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We introduce nonlocal auto-hodograph transformations for a hierarchy of non-
linear evolution equations. This is accomplished by composing nonlocal transfor-

Ž .mations one of which is a hodograph transformation which linearize the given
equations. This enables one to construct sequences of exact solutions for any
equation belonging to the hierarchy. � 2001 Academic Press

1. INTRODUCTION

In this paper we describe nonlocal transformations for a hierarchy of
evolution equations resulting from the well-known nonlinear diffusion
equation

u � u�2 u . 1.1Ž .Ž .t x x
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� �As usual, the subscripts denote partial derivatives. It is well known 1, 2
Ž .that 1 admits Lie�Backlund symmetries and recursion operators. The¨

Ž .simplest nontrivial Lie�Backlund symmetry of 1.1 is¨

�
�3 �4 �5 3Z � u u � 9u u u � 12u u , 1.2Ž .Ž .LB x x x x x x x � u

and a recursion operator takes the form

� � 2 �1 �1R u � D u D . 1.3Ž .x x

Here D is the total derivative operator in x, andx

x
�1D f x � f x� dx�.Ž . Ž .Hx

Ž .It is noteworthy that 1.1 is the only equation of the form

u � unu 1.4Ž .Ž .t x x

� �which admits Lie�Backlund symmetries and recursion operators 1 . Using¨
its recursion operator, we write down a hierarchy of evolution equations

Ž .for 1.1 . The novelty of our approach is to construct nonlocal auto-trans-
formations, i.e., nonlocal transformations of contact-type, which keep the
equations form-invariant. This is possible due to the fact that the con-
structed hierarchy is linearizable by two corresponding hierarchies of
nonlocal transformations, one of which is a hierarchy of nonlocal hodo-
graph transformations.

2. DEFINITION AND EXAMPLE

We give the following

DEFINITION. We call a nonlocal transformation of hodograph type an
auto-hodograph transformation if it transforms a given differential equa-
tion into itself.

Ž .Before discussing the hierarchy, we consider Eq. 1.1 and show how the
auto-hodograph transformation is obtained and used in the construction of
exact solutions of this equation.

The linear equation

U � U 2.1Ž .T X X
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Ž .may be transformed into 1 by the invertible contact transformation TT1
� �1 , given by

�dx X , T � U dX � U dTŽ . X	dt X , T � dTŽ .TT : 2.2Ž .1 
 �1u x , t � U .Ž .

Ž . Ž . Ž Ž ..˜Moreover, the linearization 2.1 of 1.1 now written in terms of u x, t˜ ˜
can also be achieved by the invertible nonlocal hodograph transformation

� �TT 3 , given by2

� �2˜ ˜dX x , t � u dx � u u dtŽ .˜ ˜ ˜ ˜ ˜ x̃	TT : 2.3Ž .˜ ˜dT x , t � dt2 Ž .˜
U X , T � x .Ž . ˜

Ž . Ž .˜An auto-hodograph transformation AA, mapping 1.1 with variable x, t, u ,˜ ˜
Ž . Ž .into 1.1 with variable x, t, u , is obtained by the composition

AA � TT � TT .1 2

This gives

�2 �1� ˜ ˜dx x , t � xu dx � xu u � u dtŽ .˜ ˜̃ ˜ ˜̃ ˜ ˜x̃	AA : 2.4Ž .˜ ˜dt x , t � dtŽ .˜
 �1u x , t � x .Ž . ˜

The following example shows how the auto-hodograph transformation
Ž . Ž .2.4 can be used to construct exact solutions of 1.1 .

Ž . Ž .˜EXAMPLE. Using u x, t � 1 as the seed-solution of 1.1 , and applying˜ ˜
AA, we obtain the solution

1 �1�2u x , t � x � t .Ž . Ž .'2

Applying AA again we get the solution

3�2 1�21 2 2
x � � � 2 t � t � 2 t ,ž / ž /6 u x , t u x , tŽ . Ž .
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which can explicitly be written as

�1�3�1�2 1�23 2 3 2u x , t � 8t � 9 x 8t � 9 x � 3 xŽ . Ž . Ž .
2�31�23 2� 8t � 9 x � 3 x � 2 t .Ž .½ 5

Applying AA on the above, we obtain

�2�3 4�32 11�2 1�23 �2 �1 3 �2 �1x � 8t � 9u � 3u � 8t � 9u � 3uŽ . Ž .ž / ž /3 24
�4�32 1�24 3 �2 �1� t 8t � 9u � 3uŽ .ž /3

2�3t 11�23 �2 �1 2� 8t � 9u � 3u � t .Ž .ž /6 2

Here u may explicitly be written as

6q3�2

u x , t � ,Ž . 3 3q � 8t

where q is a solution of the quartic equation

q4 � 4 tq3 � 12 2 x � t 2 q2 � 16 t 3q � 16 t 4 � 0.Ž .

3. A HIERARCHY OF AUTO-HODOGRAPH
TRANSFORMATIONS

Ž .We now make use of the recursion operator 1.3 and construct a
hierarchy of auto-hodograph transformations for the resulting hierarchy of
evolution equations. We recall that an important property of recursion

� �operators R u of evolution equations is that one can generate symmetries

�
� x , t , u , u , u , . . .Ž .x x x � u

� �for the evolution equation by acting � on compositions of R u , i.e.,

m � �R u � , m � 0, 1,2, . . . ,

m� �where R u denotes m compositions of the given recursion operator and
0� �R u � 1. Moreover, a hierarchy of evolution equations can be obtained
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from the given evolution equation

u � F x , t , u , u , u , . . . ,Ž .t x x x

by

m � �u � R u F x , t , u , u , u , . . . .Ž .t x x x

Ž . m� �Ž �2 .For 1.1 the first three equations in the hierarchy u � R u u ut x x
take the form

u � u�2 uŽ .t x x

u � u�3 uŽ .t x x x

1
�3u � u u .Ž .t x xž /u x

We now prove the following

PROPOSITION. For the hierarchy of e�olution equations

m � � �2u � R u u u , 3.1Ž .Ž .t x x

a hierarchy of auto-hodograph transformations AA is gi�en bym

� �1 m �2 �1˜ ˜� �dx x , t � xu dx � xD R u u u � u dtŽ .˜ ˜̃ ˜ ˜ ˜ ˜ ˜ ˜Ž .½ 5x x˜ ˜ x̃	AA : 3.2Ž .˜ ˜m dt x , t � dtŽ .˜
 �1u x , t � x ,Ž . ˜

for corresponding m, where m � 0, 1, 2, . . . . Here

� � 2 �1 �1 0 0 � �R u � D u D , D � 1, R u � 1.˜ ˜ ˜x x x˜ ˜ ˜

Proof. The linear hierarchy

U � DmU 3.3Ž .T X X X

is transformed to the nonlinear hierarchy

m � � �2u � R u u u 3.4Ž .Ž .t x x
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by the hierarchy of transformations TT . This hierarchy of transforma-1, m
tions has the following form:

� mdx X , T � U dX � D U dTŽ . X X	dt X , T � dTŽ .TT : 3.5Ž .1, m 
 �1u x , t � U X , T .Ž . Ž .

Moreover, the hierarchy

m � � �2u � R u u u 3.6Ž .˜ ˜ ˜ ˜Ž .t̃ x̃ x̃

Ž .can be linearized into the hierarchy 3.3 by the hierarchy of nonlocal
hodograph transformations TT . This hierarchy of transformations has the2, m
following form:

� �1 m �2˜ ˜� �dX x , t � u dx � D R u u u dtŽ .˜ ˜ ˜ ˜ ˜ ˜Ž .x x˜ ˜ x̃	TT : 3.7Ž .˜ ˜dT x , t � dt2, m Ž .˜
U X , T � x .Ž . ˜

The composition TT � TT gives the auto-hodograph transformation AA1, m 2, m m
Ž . Ž .which transforms 3.6 into 3.4 .

4. INVERTING THE TRANSFORMATIONS

We now construct the inverses of TT and TT in the most convenient1, m 2, m
form, i.e., in terms of the recursion, differential, and integral operators.

First consider the hierarchy of transformations TT . The transformation2, m
states that

� X
� u , 4.1.1Ž .˜

� x̃

� X
�1 m �2� �� D R u u u . 4.1.2Ž .˜ ˜ ˜Ž .x x˜ ˜ x̃˜� t

Ž .Differentiating x X, T � U with respect to x leads to˜ ˜

�1� X �U
� ž /� x � X˜
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with U � constant. The inverse of the hierarchy TT is therefore2, m

�x X , T � UŽ .˜
d̃t X , T � dTŽ .�1 	TT : 4.2Ž .2, m �1�U

˜u x , t � ,Ž .˜ ˜
 ž /� X

where U is not constant. In addition to that, this transformation leads to
the identity

m� 1�1 �1 �1 m 2� �u D � u D R u D , m � 0, 1, 2, . . . , 4.3Ž .Ž .x x x

which is of importance for the inverse of the hierarchy TT . We therefore1, m
Ž .first prove this identity: Differentiating x X, T � U with respect to t

leads to

m �1 �1 m � � �2D U � �u D R u u u , 4.4Ž .Ž .X X X x x x

Ž . Ž .where we made use of 3.3 and 4.1.2 . It is easy to show that

mm �1 �1D U � u D u ,Ž .X X x

Ž .so that 4.4 becomes

m�1 �3 �1 �1 m �2� �u D u u � u D R u u u ,Ž . Ž . Ž .x x x x x

i.e., the identity is proved.
Consider now the hierarchy of the transformations TT : From the1, m

transformation it follows that

dX � U�1 dx � U�1DmU dT � u dx � uDmU dt .x x X X

It is easy to show that, for TT ,1, m

mm �1 �3D U � � u D u u ,Ž . Ž .X X x x

Ž .so that, by the identity 4.3 , the inverse of TT takes the form1, m

� �1 m �2� �dX x , t � u dx � D R u u u dtŽ . Ž .x x x
�1 	TT : 4.5dT x , t � dt Ž .Ž .1, m 
 �1U X , T � u x , t .Ž . Ž .
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5. FINAL REMARKS

Ž . Ž .Finally, we remark the following: By substituting u x, t � 1�� x, t in
Ž .the hierarchy 3.1 one can obtain the hierarchy of equations

m � � 2� � R � � � , 5.1Ž .Ž .t x x

which admits the recursion operator

� � 2 2 �1 �2R � � � D �D � . 5.2Ž .x

Writing down the first three equations in this hierarchy, we get

� � � 2 �t x x

� � � 3�Ž .t x x x

2 2 2� � � �� � � � .t x x x x x

Ž . Ž .One should note that the hierarchy 5.1 , just as the hierarchy 3.1 , admits
an auto-hodograph transformation and an infinite set of Lie�Backlund¨

Žsymmetries and potential symmetries. We refer to the book of Bluman
� � .and Kumei 2 for details on potential symmetries.
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