ ˜
d�U

where p, p� are fuzzy values, and their associated possibility distributions are �˜ ˜ p̃
and � , respectively. U is the discourse domain underlying the values. Thep�˜
definition of this comparator may be changed, as we will see below.

� If some attributes exist in R and R� with crisp domains, it is possible to improve
Ž .the efficiency of computing K Eq. 2 . This is shown in Ref. 3.i

� � �If we apply a threshold u � 0, 1 to the K values in the resulting relation fromi
the qualified fuzzy intersection, then we obtain the R tuples which belong to R�
with a possibility greater than or equal to u.

� The qualified fuzzy intersection does not observe the commutative property. The
operation R 
 R� returns the possibility of tuples in R belonging to R�, and theQ
operation R� 
 R returns the possibility of tuples in R� belonging to R. ThisQ
operator is somewhat like an intersection in only one direction.

2.2. Fuzzy Projection with Group Functions FF: PP FF

DEFINITION 4. Let the following four elements be defined as follows:

˜ ˜Ž . � 4 � 41 A fuzzy relation R, with attributes A , . . . , A and tuples d , . . . , d with1 n r1 r n
r � 1, . . . , m.

Ž .2 A list X of R attributes:

� 4 � 4X � x , . . . , x : x � A , . . . , A , � i � 1, . . . , �1 � i 1 n

It is possible that there are elements repeated in X but in different positions.
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Ž .3 A subset X � of R attributes with crisp domains:

� � � 4� 4X � � A , . . . , A : X � � x , . . . , x1 n 1 �

In X �, like any set, repeated elements are not accepted.
Ž .4 A group function list, FF, defined o�er the elements of X. The list FF has � elements,

Ž .where each element is a group function not necessarily distinct defined o�er each
attribute in X, respecti�ely:

� 4FF � gfunc , . . . , gfunc1 �

We use the name ‘‘group functions’’ to refer to those functions which operate on a
finite group of �alues returning only one �alue. The most typical examples are those

Ž .used to count the number of elements in the group Lcount , compute the
Ž . Ž . Ž . Ž .maximum �alue max , the minimum min , the sum sum , the a�erage avg , the

Ž . Ž .�ariance variance , and the standard de�iation stddev . All these functions are
defined in SQL language.

Ž .We now perform the fuzzy projection of R onto X �: R� � PP R; X � with tuples
�̃ �̃� 4d , . . . , d , with t � 1, . . . , m�, m� being the projection number of tuples. Thist1 t�

projection does not cause any problems since the X � attributes ha�e crisp domains.
Using the former elements, we then define the fuzzy projection of R onto X �,

FFŽ .with group functions FF onto X, as the fuzzy relation PP R; X �; X , with all
attributes in X � and X :

� FFŽ .The �alues in X � attributes are the same as the �alues of R�. Then PP R; X �; X
also has m� tuples.

� FF̃The �alues in X attributes are denoted by d , � t � 1, . . . , m�, � i � 1, . . . , � , andti
they are computed using the following equation:

F̃F ˜d � gfunc R .d : r � 1, . . . , m 4Ž .� 4t i i r i
� �˜ ˜R� .d �R .d , � j�1, . . . , �t j r j

This equation computes the group function gfunc on �alues of attribute x � Xi i
of R of tuples whose X � attributes are equal to X � attributes in R�. This equality is in
the classic sense since X � elements are on crisp domains.

In Ref. 3 an algorithm appears which implements Eq. 4 and it has been
shown that the fuzzy projection with group functions power allows us to easily
solve questions which would be more complicated with other methods. For
example, it includes an example to solve the question of ‘‘Which students are

Ž .good with a 0.8 minimum degree in 2 or more subjects?’’ Using the same
technique, it is possible to solve more complicated questions such as ‘‘Which
students are good in 2 subjects and bad in 3 subjects?’’

In generalized fuzzy relational algebra, this fuzzy projection of R onto X �,
FFŽ .with group functions FF onto X, PP R; X �; X , models what in SQL is per-

formed with the GROUP BY clause in a SELECT statement with group
functions. In a query containing a GROUP BY clause, all elements of the
SELECT list must be either expressions of the GROUP BY clause, expressions



DIVISION IN FUZZY RELATIONAL DATABASES 719

FFŽ .containing group functions, or constants. So, the projection PP R; X �; X may
be easily translated to a SQL SELECT statement, operating each clause on the
following elements:

� SELECT: The selected elements will be the set of X � attributes and each group
function of FF on each X attribute, respectively. Then, the SELECT list will have
� � � elements.

� FROM: The relation R.
� GROUP BY: All the X � attributes will appear in this clause.

It should be noted that the X attributes may have fuzzy domains, and in
such a case, the group functions FF corresponding to those attributes must be
defined over those domains. We will therefore be able to compute the minimum
value of a fuzzy number group, the maximum, etc. Some other interesting
considerations are included in Ref. 3.

2.3. Generalized Fuzzy Relational Division: �

Ž .We now generalize the relational division Definition 1 for fuzzy databases.
We can extend this definition in the same way as Definition 2.

DEFINITION 5. Let R and R� be two fuzzy relations with attribute sets
� 4 � 4A , . . . , A , . . . , A and A , . . . , A , respecti�ely. Tuples of R are1 n� n n��1 n

˜ ˜ �̃ �̃� 4 � 4d , . . . , d with i � 1, . . . , m, tuples of R� are d , . . . , d with k �i1 in kŽn��1. k n
1, . . . , m�, m and m� are the cardinalities of R and R�, respecti�ely, and n and
n � n� are the respecti�e degrees.

� 4Furthermore, 1  n� � n, and A , . . . , A ha�e crisp domains. In Ref. 3,1 n�

some remarks appear if these attributes are not crisp.
We then define the generalized fuzzy relational di�ision of R by R�, denoted by

R � R�, as another fuzzy relation obtained by the following three operations:

Ž .1 We calculate a relation R� by:

� �R� � R A � R� 5Ž .

� 4with A � A , . . . , A .1 n�
Ž .2 We calculate the qualified fuzzy intersection of R� by R:

R	 � R� 
 R 6Ž .Q

Ž .3 We calculate the Generalized Fuzzy Projection of R	 onto A, with Group Functions
FF onto C:

R � R� � PP FF R	; A; C 7Ž . Ž .

where C is the compatibility attribute computed in Eq. 6, and FF is the minimum
Ž .group function min .
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� �It should be noted that in Eq. 5, the projection onto A, R A , does not
create any problems, since we have supposed that all A attributes have crisp
domains. The operator � is the cartesian product. In Eq. 7, the projection with
group functions does not create any problems, since both A and C are attribute
sets with crisp domains.

The generalized fuzzy relational division is an extension of the classic
relational division on crisp attributes and this is therefore included. In classic

Ž . Žrelations without fuzzy attributes , both divisions obtain the same results but in
.a different form . In other words, this is also another method to calculate

relational division in classic databases. In Ref. 3 there is justification for
generalized fuzzy division, a comparison with the classic relational division
formula, some possible problems and their solutions, and a comparison with
other fuzzy division approaches.8,12,16

3. USING FUZZY QUANTIFIERS

In the previous section we have shown a method for fuzzy division with
fuzzy relations. In this method only the universal quantifier is considered.
However, it is very restrictive and it is useful to perform the fuzzy division using
both relative and absolute fuzzy quantifiers.19

Relative quantifiers depend on the number of existing tuples in the denomi-
Ž .nator relation R� , and they are depicted by fuzzy sets over the real interval

� � Ž .0, 1 . Examples of relative quantifiers are ‘‘all’’ universal quantifier, � , ‘‘almost
Ž .all’’, ‘‘most’’ ‘‘the majority’’ , ‘‘approximately half’’, and ‘‘the minority’’. Abso-

lute quantifiers do not depend on that number and they are defined as fuzzy sets
over the nonnegative integers. Examples of absolute quantifiers are ‘‘one or

Ž .more’’ existential quantifier, 
 , ‘‘many’’, ‘‘very few’’, ‘‘approximately 5’’, ‘‘more
than 5’’, and ‘‘a lot more than 5’’.

DEFINITION 6. Let R and R� be two fuzzy relations defined as in Definition 5 and
let Q be a fuzzy quantifier. The fuzzy di�ision using Q is therefore denoted by
R �QR�, and it selects tuples of the first relation which are related, in some way, to
Q of tuples in the second relation. The generalized fuzzy relational di�ision with
fuzzy quantifier Q is the same as that shown in Definition 5, but we must change the
definition of FF in Equation 7 according to the fuzzy quantifier Q:

Ž . Ž . � 41 Uni�ersal quantifier ‘‘all’’ Q � � : FF � min .
Ž . Ž . � 42 Existential quantifier ‘‘one or more’’ Q � 
 : FF � max .
Ž .3 Fuzzy absolute quantifier Q: The group function sum is applied and the quantifier Q

� Ž .4is then applied on this �alue. This is represented by FF � Q sum .
Ž .4 Fuzzy relati�e quantifier Q: The group function a�erage is applied and the quantifier

� Ž .4Q is then applied on this �alue. This is represented by FF � Q avg .

Of course, this definition may be extended according to Definition 2 and, in
this case, it is denoted by

R �Q R� 8Ž .A , B , X
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To evaluate the fuzzy quantifier, it is possible to use various methods to
evaluate sentences with fuzzy quantifiers.23,24 However, we have tested them and
the results are not good enough, because fuzzy division has its own semantic.

3.1. Example

Example 1. Let us suppose that we have a fuzzy relational database about
Žbasketball players. A database relation may have the attributes PLAYER,

. ŽTEAM, HEIGHT, QUALITY, NUM SHIRT . . . . The fields HEIGHT where
. Žthe player’s height is stored and QUALITY where the player’s quality is

. Žmeasured according to his average points per match allow fuzzy values type 6
.in Table I . For the sake of the example, we will use the linguistic labels in

Figure 1.
We have eliminated the labels ‘‘Very Short’’ and ‘‘Very Bad’’, since in our

opinion, professional players with these characteristics do not exist.
In this context, we are going to find those basketball teams whose player
Ž .types in HEIGHT and QUALITY match those of the team from Cordoba´

Ž .using different fuzzy quantifiers .
To find these teams, we first take a projection of the previous relation onto

Ž .the interesting attributes TEAM, HEIGHT, and QUALITY , giving a relation
R which can be seen in Table II. Furthermore, the second relation R� will be
the projection onto the HEIGHT and QUALITY attributes after the selection

Figure 1. Example 1: definition of labels on HEIGHT and QUALITY attributes.
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Table II. Example 1: relation R.

TEAM HEIGHT QUALITY

Cordoba Short Very Good´
Cordoba Very Tall Bad´
Granada Short Very Good
Granada Very Tall Bad
Granada Tall Regular

Malaga Short Very Good´
Malaga Tall Bad´
Malaga Very Tall Very Good´
Sevilla Short Good
Sevilla Very Tall Bad
Sevilla Normal Good

Cadiz Very Tall Very Good´
Cadiz Short Good´
Almerıa Tall Very Good´
Almerıa Short Regular´

with the condition TEAM � Cordoba. In our example, R� has only two tuples.´
This relation is shown in Table III.

Thus, this fuzzy division may be expressed by using Eq. 8 and the definition
given in Eq. 1:

R �Q R� 9Ž .TEAM ,�HEIGHT,QUALITY4 ,�

where Q is the fuzzy quantifier and takes the following values in this example:

Ž . Ž .1 Existential quantifier 
 .
Ž .2 Fuzzy absolute quantifier ‘‘approximately 2’’ defined by the following triangular

Ž .function 2 � 1 :

0 if x  1 or x � 3
Q x �Ž . x � 1 if 1 � x  2½ 3 � x if 2 � x � 3

Ž . Ž .3 Fuzzy relative quantifier ‘‘most’’, defined by: Q x � x.
Ž .4 Fuzzy relative quantifier ‘‘almost all’’, defined in Figure 2.
Ž . Ž .5 Universal quantifier � .

Table III. Example 1: relation R�.

HEIGHT QUALITY

Short Very Good
Very Tall Bad



DIVISION IN FUZZY RELATIONAL DATABASES 723

� � Ž .Figure 2. Fuzzy relative quantifier ‘‘almost all’’: x � 0.4, 0.9 � y � 2 x � 0.4 .

To calculate R �QR�, we will compute the following equations:

Ž .1 Equation 5. We calculate R� by the following expression obtaining the relation
shown in Table IV:

� �R� � R TEAM � R� 10Ž .
Ž .2 Equation 6. We calculate the qualified fuzzy intersection, R� 
 R, and weQ

obtain the fuzzy relation R	 in Table V. The C values indicate theTEAM
Ž .possibility ‘‘compatibility degree’’ of tuples in R� belonging to R. In this table,

we have included those operations whereby the values were obtained by apply-
Žing Eq. 2, avoiding the attribute TEAM because it is not a fuzzy attribute see

.Ref. 3 for details . The values in min functions are the results of the fuzzy
comparator �� , defined in Eq 3, applied on HEIGHT and QUALITY fuzzy
attributes.

Ž .3 Equation 7. Finally, following the fuzzy division general process, we perform the
generalized fuzzy projection of R	 onto the TEAM attribute, with group
function FF onto C :TEAM

R � R� � PP FF R	; TEAM; C 11Ž . Ž .TEAM

Table IV. Example 1: relation R� �
� �R TEAM � R�.

TEAM HEIGHT QUALITY

Cordoba Short Very Good´
Cordoba Very Tall Bad´
Granada Short Very Good
Granada Very Tall Bad

Malaga Short Very Good´
Malaga Very Tall Bad´
Sevilla Short Very Good
Sevilla Very Tall Bad

Cadiz Short Very Good´
Cadiz Very Tall Bad´
Almerıa Short Very Good´
Almerıa Very Tall Bad´
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Table V. Example 1: relation R	 � R� 
 R, with C calculation.Q TEAM

Ž .TEAM C C calculation HEIGHT QUALITYTEAM TEAM

� � 4 � 44Cordoba 1 � max min 1,1 , min 0,0 Short Very Good´
� � 4 � 44Cordoba 1 � max min 0,0 , min 1,1 Very Tall Bad´
� � 4 � 4 � 44Granada 1 � max min 1,1 , min 0,0 , min 0,0 Short Very Good
� � 4 � 4 � 44Granada 1 � max min 0,0 , min 1,1 , min 0.5,0.5 Very Tall Bad

� � 4 � 4 � 44Malaga 1 � max min 1,1 , min 0,0 , min 0,1 Short Very Good´
� � 4 � 4 � 44Malaga 0.5 � max min 0,0 , min 0.5,1 , min 1,0 Very Tall Bad´
� � 4 � 4 � 44Sevilla 0.75 � max min 1,0.75 , min 0,0 , min 0.5,0.75 Short Very Good
� � 4 � 4 � 44Sevilla 1 � max min 0,0 , min 1,1 , min 0,0 Very Tall Bad

� � 4 � 44Cadiz 0.75 � max min 0,1 , min 1,0.75 Short Very Good´
� � 4 � 44Cadiz 0 � max min 1,0 , min 0,0 Very Tall Bad´
� � 4 � 44Almerıa 0 � max min 0,1 , min 1,0 Short Very Good´
� � 4 � 44Almerıa 0 � max min 0.5,0 , min 0,0.5 Very Tall Bad´

The final results from fuzzy division with all these quantifiers are shown in
Table VI. For example, the values C most indicate a degree which means atTEAM
what level the associated TEAM has the same player types as ‘‘most’’ of the
player types of the team from Cordoba.´

It is possible to apply a threshold onto the relation resulting from general-
Q � �ized fuzzy division, such as C � u, where u � 0, 1 .TEAM

It is easy to see that this method is useful for carrying out relational
Ž .division with fuzzy quantifiers in classical databases without fuzzy attributes .

4. COMPARISON WITH OTHER APPROACHES

In the references we can find various approaches for carrying out relational
division in fuzzy databases. These approaches generally use a model of fuzzy

Žrelations or a meaning of the degrees that is different from the one we use see
.Section 1 . The methods in Refs. 8, 9, 12, and 16 do not consider fuzzy

quantifiers and a comparison with Refs. 8, 12, and 16 is included in Ref. 3.

Table VI. Example 1: resulting relation from R �QR� with different values for Q.

 approx. 2 most almost all �TEAM C C C C CTEAM TEAM TEAM TEAM TEAM

Cordoba 1 1 1 1 1´
Granada 1 1 1 1 1
Malaga 1 0.5 0.75 0.7 0.5´
Sevilla 1 0.75 0.875 0.95 0.75
Cadiz 0.75 0 0.375 0 0´
Almerıa 0 0 0 0 0´
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The method of Nakata9 is the evolution of Refs. 4, 8, and 17. It is
interesting because it considers fuzzy values in the attributes through possibility

Ž .distributions like Refs. 3 and 4 and two elements in some domains have a
Ž .degree of resemblance to each other like Refs. 3 and 8 . Furthermore, a

Ž .relation has a membership attribute for every tuple like Ref. 17 and it is
composed of two values: necessity and possibility measures. It uses the Dienes
or Godel implication over the membership degrees and the possibly and neces-¨
sarily equal measures computed using the possibility distributions. However, it
does not consider fuzzy quantifiers and it only allows one common attribute for
both relations of the division.

Our approach may consider degrees, whatever their meanings, but these
degrees are seen as fuzzy values themselves and the only necessary thing is for

� Žthere to be a comparison function � for those types which considers the
.meaning of the degrees . As we show below, this technique obtains very intuitive

results.
The methods in Refs. 13, 15, and 18 use fuzzy quantifiers and in this section

we analyze and compare them with our generalized fuzzy division.

4.1. The Yager Division

In Ref. 18, Yager showed a fuzzy division based on fuzzy relations with only
one ownership degree for each tuple. This method does not allow fuzzy values in

� �the attributes which are different from this ownership degree in the 0, 1
interval. This method allows fuzzy quantifiers to be used to relax the classical
universal quantifier in relational division and it is based on OWA operators
introduced by Yager himself in Ref. 20:

DEFINITION 7. An OWA operator of dimension n is a function F,

n� � � �F : 0, 1 � 0, 1 12Ž .

� �that has a set of weights w � 0, 1 associated with it, with i � 1, . . . , n, such thati

n

w � 1Ý i
i�1

Ž .and where for any argument a , . . . , a ,1 n

n

F a , . . . , a � b �w 13Ž . Ž .Ý1 n i i
i�1

with b being the ith largest of the a : b � b � ��� � b .i i 1 2 n
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To summarize, it is an intermediate method between taking the minimum
Ž . Ž .and taking the maximum of a , . . . , a . Thus, if the weights are w , . . . , w �1 n 1 n

Ž . Ž .0, . . . , 0, 1 , then the function F a , . . . , a will take the minimum value of a ,1 n i
Ž .and if the weights are 1, 0, . . . , 0 , then the function will take the maximum

value.
We will show the Yager method for fuzzy division by means of the following

example:

Example 2. Let R and S be the relations in Table VII and VIII, respectively.
The fuzzy relation S stores the required manual dexterity. Thus, for each skill
type � indicates the degree to which the skill requires manual dexterity.

Ž .Let the fuzzy relative quantifier ‘‘most’’ be defined simply as Q r � r, with
� �r � 0, 1 . Then, the query ‘‘find the people who ha�e most of the skills that require

manual dexterity’’ is solved through the division R by S:

Ž .1 Find the people in R: this is a simple projection of R onto the ‘‘Name’’ attribute
� 4obtaining: Jean, Barbara, Debbie, Tina, Patricia .

Table VII. Example 2 of Yager
division: relation R.

Name Skill �

Jean I 1.0
Jean II 0.7
Jean III 0.5

Barbara I 0.3
Barbara II 0.6

Debbie I 1.0
Debbie II 0.7
Debbie III 0.5
Debbie IV 0.2

Tina II 1.0

Patricia I 1.0
Patricia II 0.8
Patricia III 0.2

Table VIII. Example 2 of
Yager division: relation S.

Skill �

I 1.0
II 0.8
III 0.2
IV 0.0
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Ž . �2 For each element u obtained above find R as a projection of R onto theu
attributes which are not in u.

Ž . �3 Evaluate the fulfillment degree of sentence ‘‘Q Ss are R ’’, i.e., ‘‘most of theu
elements in S are in R� ’’:u
Ž .a We sort the degrees in S from the smallest to greatest and we add up all of

them in d:

e � 0, e � 0.2, e � 0.8, e � 1, and d � 2.1 2 3 4

Ž .b We compute values S , establishing that S � 0 andj 0

ej
S � � S 14Ž .j j�1d

We obtain S � 0, S � 0.1, S � 0.5, and S � 1.1 2 3 4
Ž .c We compute the weights:

w � Q S � Q S 15Ž .Ž . Ž .j j j�1

� 4In this case, w � e �d with j � 1, 2, 3, 4 : w � 0, w � 0.1, w � 0.4, andj j 1 2 3
w � 0.5.4

Ž . � 4d For each u � Jean, Barbara, Debbie, Tina, Patricia :
Ž . � 4i Compute C , with i � I, II, III, IV :i

C � max 1 � � , R� i 16� 4Ž . Ž .i i u

�Ž . �where � and R i are the degrees of element i in S and R ,i u u
respectively.

Ž .ii Sort C from the greatest to the smallest: b � b � b � b .i 1 2 3 4
Ž .iii Compute the fulfillment degree that we are looking for by

4

T u � b �w 17Ž . Ž .Ý i i
j�1

The resulting relation is shown in Table IX with � most. The value for � �

Ž .indicates the results if we use the quantifier �, defined by Q r � 0 if r � 1 and
Ž .Q 1 � 1. This last quantifier takes the minimum of C , and it coincides with thei

Table IX. Examples 2 and 3: comparing Yager division, Dubois division, and our
Ž .generalized fuzzy G.F. division.

Yager Division G.F. Division Dubois Division
most � most � most �Name � � C C � �Name Name

Jean 0.77 0.70 0.93 0.70 0.75 0.70
Barbara 0.47 0.30 0.48 0.00 0.50 0.00
Debbie 0.77 0.70 0.93 0.70 0.75 0.70
Tina 0.42 0.00 0.50 0.00 0.50 0.00
Patricia 0.82 0.80 1.00 1.00 1.00 1.00
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necessity measure between the R values with respect to S values for a fixed
‘‘Name’’.

4.1.1. Analyzing the Yager Approach

The Yager division relaxes the universal quantifier, allowing fuzzy quanti-
fiers such as ‘‘most’’ in the previous example to be used. This relaxation is
carried out using the OWA operators. However, Yager only considers monotone
quantifiers in Ref. 20 and in Ref. 18 only increasing quantifiers are studied.

Ž . Ž .Even the existential quantifier 
 , defined by Q r � 1, � r, cannot be used,
Ž .because it obtains all weights equal to 0 Eq. 15 . In our fuzzy division approach,

we can use any fuzzy quantifier, even nonmonotone quantifiers.
Yager uses an FRDB model which is very similar to the Mouaddib model,8

and it only allows the representation of scalar values with an associated degree
Ž . 7� . This data type is also considered by the GEFRED model. Then, to apply
our approach to this data type, we have only to define the comparator �� for
that data type. For example, we can define it using the Godel implication:¨

1 if a  ba � b � 18Ž .½ b otherwise

where a is the value � in S and b is the value � in R. The resulting relation is
shown in Table IX.

Some results deserve a detailed survey because, for example, ‘‘Patricia’’
completely fulfills the requirements expressed in relation S although she only
obtains � � � 0.8 and � most � 0.82. We think that these values are too small and
they are not what we would intuitively expect. With the previous definition of
the Godel implication, our approach obtains the value 1 for ‘‘Patricia’’ with both¨
quantifiers. ‘‘Barbara’’ obtains � � � 0.3, but she does not have skill III and if we

Ž .use the quantifier ‘‘all’’ � we are looking for people who fulfill all require-
ments. Our approach obtains the value 0 for ‘‘Barbara’’ with quantifier ‘‘all’’.
‘‘Jean’’ and ‘‘Debbie’’ satisfy the requirements except for skill II. They therefore
really satisfy most of the requirements, but they only obtain � most � 0.77. Our
approach obtains the values 0.93.

Moreover, the Yager division only allows one common attribute to both
relations, whereas in our approach we can have any number of common

Ž .attributes for both relations with different degree � .
If we apply this method to classic databases, then we obtain the same

results as in the generalized fuzzy division.

4.2. The Dubois et al. Division

In Ref. 15 Dubois, Nakata, and Prade propose a method for fuzzy division
Ž .which is similar to the method presented in Ref. 16 analyzed in Ref. 3 , but they

relax the universal quantifier by using both absolute and relative fuzzy quanti-
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fiers. It is based on the use of a different kind of fuzzy implication, depending on
the meaning of the degree:

Ž . Ž1 Fulfillment degree: They use R-implications i.e., a residuated implication:
� � � 4 .a � b � sup x � 0, 1 : a� x  b , where � is a triangular norm§ . Thus, they

�use Godel, Goguen,¶ Rescher-Gaines,** or Lukasiewicz†† implications.¨
Ž . Ž Ž2 Importance degree: They use S-implications i.e., an implication: a � b � 1 �

. .a � b where � is a triangular co-norm‡‡ . Thus, they use Dienes,§§ Reichen-
� �bach, or Lukasiewicz implications.

Ž . Ž .In the fuzzy division R t, u � S u the degree of every value t in the
solution is computed by

� t � min � u � � t , u 19Ž . Ž . Ž . Ž .Ž .R � S S R
u

Ž .An absolute fuzzy quantifier Q must be increasing and Q m � 1, where m
Ž .is the number of requirements or tuples in S. They then associate a fuzzy set

Ž . Ž . Ž . Ž .I defined by I i � 1 � Q i � 1 . Thus, in the fuzzy division R t, u � S uQ Q Q
the degree of every value t in the solution is computed by

� t � min max � u � � t , u , 1 � I i 20Ž . Ž . Ž . Ž . Ž .Ž .R � S S � Ž i. R QQ i

Ž . Ž . Ž . Ž .where � u � � t, u expresses a ranking such that � u � � t, u �S � Ž i. R S � Ž1. R
Ž . Ž . Ž . Ž .� u � � t, u � ��� � u � � t, u .S � Ž2. R S � Žm. R

If the quantifier is a relative one then

� t � min max � u � � t , u , Q i � 1 �m 21Ž . Ž . Ž . Ž . Ž .Ž .Ž .R � S S � Ž i. RQ i

Example 3. Following Example 2, let R and S be the relations in Tables VII
and VIII, respectively. Then, the resulting relations using the Godel implication¨
and the quantifiers ‘‘most’’ and � are shown in Table IX.

Ž .For example, for ‘‘Jean’’ or ‘‘Debbie’’ we first compute the Godel implica-¨
� 4tion, obtaining values 1�I, 0.7�II, 1�III, 1�IV . With these values and the

� Ž . Ž .quantifier ‘‘most’’, the computation of Eq. 21 is min max 1, 0 , max 1, 0.25 ,

Ž . � �2 � �§ A T-norm is a function a, b � 0, 1 � a� b � 0, 1 where � is associative and
symmetrical, increasing each argument in the broad sense w.r.t., and it satisfies the limit

Ž .conditions a�1 � a, �a and 0�0 � 0. Representative T-norms are a� b � min a, b ,
Ž .a� b � ab, and a� b � max 0, a � b � 1 .

� Godel implication: a � b � 1 if a  b, and a � b � b if a � b.¨
Ž .¶ Goguen implication: a � b � min 1, b�a if a � 0, and a � b � 1 if a � 0.

** Rescher-Gaines implication: a � b � 1 if a  b, and a � b � 0 if a � b.
Ž .†† Lukasiewicz implication: a � b � min 1, 1 � a � b .

‡‡ A T-conorm � is associated with a T-norm�by the duality relation a � b � 1 �
Ž . Ž . Ž .1 � a � 1 � b . The main T-conorms are a � b � max a, b , a � b � a � b � ab, and

Ž .a � b � min 1, a � b .
Ž .§§ Dienes implication: a � b � max 1 � a, b .

� � Reichenbach implication: a � b � 1 � a � ab.
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Ž . Ž .4max 1, 0.5 , max 0.7, 0.75 � 0.75. For ‘‘Barbara’’ the computation is
� Ž . Ž . Ž . Ž .4min max 1, 0 , max 0.6, 0.25 , max 0.3, 0.5 , max 0, 0.75 � 0.5.

This method includes the case ‘‘where levels of importance are attached to
the requirements expressing the satisfaction of a specified minimal level of
fulfillment in the divisor’’ S. Namely, relation S may have two degrees per tuple:
a fulfillment degree and an importance degree. Moreover, Dubois et al.15 study
the case when fulfillment degrees in relation R do not contain precise values
and these values are pervaded with uncertainty and imprecision, allowing fuzzy

� �valued degrees over the interval 0, 1 .

4.2.1. Analyzing the Dubois et al. Approach

Some of the drawbacks of this method are that it only studies increasing
quantifiers and that absolute quantifiers must be defined according to relation

Ž .S, because it has the requisite Q m � 1.
Regarding the Yager approach, we can see that this method does not have

the ‘‘Patricia’’ problem in Example 3. However, it maintains the ‘‘Jean’’ and
‘‘Debbie’’ problems, since they fulfill the requirements except for the skill II.
Namely, they really satisfy ‘‘most’’ of the requirements, but they only obtain
0.75. With the quantifier �, this method obtains the same values as our method.

Moreover, in the same way as the Yager division, this approach only allows
one common attribute to both relations and in classic databases they obtain the
same results as in the generalized fuzzy division.

4.3. The Vila et al. Division

In Ref. 13, Vila et al. propose a new system for the fuzzy division
Ž . Ž .R A, B � S B in FRDBs with the possibility-based model; i.e., it is possible to

store possibility distributions as attributes values.
This method is based on the ‘‘compression’’ of relations R and S, such that

Ž .the compression of R on B,  R , includes tuples with different values for AB
attributes and with all the values for B ‘‘compressed’’ in one value:

� � � � � � � �� t �  R , t B � r B : r � R , r A � t A� 4Ž .B

Possibility distributions of B are compressed in one possibility distribution
for each A value, taking the maximum value in all distributions for each value
of the underlying domain. Relation S is compressed in the same way, and it will
have only one tuple with the possibility distribution P.

Then, fuzzy division is carried out in the following way:

� � �Q  R 22Ž . Ž .Ž .Ž .A B � P B

where � is the projection onto A attributes and � �Q is a generalizedA B � P
selection, the so-called � -selection, depending on the fuzzy measure �Q
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Žrepresenting the accomplishment degree of the property to match with Q of
.objects described by P .

Briefly, for a nondecreasing fuzzy quantifier Q, a measure called � isQ
obtained. For example, Q may be expressed as:

0 if 0  x  a� Q

x � aŽ .Q� if a � x � bQ x � 23Ž . Ž .Q Qb � aŽ .Q Q�1 if b  x  1Q

� �where a , b � 0, 1 , and a  b . These two values represent the quantifier.Q Q Q Q
Ž .Thus, the quantifier 
 has the values 0, 0 and the quantifier � has the values

Ž .1, 1 . Then, � is obtained byQ

� � b � a �2 � 1 � b 24Ž .Ž .Q Q Q Q

With these data, they determine that the selection � �Q from theB � P
Ž .compressed relation  R adds a degree which is computed byB

	 	� � B P � 1 � � N B P 25Ž . Ž . Ž .Ž .Q Q

Ž 	 . Ž 	 .where � A P and N A P are possibility and necessity measures, respectively,
with which B is matched with P.

Example 4. Let R be the relation in Table X, where S� is a fuzzy attribute.
Relation R is compressed, obtaining the relation in Table XI. Let P be the
possibility distribution obtained by compressing a relation S:

� 4P � 0.5�S1, 0.7�S2, 1�S3

Table X. Example 4 of Vila et
al. division: relation R.

P� S�

P1 0.8�S1, 0.5�S2
P1 0.7�S1, 0.6�S2
P1 0.8�S3, 0.7�S4
P2 1�S1
P2 1�S4
P3 0.6�S1, 0.9�S3
P3 1�S2
P4 0.7�S1, 0.2�S3
P4 1�S2
P4 1�S3
P4 0.6�S1, 0.5�S4
P5 1�S3
P6 0.5�S1, 0.7�S2, 1�S3
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Table XI. Example 4 of Vila et al. divi-
sion: compressed relation R.

P� S�

P1 0.8�S1, 0.6�S2, 0.8�S3, 0.7�S4
P2 1�S1, 1�S4
P3 0.6�S1, 1�S2, 0.9�S3
P4 0.7�S1, 1�S2, 1�S3, 0.5�S4
P5 1�S3
P6 0.5�S1, 0.7�S2, 1�S3

For example, let us consider the following four quantifiers:

Ž . Ž . Ž .1 Existential quantifier ‘‘one or more’’ 
 with its associated values 0, 0 and
� � 1.


Ž . Ž .2 ‘‘Most’’, with its values 0, 1 and � � 0.5.most
Ž . Ž . Ž .3 ‘‘Almost all’’ Fig. 2 , with its values 0.4, 0.9 and � � 0.35.almost all
Ž . Ž . Ž .4 The classical quantifier for the division ‘‘all’’ � with its values 1, 1 and

� � 0.�

The results for these quantifiers are shown in Table XII. For example, for
P1 we compute the following values for each quantifier:


Ž . � � 4 � 4 � 4 � 44� P1 � max min 0.5, 0.8 , min 0.7, 0.6 , min 1, 0.8 , min 0, 0.7 � 0.8
�Ž . � � 4 � 4 � 4 � 44� P1 � min max 1 � 0.5, 0.8 , max 1 � 0.7, 0.6 , max 1 � 1, 0.8 , max 1 � 0, 0.7 � 0.6
mostŽ . Ž . Ž .� P1 � 0.5�0.8 � 1 � 0.5 �0.6 � 0.7
almost allŽ . Ž . Ž .� P1 � 0.35�0.8 � 1 � 0.35 �0.6 � 0.67

We use the T-conorm of the maximum and the T-norm of the minimum to
compute the possibility and necessity measures.


 Ž . � Ž .Therefore, if we have the values for � possibility and for � necessity ,
then it is easy to compute the values for any quantifier Q, if we have the value
� .Q

Table XII. Example 4: resulting relation of Vila et al.
division.


 most almost all �P� � � � �

P1 0.80 0.70 0.67 0.670
P2 0.50 0.25 0.18 0.175
P3 0.90 0.75 0.71 0.705
P4 1.00 0.85 0.81 0.805
P5 1.00 0.65 0.55 0.545
P6 1.00 0.75 0.68 0.675
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4.3.1. Analyzing the Vila et al. Approach

The Vila et al. division uses a possibility-based model for the FRDB,
allowing possibility distribution, but it does not consider an important data type,
scalars with a similarity relation between them. Furthermore, it allows the
universal quantifier to be relaxed with any nondecreasing fuzzy quantifier Q,
like ‘‘most’’ or ‘‘almost all’’ in the previous example. However, the unsolved
problem is to compute � for any fuzzy quantifier when it is not in the formatQ
of Equation 23.

Thus, the Vila et al. division only considers fuzzy quantifiers with a
nondecreasing function Q and they must be in the format of Equation 23. This
is too restrictive, because some fuzzy quantifiers are inherently decreasing
Ž .global or locally .

This approach does not define the method when there are more than one
common attributes to both relations, but it includes an idea about this question.
Our approach allows any number of common attributes to both relations.

In short, it obtains the set of those A elements which have ‘‘similarities’’
Ž .between its compressed B elements and P compressed relation S . These

‘‘similarities’’ may be seen as a possibility or necessity measurement or a
combination of these two measurements.

Some results deserve a detailed survey since, for example, ‘‘P6’’ completely
fulfills the requirements expressed in P, i.e., S� � P, yet it only obtains
�� � 0.5. We think that this value is too small with regard to the intuitively
expected value.

In conclusion, the Vila et al. division is not really a relation division, but
rather a ‘‘generalized selection’’, as they call it. This selection has a similar
meaning with regard to relational division. Moreover, this approach is interest-
ing because it contributes two operations, the compression and the generalized
selection, which are very useful in flexible queries to FRDBs.

It is easy to see the difference between this method and the approach
presented here in the following example:

Ž .Example 5. Let R be the relation in Table II Example 1 and let R� be the
relation in Table III, but we will only consider the QUALITY attribute.

All results for R � R�, with our generalized fuzzy division and the Vila et al.
division presented here, are included in Table XIII, using the four quantifiers
used in Example 4: ‘‘one or more’’, ‘‘most’’, ‘‘almost all’’, and ‘‘all’’.

We can see that the results of generalized fuzzy division are closer to what
we would intuitively expect. Teams from ‘‘Cordoba’’, ‘‘Granada’’, and ‘‘Malaga’’´ ´
only obtain �� � 0.5 and they comply exactly with the division requirements.
Moreover, generalized fuzzy division distinguishes among cases of ‘‘Sevilla’’,
‘‘Cadiz’’, and ‘‘Almerıa’’ teams, with different degrees in each team. These´ ´
degrees naturally depend on the fuzzy quantifier. The values for the team from
‘‘Sevilla’’ with the quantifier ‘‘almost all’’ are interesting, since this team has one

Ž . Ž‘‘Bad’’ player exactly equal to one value in R� and two ‘‘Good’’ players very
.similar to the other value in R�, ‘‘Very Good’’, with a similarity degree of 0.75 .
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Table XIII. Example 5, comparison between our generalized fuzzy division and
the Vila et al. division.

Generalized Fuzzy Division Vila et al. Division

 most almost all � 
 most almost all �TEAM C C C C � � � �TEAM TEAM TEAM TEAM

Cordoba 1 1 1 1 1 0.75 0.675 0.5´
Granada 1 1 1 1 1 0.75 0.675 0.5
Malaga 1 1 1 1 1 0.75 0.675 0.5´
Sevilla 1 0.875 0.95 0.75 1 0.50 0.350 0
Cadiz 1 0.5 0.2 0 1 0.50 0.350 0´
Almerıa 1 0.75 0.7 0.5 1 0.50 0.350 0´

However, the Vila et al. division only obtains 0.35 whereas our approach obtains
0.95.

If we apply this method in classic databases, then we can obtain the
Ž 
 � . �Ž . Ž . Ž .4following pairs of values for � , � : 1, 1 , 0, 0 , 1, 0 . Therefore, for any

Ž . Qquantifier Q if we obtain the values 1, 1 , then � � 1. If we obtain the values
Ž . Q Ž . Q0, 0 then � � 0. Finally, if we obtain the values 1, 0 then � � � , and thisQ
value is not good, as we have seen in Example 5. We have shown that this case
does not distinguish among different situations which may occur.

5. THE FSQL SYNTAX FOR FUZZY DIVISION

The FSQL language extends the SQL language to allow fuzzy databases to
be managed. At present, we have an FSQL server for flexible queries available
for Oracle databases, programmed in PL�SQL. This server allows us to query a
fuzzy or classic relational database with the FSQL language. A detailed explana-
tion of the FSQL language and server can be found in Refs. 26 and 27 and
mainly in Ref. 2.

In this section, we will give a brief summary of FSQL language and will
Žthen suggest a new syntax to express the generalized fuzzy division Defini-

. Ž .tion 6 , the qualified fuzzy intersection Definition 3 , and other interesting
queries with fuzzy quantifiers.

5.1. Some Ideas about the FSQL Language

Briefly, FSQL queries are especially flexible since we can use, for example,
the following important elements:

Ž .1 Fuzzy Comparators: The available fuzzy comparators are shown in Table XIV,
Ž .including two families possibility and necessity . The definition of these fuzzy

comparators is shown in Ref. 27. For example, FEQ is defined in Equation 3.
Ž .2 Thresholds: To retrieve only the most important items, for each simple condi-

Ž .tion, a fulfillment threshold may be established default is 1 , with the format:
² :condition THOLD � , indicating that the fuzzy condition must be satisfied with

� �a minimum degree � � 0, 1 . The reserved word THOLD is optional and it can
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Table XIV. The 14 fuzzy comparators for FSQL.

Possibility Necessity Significance

FEQ NFEQ Possibly�Necessarily fuzzy equal
Ž . Ž . Ž .FGT FGEQ NFGT NFGEQ Possibly�Necessarily fuzzy greater than or equal to
Ž . Ž . Ž .FLT FLEQ NFLT NFLEQ Possibly�Necessarily fuzzy less than or equal to
Ž . Ž . Ž .MGT MLT NMGT NMLT Possibly�Necessarily much greater less than

Ž .be substituted by a traditional crisp comparator � ,  , etc. , modifying the
meaning of the query. The word THOLD is equivalent to the use of the crisp
comparator � .

Ž .3 Fuzzy constants: The right part of a simple condition may be a column or a
fuzzy constant. All fuzzy constants types are shown in Table XV. The informa-

Ž .tion about fuzzy attributes labels definition, margin in approximate values, etc.
Ž .are stored in the fuzzy meta-knowledge base FMB .

Ž . (² :)4 CDEG attribute function: This function shows a column with the fulfillment
degree of the condition of the query for a specific attribute. We can use

Ž . ŽCDEG � to obtain the fulfillment degree of each tuple in the condition with
.all of its attributes, not just one of them .

5.2. Fuzzy Division in FSQL

We have extended the FSQL SELECT command to express the generalized
Ž .fuzzy division with fuzzy quantifiers Definition 6 , the qualified fuzzy intersec-

Ž .tion Definition 3 , and other interesting queries with fuzzy quantifiers. This new
syntax allows us to express any kind of fuzzy division easily and to retrieve the
fulfillment degree of the selected items.

Ž . Ž .Let R and R� be relations with headers A, B, C and B, D , respectively,
where A, B, C, and D are simple attributes or sets of attributes denoted by, for

� 4 � 4example, A � A , . . . , A , B � B , . . . , B . . .1 n 1 m
According to Definition 2, the fuzzy division

R �Q R� 26Ž .A , B , X

Table XV. Fuzzy constants that may be used in FSQL queries.

Fuzzy Constant Significance

Ž .UNKNOWN Unknown value but the attribute is applicable type 8 in Table I .
Ž .UNDEFINED The attribute is not applicable or it is meaningless type 9 in Table I .

Ž .NULL Total ignorance: We know nothing about it type 10 in Table I .
� � Ž .$ a, b, c, d Fuzzy trapezoid a  b  c  d : see Figure 1.

Ž .$label Linguistic label: It may be a trapezoid or a scalar defined in FMB .
� � Ž .n, m Interval ‘‘Between n and m’’ a � b � n and c � d � m .

Ž .�nn Fuzzy value ‘‘approximately n’’ b � c � n and n � a � d � n � margin .
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has the following general format in FSQL language:

SELECT A , CDEG �Ž .
² :� �FROM R , table clause

� �WHERE ONCEPERGROUP
� � � �$Q THOLD �

² :subqueryŽ .

where the items in square brackets are optional items, the items in angled
brackets are items to expand, and the meaning of each element is as follows:

� SELECT: This reserved word indicates that it is a query.
� A: It is a list with the R attributes that we are looking for.
� Ž .CDEG � : This function will show the compatibility or fulfillment degree of the

A elements.
� FROM: This clause is used to indicate the relevant relation R and other possible

² : Ž .relations in table clause . These relations as in SQL may be names of tables,
² :views, snapshots, or subqueries. The optional clause table clause is useful to

� 4 Žindicate the list of attributes X � B 	 D by using a subquery like SELECT X
.FROM R� and whatever other relations. The following cases may occur:

Ž .1 X � � or this clause does not appear: The command will show the general-
Ž .ized fuzzy division. If CDEG � is presented, then it will show the fulfillment

degree of A attributes in this fuzzy division.
Ž .2 B � X : The command will show the cartesian product according to Equation

Ž .1 but if CDEG � is presented, then it will show the fulfillment degree of the
qualified fuzzy intersection. The real qualified fuzzy intersection occurs when
X � B.

Ž .3 Other X value: The command will show the cartesian product according to
Ž .Equation 1 and if CDEG � is presented then it will show the fulfillment

degree of A attributes in the generalized fuzzy division. It would perhaps be
Ž .useful to define that if one or more B attributes appear in X then CDEG �

Ž .will show the values of applying group functions FF according to Definition 6
group by these B attributes.

Ž .4 Other cases: If we use other relations, views, subqueries . . . then the com-
mand will show the cartesian product.

� Q: It is a fuzzy quantifier and it is preceded by the symbol $ to distinguish it easily
Ž .it is not a reserved word . The fuzzy quantifier Q must be defined in the FMB,

Ž . Ž .except for the quantifier $ALL � and the quantifier $EXISTS 
 . If $Q does
not appear, then the $ALL quantifier is used. The optional value � indicates the

Ž .threshold default is 1 applied to the fulfillment degrees in the resulting relation
Ž .column of CDEG function .

� ² :subquery : It is a subquery with the following format:

SELECT �
FROM R�

² : � �WHERE R .B FCOMP R�.B THOLD �� �1 1 1 1
.AND ..

² : � �AND R .B FCOMP R�.B THOLD �� �m m m m
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where
� R�: It is the second relevant relation, the divisor, in the fuzzy division. It may

be a subquery or the DUAL table. DUAL is a table automatically created by
Oracle along with the data dictionary. DUAL is in the schema of the user
SYS, but is accessible by the name DUAL to all users. We will use DUAL
when the relation R� does not exist, but we want to use a virtual relation using
a constants set in the WHERE clause.

� B , with i � 1, . . . , m: These values are the set B of R and R� attributes. Theyi
Ž .are qualified with the name of their relation R or R� because they would

have the same name. If we use DUAL instead of R� then we must use
constants instead of R� attributes distinguishing tuples with the OR operator
Ž .see Example 6 .
² : Ž .� FCOMP , with i � 1, . . . , m: They are the fuzzy comparators Table XIVi
used for each two attributes. Obviously, to retrieve the standard division
results we must use the fuzzy comparators FEQ or NFEQ. Fuzzy division
selects tuples of the first relation which are related, in some way, to Q of
tuples in the second relation. That ‘‘way’’ is indicated by these fuzzy compara-
tors.

� � , with i � 1, . . . , m: With these values, we can establish a minimum thresh-i
old for each B attribute. All of these thresholds must be zero in the standard
division. If some threshold � is greater than zero then in the qualified fuzzyi

Ž .intersection Equation 6 , tuples with a fulfillment degree less than � will bei
removed, and it will not be used in the computation of the final fulfillment
degree.

� ONCEPERGROUP option: With classic relations, one single tuple in R connects
with zero or one tuple in R�, but with fuzzy relations one single tuple in R may
connect with zero, one, some, or all of the tuples in R�. This little problem was
studied in Ref. 3 and one solution was the following: on performing the qualified

Žfuzzy intersection, every tuple in R is only used once in each group of one A
.element according to where it obtains the greatest possibility degree. If there are

some items with the same greatest value, then we must maximize all the degrees
in that group of A values. If the reserved word ONCEPERGROUP is used, then
this solution is applied. It should be noted that when solving this problem we may
prevent some possibly useful information from being shown and it substantially
increases the number of operations. This option may be especially useful when

Žfuzzy comparators which are different from FEQ or NFEQ are used see
.Example 8 .

Example 6. According to Example 1, the FSQL query to retrieve the general-
ized fuzzy division in Table VI with the fuzzy quantifier ‘‘most’’ is:

Ž .SELECT TEAM, CDEG �
FROM R
WHERE $Most THOLD 0

ŽSELECT �
FROM R�
WHERE R.HEIGHT FEQ R�.HEIGHT THOLD 0

.AND R.QUALITY FEQ R�.QUALITY THOLD 0

ŽIf relation R� does not exist, then we can use the following subquery with
. ŽR� as an alias instead of R�: SELECT HEIGHT, QUALITY FROM R

.WHERE TEAM �‘Cordoba’ . Moreover, the same result may be obtained if we´
Ž .want to set the values of R� Table III directly:



GALINDO ET AL.738

Ž .SELECT TEAM, CDEG �
FROM R
WHERE $Most THOLD 0

ŽSELECT �
FROM DUAL
WHERE R.HEIGHT FEQ $Short THOLD 0

AND R.QUALITY FEQ $Very Good THOLD 0
OR R.HEIGHT FEQ $Very Tall THOLD 0

.AND R.QUALITY FEQ $Bad THOLD 0

It should be noted that we can easily change the fuzzy quantifier.

Example 7. According to Example 1, the FSQL query to retrieve the qualified
fuzzy intersection in Table V is:

Ž .SELECT TEAM, CDEG �
Ž .FROM R, SELECT HEIGHT, QUALITY FROM R�

WHERE $Most THOLD 0
ŽSELECT �
FROM R�

.WHERE R.HEIGHT FEQ R�.HEIGHT THOLD 0
.AND T.QUALITY FEQ R�.QUALITY THOLD 0

This is not a division because the first FROM clause includes a subquery
Ž .with the same R� attributes which appear in the WHERE clause X � B .

Example 8. According to Example 1, the FSQL query to retrieve those basket-
Žball teams in relation R whose players are possibly taller and better HEIGHT

.and QUALITY attributes than most of those of R� relation is:

Ž .SELECT TEAM, CDEG �
FROM R
WHERE ONCEPERGROUP

$Most THOLD 0
ŽSELECT �
FROM R�
WHERE R.HEIGHT FGT R�.HEIGHT THOLD 0

.AND R.QUALITY FGT R�.QUALITY THOLD 0

It should be noted that the ONCEPERGROUP option means that every
tuple in R is only used once in each team according to where it obtains the
greatest possibility degree. Thus, we avoid one R player matching more than
one of the players in R�.

As well as all the kinds of fuzzy divisions which we have presented above,
this syntax enables other useful queries to be expressed as shown in the
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following examples:

Example 9. ‘‘Retrieve teams in which most of the players are necessarily tall or
very tall’’:

Ž .SELECT TEAM, CDEG �
FROM R R1
WHERE $Most THOLD 0

ŽSELECT �
FROM R R2
WHERE R1.TEAM� R2.TEAM

.AND R2.HEIGHT NFGEQ $Tall THOLD 0

It should be noted that this query is not a division.

ŽExample 10. Let us suppose that the relation MANAGERS Player Name,
.Manager Name stores all the managers of one player and all the players of

Ž .one manager a many�many relationship . Then, the query ‘‘Give me the players
with approximately two managers’’ is solved with:

Ž .SELECT Player Name, CDEG �
FROM MANAGERS M1
WHERE $Aprox 2 THOLD 0

ŽSELECT �
FROM MANAGERS M2

.WHERE M1.Player Name � M2.Player Name

It should be noted that this query is not a division and that we can only use
fuzzy absolute quantifiers in these kind of queries.

6. CONCLUSIONS AND FUTURE LINES

The generalized fuzzy division presented is an extension of the division
presented in Ref. 3, relaxing the universal quantifier which is inherent in
classical relational division. As we have shown here,

� ŽThe fuzzy relation can store many types of fuzzy data possibility distributions,
. �scalars, etc. and the only necessary thing is to have a comparison function �

for these types of values. This function may be changed without the need to alter
the process of the division.

� We can have any number of common attributes for both relations.
� Ž .We can use any fuzzy quantifier absolute or relative whatever the shape of its

Ž .function: decreasing, nondecreasing, or both of them see Example 1 . The
analyzed approaches only consider fuzzy quantifiers with a nondecreasing func-
tion and this is too restrictive, because some fuzzy quantifiers are inherently

Ž .decreasing globally or locally , such as ‘‘the minority exclusively’’, ‘‘a few exclu-
sively’’, ‘‘approximately less than half’’, ‘‘approximately x ’’ . . . .
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� Results are very close to what would be expected intuitively.
� It is possible to use the generalized fuzzy division with fuzzy or crisp quantifiers in

Ž .classical databases without fuzzy attributes .

We have included a comparison with other approaches13,15,18 which use
fuzzy quantifiers and we have seen that the method we have presented is better
in all five characteristics.

Moreover, its results can be added to those of other operations such as
those presented in Refs. 19, 21, and 22 to obtain more information from a
database.

For example, it is possible to know to what extent the following sentence is
true and, moreover, to discover which students comply with this sentence and
how far each student complies with it:

� Most students satisfy almost all of the following conditions: they are Good in at least
one subject and Bad in at least another subject.

Here we have studied the relational division in fuzzy databases when the A
Ž .attributes attributes which are not common to both relations are crisp, i.e.,

attributes in which problems do not arise when the projection is applied onto
them. As stated in Ref. 3, if among the A attributes there are attributes with
fuzzy domains, then it is necessary to establish a prior criterion to discover when
two fuzzy values may be considered equal.

It is interesting to study another way of relaxing the division quantifier by
using OWA operators20 with the degrees which are obtained in the qualified

Žfuzzy intersection. The problem is to obtain the OWA operator weights w seei
.Definition 7 . Moreover, it may be interesting to consider an extension for

generalized fuzzy division when one or both relations have compatibility at-
tributes, i.e., fulfillment degrees associated to the values of some or all of the
attributes.

With this and other works, we have achieved the two levels of query
languages designed by Codd28 for relational databases, but they have been
extended to fuzzy relational databases: fuzzy relational calculus29,30 and the
fuzzy relational algebra, defined by the GEFRED model7 and including the
fuzzy division3,25 with fuzzy quantifiers as we have shown in this paper.

Furthermore, in this paper we have extended the FSQL language2,26,27 to
Ž .express any kind of fuzzy division Definition 6 , the qualified fuzzy intersection

Ž .Definition 3 , and other very useful queries using fuzzy quantifiers. It is easy to
see that the FSQL syntax put forward is quite powerful and flexible. Moreover,
we think that FSQL will be a powerful tool for data mining applications.2,31,32
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