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Abstract

Using a single-point, one-equation (k–l) model for an oscillatory turbulent bottom boundary layer (BBL)
above a hydrodynamically rough bottom and varying the external determining parameters over a wide
range, we show that nonlinear wave/low-frequency current interaction effects are smaller, the greater are
the ratio of near-bottom wave orbital velocity amplitude to friction-free, low-frequency current velocity
amplitude and the ratio between frequencies of wave and low-frequency components of motion.
Specifically, in shallow waters the bottom stress oscillations with wave and tidal frequencies are, with fair
accuracy, weakly correlated, thereby suggesting that wave-tide interaction is substantially weak interaction.
A new weak wave–tide interaction formulation is proposed. It involves a relationship for the drag
coefficient in a wave-affected tidal flow and the surface Rossby number dependences for the scaled wave
and tidal friction velocity amplitudes inferred from the resistance law for an oscillatory turbulent BBL over
a hydrodynamically rough surface. This formulation is implemented within a 2D nonlinear, finite-
difference, high-resolution, hydrodynamic model and the modified model is applied to quantify the wave-
induced changes in the tidal dynamics and energetics of Cádiz Bay. The model results reveal one
unexpected feature in the fields of maximum tidal velocity and mean tidal energy flux. Namely, wave–tide
interaction responsible for enhancing the mean bottom stress throughout the bay tends to increase the
maximum tidal velocities and the mean tidal energy fluxes at deeper depths and to reduce them at shallower
depths. The reason for appearing this feature is an overall amplification of the mean tidal energy transport
into the bay from Gulf of Cádiz. Based on the sensitivity study to varying wave parameters, the wave-
induced seasonal variability in the M2 tidal characteristics is found to be not pronounced in Cádiz Bay.
This, however, does not rule out a clearly defined manifestation of such a variability in other shallow basins
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and/or in other tidal frequency bands. Special attention is given to identify the regions of potential
suspended sediment transport and their wave-induced changes. # 2001 Elsevier Science Ltd. All rights
reserved.
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1. Introduction

At present the most widely used formulation describing the interaction between wind waves and
low-frequency motions is the formulation of Grant and Madsen (1979). It has been applied in
studies of tides (Davies and Lawrence, 1994a, b; Bender and Wang, 1993), wind-driven circulation
(Christoffersen and Jonsson,1985; Signell et al., 1990; Davies and Lawrence, 1995; Davies
and Glorioso, 1999), storm surges generated by tropical cyclones (Spaulding and Isaji, 1987; Tang
and Grimshaw, 1996), combined tidal and storm-driven flows (Keen and Glenn, 1995) and
suspended sediment transport in coastal waters (Lou and Ridd, 1997).
One of the key features of the Grant and Madsen (1979) formulation is related to setting the

vertical distribution of the eddy viscosity in the bottom boundary layers (BBLs) for wave and
low-frequency motions. The vertical eddy viscosity is specified by a linear function of distance
from the bottom with a slope of von Karman’s constant times a combined (wave+low-frequency)
bottom friction velocity amplitude in the wave BBL and a low-frequency bottom friction velocity
amplitude above the wave BBL. As a result, the vertical velocity shears become discontinuous at
the top of and overestimated above the wave BBL. This, in turn, tends to overestimate the
effective roughness length.
Another feature concerns the concept of wave/low-frequency current interaction in use. It

assumes that both wave and low-frequency bottom friction velocity oscillations are enhanced
in the process of their nonlinear interaction and that, hence, the bottom stress in a combined
motion of wind waves and low-frequency currents differs from the sum of the bottom stresses
produced by purely wave and low-frequency components of motion. Such an interaction may
be referred to as strong wave/low-frequency current nonlinear interaction. This concept
is inconsistent as it must with data of laboratory and field measurements over a hydrodynamically
smooth bottom (Kemp and Simons, 1982; Green et al., 1990). But, what is more important,
it is also inconsistent with results of numerical experiments on wave/low-frequency current
interaction over a hydrodynamically rough bottom (Davies et al., 1988). This circumstance
which has gone unnoticed as well as the intuitive belief that the interaction between motions
with widely different spatial and temporal scales can be weak, even though these motions
are in themselves strongly nonlinear, call for refining some premises underlying the Grant
and Madsen (1979) formulation. By the way, the concept of strong wave/low-frequency
current nonlinear interaction has implicitly been revised by Signell et al. (1990), who simplified
the Grant and Madsen (1979) formulation assuming that the effect of low-frequency currents
on wind waves could be neglected under most conditions. According to Signell et al. (1990),
this is because the low-frequency bottom stress significantly affects the wave bottom stress
only when the latter is itself negligible compared to the former. In contrast, since the wave

B.A. Kagan et al. / Continental Shelf Research 21 (2001) 697–725698



bottom stress in shallow water is much larger than the low-frequency bottom stress, the effect of
wind waves on low-frequency currents can be quite significant.
The aim of this paper is four-fold: (1) to clarify, using a single-point, one-equation (k–l ) model

for an oscillatory turbulent BBL over a hydrodynamically rough bottom, the character of wave/
low-frequency current interaction in a wide range of change in the external determining
parameters (from 10 to 104 for the ratio between frequencies and from 0.5 to 10 for the ratio
between friction-free velocity amplitudes of wave and low-frequency motions); (2) to show that
wave–tide nonlinear interaction is weak in the sense that the bottom stress oscillations with wave
and tidal frequencies may be recognized, with fair accuracy, as weakly correlated and that, hence,
a linear superposition of the solutions for purely wave and tidal motions ensures a reasonable
accuracy in modelling the BBL characteristics for much of a tidal cycle; (3) to parameterize, from
the above reasoning, the influence of wind waves upon tidal dynamics in terms of the drag
coefficient in wave-affected tidal flow; and (4) to implement the proposed parameterization within
a two-dimensional (2D) in the horizontal, nonlinear, high-resolution, hydrodynamic model and to
evaluate, on its basis, the role of wave-tide interaction in the formation of the tidal dynamics and
energetics of Cádiz Bay where both the large wind waves and the strong surface tides are well
pronounced and where detailed measurements have been made and will continue in the future.
The paper is organized as follows. In the next section we describe briefly the model in use for an

oscillatory turbulent BBL over a hydrodynamically rough surface as well as the model results
clarifying the character of wave/low-frequency current interaction. In Section 3, the expressions
for the drag coefficient and the phase difference between near-bottom velocity and friction-free
velocity in a wave-affected tidal flow are given. These expressions contain the unknown ratio of
wave friction velocity amplitude to tidal friction velocity amplitude. To determine it, the resistance
law for an oscillatory turbulent BBL over a hydrodynamically rough surface is invoked. This law
is obtained by matching the asymptotic expansions for velocity amplitudes at small and great
heights. In so doing, wave–tide interaction is considered to be weak in the aforementioned sense.
Section 4 provides the simulation results with and with no wave–tide interaction effects as applied
to the tidal dynamics and energetics of Cádiz Bay. Also presented here are the results of a
sensitivity study to varying wind-wave parameters, the results that may help to gain a better
understanding of the wave-induced seasonal variability of tidal constants in shallow basins, like
Cádiz Bay. The conclusions are drawn in Section 5.

2. Wave–tide interaction: strong or weak?

The answer to the question contained in the title of this section will be provided using a single-
point, one-equation, turbulence (k–l ) model for an oscillatory turbulent BBL over a
hydrodynamically rough surface. Its brief description is given in Appendix A. For more details
see Vager and Kagan (1969), Marchuk and Kagan (1977), Johns (1975, 1978), Johns and Oguz
(1987) and Davies and Jones (1991).
We now turn to a comparison of the solutions obtained with and with no nonlinear wave/low-

frequency current interaction effects (in these cases, the solution is represented either as a general
one for a combined wave/low-frequency motion or as a linear superposition of the particular
solutions for purely wave and low-frequency motions). To quantify the discrepancies between
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both the solutions we make use of the two parameters: the relative mean (over a low-frequency
oscillation cycle) error in the bottom stress values predicted by the solution in the latter case in
comparison to those predicted in the former one and the correlation between the two appropriate
time series of bottom stress values. The first parameter can serve as a measure of the amplitude
difference between the alternative predictions, the second as a measure of the phase difference.
The above parameters are presented in Table 1 for various values of the ratio of near-bottom
wave orbital velocity amplitude to friction-free, low-frequency current velocity amplitude and the
ratio of wave frequency to current frequency. As can be seen, the correlation increases, and the
relative mean error decreases with increasing these ratios. Moreover, it turns out that in the case
of wave-tide interaction, the case we are interested in, when the velocity amplitude ratio is of the
order 1 and the frequency ratio is of the order 104, the linear superposition of the solutions for
purely wave and tidal flows yields quite plausible results: the relative mean error and the
correlation are 0.11% and 0.9992, respectively. The small mean relative error and the high
correlation between the solutions obtained with and with no allowance for nonlinear interaction
effects means that the bottom stress oscillations with wave and tidal frequencies are in turn weakly
correlated suggesting that wave–tide interaction is substantially weak interaction.
An additional point to emphasize is that if one accounts for uncertainties in available

experimental data, the accuracy of evaluating the bottom stress by means of the linear
superposition of the particular solutions is well higher than that of evaluating the external
parameters, especially the bottom roughness length, determining the vertical structure of the BBL.
Recall in this connection that the bottom roughness length is determined by the entire spectrum of
roughness elements over the area with a linear scale of the order of the bottom logarithmic layer
height. The required information about the spatial distribution of roughness elements is generally
lacking, so that the bottom roughness length is prescribed either more or less arbitrarily or, in the
best case, depending on small-scale bottom topography and bed material composition, according
to Heathershaw (1979) results.
The natural question arises: Why does the interaction between wind waves and tidal currents,

associated with a drastic intensification of turbulence in the BBL, occur without a marked
nonlinear enhancing of the bottom stress? The reason is perhaps that, first, if the gap between the

Table 1
Relative mean error (E,%) and the correlation coefficient (r) between the bottom stresses predicted with and without

nonlinear interaction effects for various values of the ratio of near-bottom wave orbital velocity amplitude to friction-
free current velocity amplitude and the ratio of wave frequency to current frequency. Data from Kagan and Utkin
(1999)

Amplitude ratio Frequency ratio

10 102 103 104

E r E r E r E r

0.5 63.75 0.4192 51.30 0.6045 2.53 0.9395 0.68 0.9954

1.0 55.65 0.5303 15.88 0.8707 1.46 0.9392 0.11 0.9992
5.0 4.98 0.9517 0.54 0.9949 0.03 0.9997 2� 10�3 0.9999
10.0 1.48 0.9853 0.15 0.9985 0.01 0.9999 4� 10�4 0.9999
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frequencies of oscillations is wide enough, such oscillations in the process of their nonlinear
interaction generate multiple and combinative modes but are in themselves scarcely affected by
these modes; and secondly, any changes in the intensity of turbulence are accompanied by
opposite changes in the vertical velocity shear, so that their contributions to the bottom stress
cancel out. The latter is evident from the comparison of the averaged (over a wind wave cycle)
vertical velocity profiles in a combined (wave+tide) flow and the instantaneous vertical velocity
profiles in the appropriate purely tidal flow (Fig. 1). This fact by itself is not uninteresting, but in a
given case we would like to know how much the instantaneous velocity profiles in the combined
flow obtained with and with no allowance for nonlinear interaction effects differ among
themselves. The answer to this question is provided by Fig. 2 where the instantaneous vertical
velocity profiles for both the solutions are shown. From this figure it follows that the obtained
profiles are in close agreement in the near-bottom layer and, generally, throughout the whole BBL
at those times of a tidal cycle when the velocity does not change sign.
We call attention to one more remarkable feature of the vertical velocity profiles, namely a

decrease in velocity outside the near-bottom logarithmic layer at some times of a tidal cycle. This

Fig. 1. Wind-wave cycle-averaged vertical velocity profiles in a combined (wave + tide) flow and instantaneous vertical
velocity profiles in the relevant purely tidal flow at various times of a tidal cycle. The profiles in the combined and tidal
flows are indicated, respectively, by heavy and light lines. Dimensionless heights are plotted on the ordinate,

dimensionless velocities are plotted on the abcissa. The normalizing factors for heights and velocities are a bottom
roughness length and a friction-free tidal velocity amplitude, respectively; tn is the dimensionless time defined as tn=sTt,
where sT is a tidal frequency.
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feature is due to a phase shift between near-bottom wave orbital velocity and friction-free tidal
velocity. That such is the case is confirmed by the calculated instantaneous vertical profiles of
wave and tidal velocities outlined in Fig. 3.

3. Weak wave–tide interaction formulation

We make use of the model results concerning the logarithmic vertical distribution of velocity
and hence a quasi-stationary regime of motion in the near-bottom layer. Further, we assume that
(i), because the characteristic time scale of wind waves is much less than the characteristic time
scale of tidal currents, the thickness of the wave BBL is much less than the thickness of the tidal
BBL; (ii) the influence of wind waves upon tidal dynamics may be described in terms of an
effective vertical eddy viscosity; (iii) the latter may be represented as the sum of the two vertical
eddy viscosities, each being determined by a certain (wind-wave or tidal) components of motion
and is considered to be dependent on the bottom friction velocity amplitude in the appropriate
BBL, the assumption of weak wave–tide interaction; and (iv) the effective vertical eddy viscosity is
piecewise linear, continuous function of the vertical coordinate. Then the vertical distribution of
tidal velocity amplitude, with allowance made for its continuity at the top of the wave BBL, reads

Fig. 2. Instantaneous vertical velocity profiles in a combined flow obtained with (heavy lines) and with no (light lines)
nonlinear interaction effects at various times of a tidal cycle. The remaining explanations and, in particular, instants of
time these profiles are referred to see Fig. 1.
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(Smith, 1977)

UT ¼ U*T

k
ð1þ gÞ�1ln z

z0
; z4dW ; ð1Þ

UT ¼ U*T

k
ln

z

z0
þ g

dW
z0

� �
� ln 1þ gð Þ � g 1þ gð Þ�1ln dW

z0

� �
; z5dW ; ð2Þ

where UT is the tidal velocity amplitude; g ¼ U*W=U*T ; U *W and U * T are the amplitudes of wave
and tidal bottom friction velocities, respectively; dW is the wave BBL height defined as
dW ¼ kU*W=sW ; sW is the wave frequency; z0 is the bottom roughness length; k is von Karman’s
constant; and z is the height above the bottom.
We define the drag coefficient in a tidal flow with the presence and the absence of wind waves

(cD and cD0, respectively) by the expressions

c
�1=2
D ¼ UT1=U*T ; c

�1=2
D0 ¼ 1

k
ln
z1
z0
; ð3Þ

Fig. 3. Instantaneous vertical profiles of wave orbital and tidal velocities at various times of a tidal cycle. Light and

heavy lines correspond to tidal and wave orbital velocities, respectively. The remaining explanations and, in particular,
instants of time these profiles are referred to see Fig. 1.
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where z1 is a reference height within the bottom logarithmic layer but above the wave BBL; UT1 is
the tidal velocity at this height. Then from Eqs. (2) and (3) it follows that to first order in gdW / z1:

c
�1=2
D ¼ c

�1=2
D0 � 1

k
ln 1þ gð Þ þ g 1þ gð Þ�1ln dW

z0
� g

z1
z0

� ��1dW
z0

" #
; ð4Þ

where cD=cD0 at g=0 and cD>cD0 at g>0, ½ ln 1þ gð Þ dW=z0ð Þg= 1þgð Þ� > g z1=z0ð Þ�1 dW=z0ð Þ. That
is, since wave-current interaction basically occurs in the BBL, physically this implies an enhaced
drag coefficient at a reference height above the bottom. The parameters g and dW/z0 appearing in
Eq. (4) are related to U*W=UW1, U*T=UT1 and RoW ¼ UW1=sWz0 by the relationships

g ¼ U*W

UW1

� �
U*T

UT1

� ��1
UW1
UT1

� �
; ð5Þ

dW
z0

¼ k
U*W

UW1
RoW ; ð6Þ

where RoW is the wave surface Rossby number; UW1 and UT1 are, respectively, the near-bottom
wave orbital velocity amplitude and the friction-free tidal velocity amplitude. In the case when the
tidal BBL extends over the whole water column and is thicker than the bottom logarithmic layer,
the friction-free tidal velocity amplitude should be replaced by the surface tidal velocity amplitude.
With this reservation, the drag coefficient in a wave-affected tidal flow, cD , is a function of the

four arguments: U*W=UW1, U*T=UT1, RoW and UW1=UT1. The first two of them, being herein
taken to mean the dimensionless wave and tidal bottom friction velocity amplitudes, are to be
found; the others that involve the external parameters determining the vertical structure of the
wave and tidal BBLs are considered to be prescribed.
To find U*W=UW1 and U*T=UT1, we resort to the fact that the bottom friction velocity

oscillations with wave and tidal frequencies are weakly correlated and use standard boundary
layer scaling arguments. In other words, we invoke the resistance law for an oscillatory turbulent
BBL over a hydrodynamically rough bottom (see Appendix B), which is applicable for both the
wave and tidal BBLs:

lnRo� ln
kU1
U
*

þ ln k2 ¼ ½ 2:3Að Þ2þð2:3Bþ ln 2�5=2kþ kU1=U
*
Þ2�1=2; ð7Þ

tanj0 ¼ 2:3A 2:3Bþ ln 2�5=2kþ kU1=U
*

� ��1
: ð8Þ

In terms of the wave factor fw=2(U*@U1) it is rewritten as

log10 Ro� log10
1

4
ffiffiffiffiffiffi
fW

p þ log102
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With j0=0 adopted and (25/2k/2.3) replaced by 1, these relationships are reduced to Jonsson’s
formula (Jonsson, 1966)

1

4
ffiffiffiffiffiffi
fW

p þ log10
1

4
ffiffiffiffiffiffi
fW

p ¼ log10 Ro� B:

Constants A and B appearing in Eqs. (9) and (10) are usually determined from the laboratory
measurement data. In so doing the phase shift, j0, is usually taken to be zero, the assumption
equivalent to specifying A=0 and hence to overestimating the constant B. The fact that
this assumption is restrictive is easily verified. Indeed, substitution in Eqs. (9) and (10) of
the values of j0 , fW and Ro derived from the laboratory measurement data of Jonsson (1980)
and Sumer et al. (1987) gives A=0.92 and B=1.38. Whereas, at j0=0 and the two other
parameters being the same, we have A=0 and B=1.59. In what follows we shall apply A=0.92
and B=1.38.
Let us turn back to expression (4) and, taking into account Eqs. (6) and the relationship

ln(d@z0)=[(2, 3A)2+(2, 3B+ln 2�5/2k+kU1/U*)
2]1/2 (see Appendix B), rewrite it in the form

c
�1=2
D ¼ c�1=2D0 � 1

k
ln 1þ gð Þ þ g 1þ gð Þ�1 2:3Að Þ2þ 2:3Bþ ln 2�5=2kþ kUW1=U

*W

� �2� �1=2(

�g z1=z0ð Þ�1exp 2:3Að Þ2þ 2:3Bþ ln 2�5=2kþ kUW1=U
*W

� �2� �1=2)
; ð11Þ

We next approximate Eqs. (8) and (7) by the formulae

U1=U
*
¼ �4:64þ 1:24 ln1:17 Ro; ð12Þ

j0ðdeg:Þ ¼ �2:74þ 309:2 ln�1:14 Ro; ð13Þ

which, in the range from 2� 103 to 108 for Ro, is consistent with the above equations with the
rms error of 0.049 for U1/U* and 0.48 for j0. Here, as before, all the designations are given
without the subscriptsW and T. This implies that, as a consequence of their weak interaction, the
wave and tidal bottom friction velocities may be considered as being independent of each other
and described by the identical expressions with different values of the external determining
parameters.
Thus, we have the set of Eqs. (11)–(13) which, along with expression (5) for the bottom friction

velocity amplitude ratio, determines uniquely the drag coefficient, cD, in a wave-affected tidal flow
as a function of the three arguments: the ratio of near-bottom wave orbital velocity amplitude to
friction-free tidal velocity amplitude, UW1/UT1, and the wave and tidal surface Rossby numbers,
RoW=UW1 /sWz0 and RoT=UT1/sTz0. Here, in addition to the known designations, sT is the
tidal frequency. It is worth noting that the application of Eqs. (5), (11)–(13) to a tidal BBL is
justified if its height is smaller than water depth. In this case , the tidal BBL height is determined
from the formula d@z0=k2(kU1/U*)

�1Ro using an iteration procedure in U1/U*. The same
formula with replacing the subscript T by W is employed to evaluate the wave BBL height. The
latter is typically of several centimeters thick. Accordingly, it can extend over the whole water
column only in very shallow water. This situation is beyond the scope of our paper.
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If, however, the tidal BBL extends to the sea surface, the case of the tidal BBL of finite depth,
Eqs. (5), (11)–(13) will continue in use with a single reserve: the last two of them are applied only
for evaluating U1/U* and j0 in the wave BBL. As regards U1/U* and j0 in the tidal BBL of finite
height, these are readily calculated from the formulae

U1=U
*
¼ �4:75þ 3:37 ln0:918 d=z0ð Þ; ð14Þ

j0ðdeg:Þ ¼ 0:974þ 141:8 ln�1:10 d=z0ð Þ; ð15Þ

approximating Eqs. (B.7) and (B.8) from Appendix B in the range from 102 to 5� 105 for d/z0
with the rms error of 0.018 for U1 /U* and 0.0158 for j0. Here, d 
dT=h, that is, the tidal BBL
height, dT, is now considered to be known and equal to the local water depth, h. Thus , in order to
determine cD from Eqs. (11)–(13) or Eqs. (11), (14), (15) the ratio of near-bottom wave orbital
velocity amplitude to friction-free tidal velocity amplitude as well as the wave and tidal surface
Rossby numbers ( or the normalized (by z0) local water depth) must be known.
The formulation based on Eqs. (5), (11)–(13) or (5), (11), (14), (15) can serve as an alternative to

that proposed by Grant and Madsen (1979) and may be termed the weak wave–tide interaction
formulation.
There are three possibilities to verify the new formulation. These are to compare the values of

cD predicted by the new formulation with those derived from Experiments of CODE-1 and
CODE-2 on the northern California continental shelf, the measurement data in the Gulf of
Marsden, the north-eastern coast of England, and, as suggested by a reviewer, with the 1D BBL
model predictions. The first two possibilities have been studies by Kagan and Utkin (1999). They
showed that the observed and predicted values of cD are in better agreement than a strong scatter
of experimental estimates suggest. The rms error in the predicted values of cD was at least several
times smaller than wave-induced changes of cD in themselves. Verification of the third possibility
demonstrates the same results. For the fixed values of RoW=1.5� 10�2, RoT=1.5� 10�2 and the
values of UW1/UT1 varying from 0 to 10, the rms error in predictions of cD is 0.00156 (the linear
correlation coefficient is 0.8911), whereas the modelled range of wave-induced changes of cD
amounts to (0.003, 0.067). Again, it is several times smaller than the wave-induced changes of cD.

4. Application to Cádiz Bay

4.1. Initial information and numerical model

The region chosen for the investigation is Cádiz Bay where detailed tide gauge and bottom
pressure measurements along the coast and in the interior of the basin have been made. Cádiz Bay
is near latitude 36.58N on the south-west coast of Spain. It faces west to Gulf of Cádiz and is
landlocked around its south-western, southern and eastern margins by the mainland. The bay is
subdivided into two basins, a shallower one (Inner Bay) and a deeper one (Outer Bay), connected
together by the narrow Puntales Channel. The bay is shallow, with a maximum depth of 20m at
its seaward edge, and is characterized by dominantly semidiurnal co-oscillating tides with the
amplitude of �1m for the M2 constituent and �0.4m for the S2 constituent. The typical waves in
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Cádiz Bay are short-period wind waves with the periods below 7 s and the amplitudes of �0.5m in
summer and �1m in winter, although wind waves with amplitudes of more than 1m can occur
during storm events. The longer period swell components of the wave spectrum have the periods
of 12–15 s and the amplitudes of about 1.5m. Sea-bed sediments consist mainly of coarse silt with
the median grain size of 40mm and medium sand with the median grain size of 190 mm. Quartz
grains comprise 85% of all the sediments (Gutiérrez et al., 1996).
The two-dimensional (2D in the horizontal), nonlinear, finite-difference, hydrodynamic model

developed by Álvarez et al. (1997) was applied to simulate the spatial distributions of tidal
elevation, tidal ellipse parameters and tidal energy budget characteristics for the M2 constituent in
Cádiz Bay. A condition of no flow normal to the coast was set at the land boundaries. At the open
boundary, a radiation condition written in terms of the deviations of tidal elevation and tidal
velocity from their observed values was employed to ensure that, when disturbances were
generated, they all propagated away from the model domain. The observed values of tidal
characteristics appearing in this boundary condition were evaluated as follows: the tidal elevations
along the open boundary were obtained using a linear interpolation/extrapolation of those
derived from the bottom pressure observations at stations Cochinos and Bajo de Cabezuelas,
while the tidal velocities were taken as being equal to the M2 velocity derived from the
measurement data at the current meter mooring location at the open boundary. The effect of
flooding and drying of mud flats are not considered. Instead of this, the coastal boundaries were
presented as vertical walls at the local water depth equal 1m. The bathymetry shown in Fig. 4 was
taken out of the IHM chart number 443.
For the solution to be smooth the equations of motion were supplemented with smoothing

terms. The latter were defined by a horizontal eddy diffusion operator acting on tidal velocity
throughout the model domain except for its boundaries. The horizontal eddy viscosity coefficient
was kept to a minimum of 1 m2 s�1 to avoid excessively strong smoothing the solution and, at
the same time, to suppress short-wavelength numerical disturbances in the fields of tidal
characteristics.
The near-bottom wave orbital velocity amplitude was obtained from linear wave theory using

known values of wind-wave amplitude at the sea surface, wave frequency and local water depth.
In shallow regions where water depths are less than twice the wave amplitude, the latter was
assumed to be depth-limited due to wave breaking and equal to half the local water depth. This
condition is identical with the empirical wave-breaking criterion employed by Tang and
Grimshaw (1996). The applicability of linear wave theory to shallow water was verified by Dean
(1986) who, based on a comparison of measured and predicted values of near-bottom wave orbital
velocity, showed that this theory provided good results for a wide range of wave amplitudes and
wave steepenesses.
The bottom stress was parameterized by a quadratic resistance law with the drag coefficient

taken as described previously to account for the influence of wave-tide interaction. The drag
coefficient in the absence of wind waves and the bottom roughness length were specified as
cD0=0.003 and z0=0.1 cm, respectively. This value of cD is in rough agreement with the
prescribed value of z0 and is based upon the reference height 1m above the bottom. Strongly
speaking, these quantities cannot remain constant over the whole region of interest where there
are changes in bed types and bottom sediment grain-sizes (Heathershaw, 1981). However, as a
first approximation, this assumption is likely acceptable, since even in the eastern Irish Sea where
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the spatial variation of bed types and forms is much more pronounced than in Cádiz Bay, no
significant differences between flow fields determined with spatially varying and constant values of
the drag coefficient or the bottom roughness length were found (Aldridge and Davies, 1993;
Davies and Lawrence, 1995). To evaluate the tidal BBL height and hence, to decide which of the
sets ((12), (13) or (15),(16)) should be used when determining UT1/U*T and j0 in the 2D model,
the formula (14) was employed with direct substitution of the depth-average tidal velocity
amplitude for the friction-free tidal velocity amplitude.
We stress that in 2D integral models, the depth-averaged velocity u, instead of the local tidal

velocity, u1, at a fixed height, z1, within the bottom logarithmic layer is used as a quantity
specifying the bottom stress. A rough estimate of the error due to replacing u1 by u was given in
Álvarez et al. (1999). It shows that bottom stresses, specified by u and u1, will differ from each

Fig. 4. Map of Cádiz Bay. Superimposed on the bathymetry, also shown are the locations of the tide gauge, bottom
pressure and current meter measurements referred to in the text. The location of the tide gauge is denoted by the square,
the locations of the bottom pressure sensors are denoted by open and closed circles, and the location of the current

meter mooring is denoted by the triangle.
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other by the factor |u|2@|u1|2=ln2(h/2.73 z0)
2ln–2(z1/z0), provided that the vertical distribution of

tidal velocity in shallow waters is described by the logarithmic layer and the sense of rotation of
tidal velocity remains unaltered in height within the bottom logarithmic layer. Here, as before , h
is water depth. The magnitude of the above factor is greater than one at h>2.73 z1, and smaller
than one at h52.73 z1. Hence, the use of the depth-averaged velocity instead of the local one can
give rise to an overestimation of the bottom stress at relatively great depths and its
underestimation at small depths. In the case of Cadiz Bay, the bottom stress may be
overestimated at z1=1m by the factor 1.5.
The tidal dynamics equations were integrated on an Arakawa C staggered grid using a semi-

implicit Crank–Nicolson scheme. A spatial resolution of 210m and a time step of 30 s were
chosen. The model was run for 8 tidal cycles to achieve a stable time-periodic solution. After
establishing this solution, the model run was continued for five more tidal periods, so that the
amplitudes and the phases of tidal elevation and tidal velocity for the M2 constituent could be
determined by means of a harmonic analysis of the appropriate time series. Thereafter the cotidal
charts and the maps of tidal ellipse parameters and mean (over a tidal cycle) tidal energy budget
characteristics were constructed.

4.2. Simulation results

The simulation results for a wave amplitude of 0.5m and a wave frequency of 5 s, along with the
field of near-bottom wave orbital velocity amplitude, are presented in Figs. 5–12. Also shown here
are the differences between the model predictions with and with no wave–tide interaction effects.
The last case conforms to g=0 and hence cD=cD0 (see Eq. (11)).
As might be expected, the drag coefficient in the wave-affected tidal flow increases throughout

Cádiz Bay (Fig. 6). The most dramatic changes up to eight-fold over the no-wave case occur in the
shallow Inner Bay. These changes give rise to a marked enhancement of the mean bottom stress
within the whole bay (Fig. 7). The most pronounced changes are detected in the regions of strong
tidal currents, especially Puntales Channel, and in the shallows. There, the mean bottom stress is
about an order of magnitude larger than that in the no-wave case. Such a significant increase in
the mean bottom stress tends to decrease the tidal velocities in these regions (Fig. 8). The
maximum tidal velocity is reduced by 4–8 cm s�1 in Puntales Channel and 2–4 cm s�1 in the
shallows. ‘‘These findings, like those occurring in the Eastern Irish Sea (Davies and Lawrence,
1994a), are hardly surprising. In the latter, an increase in cD by factor of over five was found due
to wave–current interaction effects. It produced the decrease in bottom currents, although the
resulting bottom stress field was similar to that predicted in the no-wave case’’.
But the fact that the wave-induced enhancement of the bottom stress is accompanied by

increasing instead of decreasing the maximum tidal velocities in the deeper regions of Outer Bay is
really surprising. This feature may be attributed to an amplification of the mean influx of tidal
energy from Gulf of Cádiz into Cádiz Bay and its associated intensification of the mean tidal
energy transport through the deeper regions of Outer Bay. Indeed, the mean tidal energy flux per
unit length, Fh i, is defined as Fh i ¼ huðhþ zÞðgzþ uj j2=2Þi, where u is the depth-averaged tidal
velocity vector; z is the tidal elevation; h is the depth; g is the acceleration due to gravity; and the
angular brackets denote averaging over a tidal cycle. Let us make use of the fact that in the
regions of interest the tidal elevations are much less than the local water depths, and the values of
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the kinetic tidal energy per unit mass, uj j2=2, are much less than the values of the potential tidal
energy per unit mass, gz. Then, on varying the definition of Fh i and taking into account that the
tidal currents in the above regions are nearly reversive in character (Fig. 9), we get
d Fh i ¼ ghd uzh i, where F is the streamwise component of F; u is the maximum tidal velocity;
and d is the variation symbol. For time-periodic u and z, uzh i ¼ 0:5UZ cosf, where U and Z
are the ampitudes of u and z; f is the phase difference between them. Consequently,
d Fh i ¼ 0:5gh Z0d Uð Þcosf0 þU0d Zð Þcosf0 �U0Z0 sin f0d fð Þ½ �, where the quantities with the
subscript ‘0’ refer to the no-wave case. Next, the model results presented in Figs. 7 and 10 show
that in the deeper regions of Outer Bay, d(Z)50, d(f) > 0 and f05908. Thus, the positive values
of d Fh i, as suggested by Fig. 9, occur only if d(U) > 0. This establishes that the amplified mean
influx of tidal energy from Gulf of Cádiz which is responsible for the enhanced mean tidal energy
transport through the deeper regions of Outer Bay can in fact produce the above-mentioned
feature in the field of maximum tidal velocity.
On making this inference, we proceeded from the assumption that the wave–tide interaction in

Cádiz Bay could give rise to an increase in the mean influx of tidal energy from Gulf of Cádiz.

Fig. 5. Near-bottom wave orbital velocity amplitude.
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This assumption is supported by the model results for the mean tidal energy dissipation in Cádiz
Bay (Fig. 10). As a matter of fact, in a small basin, such as Cádiz Bay, the work performed by the
tide-generating force per unit time is negligible, so that the local mean tidal energy budget is only
determined by the two factors: the divergence of the mean tidal energy flux per unit length and the
mean tidal energy dissipation rate. Accordingly, the mean influx of tidal energy from adjacent
basins is to be balanced by the integral (over the basin considered) tidal energy dissipation.
Judging from Fig. 10, the latter in Cádiz Bay is enhanced under the influence of wave-tide
interaction; so it is also to be for the mean influx of tidal energy from Gulf of Cádiz.
It should be remarked that the maximum changes in mean tidal energy dissipation in Cádiz Bay

are confined to Puntales Channel, resulting in enhancing the mean tidal energy dissipation in this
region by half over the no-wave case (Fig. 10). In the other regions of Cádiz Bay, the appropriate
changes are also very significant but only in relative units: both the mean tidal energy dissipation
and its changes in Outer and Inner Bays are much less than those in Puntales Channel.
We have not yet touched on how wave–tide interaction affects the fields of tidal elevation

amplitude and phase. The model results for amplitudes and phases of the M2 tidal elevations

Fig. 6. Increases of the drag coefficient, in relative units, due to wave–tide interaction effects.
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reveal no intriguing features. As expected, the wave-enhanced bottom stress tends to decrease the
tidal elevation amplitudes and to incease the tidal elevation phases throughout the bay. Their
maximum changes are detected in the shallow Inner Bay, but even there these changes are of
minor importance in the formation of the M2-wave spatial structure. However no matter how
small these changes are, they improve convincingly a quantitative agreement between the model
predictions and the observational data at the locations of tide-gauge and bottom pressure
measurements in Cádiz Bay (Table 2).
Completing the discussion of the model results obtained with and without wave–tide interaction

effects, we shall dwell on one important applied aspect of the problem studied, namely identifying
the domain of potential suspended sediment transport. As known, sediment particles begin to go
into suspension when the bottom stress becomes equal to its critical value. The latter are
determined from an empirical dependence (see, e.g., Soulsby and Wainwright, 1987) by the mean
grain size of sediment particles and the ratio of the sea-bed sediment density to the sea-water
density. With this information at hand, the identification of such a domain is reduced to
straightforward comparison of the predicted values of maximum bottom stress (Fig. 11) and its
critical value. Fig. 12 presents a plot of this domain in Cádiz Bay for the wave and no-wave cases.
As is easy to see, there is a significant difference in the domain area in both the cases: if in the first
case the potential suspended sediment transport domain spans Inner Bay, Puntales Channel and

Fig. 7. Mean (over a tidal cycle) bottom stress (left) and its wave-induced changes (right).
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the southern part of Outer Bay, then in the second case it is mainly localized within Puntales
Channel and its vicinity. In quantitative terms, the area of the potential suspended sediment
transport domain is increased by 30.6 km2 (28% in relative units) over the no-wave case. This
estimate, along with the estimates of the area-averaged, wave-induced changes in tidal
characteristics in Inner Bay, Outer Bay and Cádiz Bay as a whole, is presented in Table 3 (see
the columns labelled Exp0). The point needs to be made that the bottom stress due to wind waves
is usually greater than due to tides. Therefore, it is the wind-wave bottom stress which will
determine the domain of potential suspended sediment transport.

4.3. Sensitivity experiments

In the previous series of calculations which will be called Experiment 0, a wave amplitude of
0.5m and a wave period of 5 s were set as being typical for Cádiz Bay in summer. To examine the
influence of the variable wave parameters upon the tidal dynamics and energetics of Cádiz Bay
and, at the same time, to gain an impression of the wave-induced seasonal variability in tidal
characteristics, the following two numerical experiments were performed: in the first (Experiment
1) corresponding to typical wind waves in winter, the wave amplitude and period were taken 1.0m
and 5 s; in the second (Experiment 2) corresponding to a period of significant swell propagating
into the bay from Gulf of Cádiz, these wave parameters were taken 1.5m and 15 s, respectively.

Fig. 8. Major and minor axes of tidal ellipses (left) and wave-induced changes in maximum tidal velocity (right).
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The fields of the wave-induced changes in tidal characteristics obtained in both these
experiments (not shown here) are qualitatively similar to those outlined in Figs. 6–12, thereby
showing that in a qualitative respect the previously derived results are robust for realistic wave
parameter values. As before, wave–tide interaction decreases the tidal elevation amplitude and
increases the drag coefficient, tidal elevation phase and the mean tidal energy dissipation at each
location in Cádiz Bay. Also, it tends to enhance the mean tidal energy fluxes at deeper depths and,
on the contrary, to attenuate them in the shallows. As a result, the maximum tidal velocities still
further reduce in the shallows and slightly increase at deeper depths compared to their values in
Experiment 0. In a quantitative respect, the wave-induced changes in tidal characteristics increase
with increasing wave amplitude and period. This is apparent from the estimates of the area-
averaged changes in tidal characteristics summarized in Table 3. A point that should be
particularly emphasized is that an increase in wave amplitude and period leads to spreading the
domain of potential suspended sediment transport. For given values of swell amplitude and
period (Experiment 2) this domain extends over the nearly whole Cádiz Bay.
Finally there is another point which merits attention. On comparing the results of Experiments

0 and 1 corresponding to the typical summer and winter wave conditions in Cádiz Bay, we see that

Fig. 9. Mean (over a tidal cycle) tidal energy flux per unit length (left) and its wave-induced changes (right).
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the mere changes in tidal characteristics differ in magnitude fairly slightly and, what is more
important, these changes are small compared to the values of tidal characteristics as such. This
implies that the wave-induced seasonal variability in the M2 tidal constants in Cádiz Bay may be
recognized as negligible. The same is not necessarily valid for other tidal constituents (say, for the
long-period ones) and/or other shallow basins, as supported by the results of Experiment 2.
It may be interesting to see if the other tidal constituents in shallow waters are enhanced by the

wave–tide interaction effects. We are going to discuss this point in another paper.

5. Conclusions

In this paper we have examined the character of wave/low-frequency current interaction using,
as the basis, a single-point, one-equation (k–l) model for an oscillatory turbulent BBL over a
hydrodynamically rough surface. The solution of the model equations for a combined wave/low-
frequency flow, accounting for the nonlinear interaction between wave and low-frequency
components of motion, has been compared with the appropriate solution obtained by employing
a linear superposition of the particular solutions for purely wave and low-frequency motions
and hence by disregarding nonlinear interaction effects. As a result, it has been shown that
a quantitative agreement between both the solutions is better, the greater are the ratio of

Fig. 10. Mean (over a tidal cycle) tidal energy dissipation (left) and its wave-induced changes (right).
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near-bottom wave orbital velocity amplitude to friction-free, low-frequency velocity amplitude
and the ratio between frequencies of wave and low-frequency components of motion. So, in the
case of wave–tide interaction when the velocity amplitude ratio is of the order 1, and the
frequency ratio is of the order 104, that is, under conditions typical of shallow waters, the linear
superposition of the particular solutions for purely wave and low-frequency motions provides a
high accuracy in evaluating the bottom stress: the relative mean error and the correlation between
the bottom stress values calculated with and with no allowance for nonlinear interaction effects
are 0.11% and 0.9992, respectively. Moreover, the vertical velocity profiles simulated at various
times of a tidal cycle in both these cases are not too distinctive among themselves. This suggests
that wave–tide interaction may be recognized as weak, and the bottom stress oscillations with
wave and tidal frequencies as weakly correlated.
Based on this finding and the usual physical notion of continuity of the vertical eddy viscosity

and the velocity at the top of the wave BBL, we have got a relationship between the drag
coefficient in a wave-affected tidal flow and its determining parameters: the scaled wave friction
velocity amplitude, the scaled tidal friction velocity amplitude and the ratio of near-bottom wave
orbital velocity amplitude to friction-free tidal velocity amplitude. This relationship, along with
the surface Rossby number dependences for the scaled wave and tidal friction velocity amplitudes
that follow from the resistance law for an oscillatory turbulent BBL over a hydrodynamically

Fig. 11. Maximum value bottom stress (left) and its wave-induced changes (right).
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rough surface, represents a formulation for weak wave–tide interaction. It can serve as an
alternative to the commonly accepted formulation of Grant and Madsen (1979). A verification of
the new formulation against observational evidence obtained during experiments CODE-1 and
CODE-2 on the northern California Continental Shelf, the measurement data in the Marsden

Fig. 12. Domain of potential suspended sediment transport as predicted with (1) and with no (2) wave–tide interaction
effects.

Table 2
Tidal constants (The M2 constituent) at the locations of tide gauge and bottom pressure measurements, as derived from
observational evidence and the model predictions with (a) and with no (b) wave–tide interaction effects

Station Amplitude (cm) Phase (8)

Observed Predicted Observed Predicted

a b a B

CARRACA (1) 108.0 108.3 108.7 60.0 59.4 55.9

PTO. REAL (2) 106.5 108.4 108.8 57.9 59.5 56.0
P. CARRANZA (3) 107.2 107.0 107.3 57.7 57.4 54.9
PTO. CÁDIZ (4) 103.1 104.4 104.6 55.0 55.6 53.1

PTO. SHERRY (5) 103.2 103.9 104.1 52.6 54.4 53.4
ROTA (6) 101.4 103.2 103.4 53.8 54.3 53.3
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Bay, the north-eastern coast of England, and against the 1D model predictions has showed that
these are in better agreement than a strong scatter of experimental estimates suggests. In all
considered cases, the rms error in predictions is much less than the observed or modeled range of
the wave-induced variability in cD.
The proposed formulation has been implemented within a 2D nonlinear, finite-difference, high-

resolution, hydrodynamic model, and the modified model has been applied to quantify the wave-
induced changes in the M2 tidal dynamics and energetics of Cádiz Bay. The model results
obatined under typical summer wave conditions testify that, as expected, wave–tide interaction
tends to increase the drag coefficient, tidal elevation phase, mean bottom stress and the mean tidal
energy dissipation, on the one hand, and to decrease the tidal elevation amplitude, on the other, at
each location in Cádiz Bay. At the same time, the model results reveal one unexpected feature in
the fields of maximum tidal velocity and mean tidal energy flux per unit length: it turns out that
wave–tide interaction is accompanied with increasing these characteristics at deeper depths and
their decreasing at shallower depths. This feature, as has been clarified, is due to an overall
amplification of the mean tidal energy transport into the bay from Gulf of Cádiz.

Table 3
Area-averaged changes in tidal characteristics due to wave–tide interaction effects for various values of wave amplitude

and period

Characteristic Inner Bay Outer Bay Cádiz Bay

Exp 0 Exp 1 Exp 2 Exp 0 Exp 1 Exp 2 Exp 0 Exp 1 Exp 2

Drag coefficient 0.011 0.015 0.041 0.007 0.010 0.033 0.008 0.011 0.036

Amplitude of tidal
elevation (cm)

�0.45 �0.71 �3.58 �0.28 �0.39 �1.33 �0.33 �0.49 �1.99

Phase of tidal elevation
(8)

2.15 3.05 9.13 0.10 0.12 0.33 0.72 0.98 2.89

Maximum tidal
velocity (cm s�1)

�0.76 �0.99 �1.43 �0.13 �0.23 �0.52 �0.33 �0.45 �0.79

Phase difference

between maximum
tidal velocity and
tidal elevation (8)

�5.9 �7.1 �9.9 0.1 1.1 9.1 �1.7 �1.3 3.5

Mean bottom stress
(Nm�2)

0.06 0.14 0.40 0.06 0.06 0.19 0.06 0.08 0.26

Maximum bottom

stress (Nm�2)

0.13 0.29 0.80 0.12 0.12 0.37 0.12 0.17 0.50

Mean tidal energy flux
per unit length
(Kwm�1)

�0.15 �0.37 �0.41 �0.18 �0.10 �0.03 �0.17 �0.18 �0.14

Mean tidal energy
dissipation (Wm�2)

0.01 0.03 0.08 0.01 0.01 0.02 0.01 0.01 0.04

Area of the potential

suspended sediment
transport domain
(Km2)

14.5 14.9 17.0 16.1 24.0 52.2 30.6 38.9 69.2
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The numerical experiments on the sensitivity to varying wave parameters show that all the
above features of change in the M2 tidal characteristics are robust in a qualitative sense. The same
is true for the wave-induced areal changes in the potential suspended sediment transport domain.
The latter has been found to increase over the no-wave case. Overall, the wave-induced changes in
M2 tidal characteristics are small for the amplitudes and the phases of tidal elevation and tidal
velocity but not for the bottom stress and tidal energy budget characteristics. These quantities
per se and their changes are of the same order of magnitude. Particularly sensitive to varying wave
parameters is the potential suspended sediment transport domain. If under typical summer and
winter wave conditions this domain spans Inner Bay, Puntales Channel and the southern part of
Outer Bay, then under conditions of significant swell it extends over the nearly whole Cádiz Bay.
With respect to magnitude the wave-induced changes in tidal characteristics in summer are not

too different from those in winter. Consequently, the wave-induced seasonal variability in tidal
characteristics is not pronounced in Cádiz Bay: according to our estimates, this variability for the
M2 constituent amounts to a maximum of 0.7 cm for the amplitude and 38 for the phase of tidal
elevation, being small compared to the mere values of the tidal constants. However the possibility
of the wave-induced seasonal variability in tidal constants being well defined in other shallow
basins and/or in other tidal frequency bands must not be ruled out.
Our formulation for wave–tide interaction, like any one of formulations, is not free of

shortcomings. These are mainly associated with the assumptions that (i) rotation effects are small,
so that the resistance law for a one-dimensional (in a horizontal plane) wave-affected tidal flow
may be applied; (ii) waves and M2 tidal currents are colinear; (iii) the whole random wave field
may be represented by only one wave component; (iv) a wave amplitude is constant throughout
the bay except for the very shallow near-coastal regions where it is specified by an empirical wave-
breaking criterion; (v) the wave-breaking criterion is set at a constant value, no matter what it is a
function of location and hence local depth; (vi) even in the case of breaking waves, linear wave
theory is used to evaluate the near-bottom wave orbital velocity amplitude.
The majority of these assumptions are reasonable for Cádiz Bay where, because of the absence

of significant variations of depth, the tidal currents are inherently reversive in character, and the
waves propagate from the open boundary to the surf-zone without appreciable reflection or
backscattering. However it is difficult if not impossible to imagine that such a situation occurs in
other shallow basins. That is why the proposed formulation needs improvement in many respects.
This is first of all concerned with the resistance law which should be generalized to the case of a
two-dimensional (in a horizontal plane) tidal BBL over a hydrodynamically rough bottom. In this
case, the only determining parameter (the surface Rossby number or the ratio of water depth to
bottom roughness length depending on, respectively, whether we are dealing with an asymptotic
BBL or a BBL of finite depth) has to be supplemented by three more determining parameters.
These are the ratio between inertial and tidal frequencies, the ratio between amplitudes of friction-
free tidal velocity vector components, and the phase difference between them (Kagan, 1972). It
would be of interest to clear up, whenever possible, how the resistance law is modified in this four-
dimensional parameter space.
Another aspect of the formulation which calls for improvement is related to invoking a proper

procedure for determining single wave parameters or, as has been suggested by Davies and
Lawrence (1995), a wind-wave spectrum so as to transform it to a characteristic near-bottom wave
orbital velocity amplitude. In the last case, it should be borne in mind, among other things, that at
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each location there are both breaking and unbroken waves and that, hence, the concept of a wave-
breaking criterion or a maximum possible wave amplitude at a given water depth is to be revised.
It is also desirable to give up the assumption of colinearity of waves and tidal currents, since, as
has been established by Grant and Madsen (1979), this assumption is adequate only if the angle
between waves and currents is less than 608 or a near-bottom wave orbital velocity amplitude is
much greater than a friction-free tidal velocity amplitude. Thus, a great deal needs to be done
before wave-tide interaction and its consequences become well understood.
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Appendix A

A.1. A single-point, one-equation, turbulence (k–l) model

The model in use a single-point, one equation, turbulence (k–l) model in which the sought for
variables are the velocity, vertical eddy viscosity, turbulent-kinetic energy (TKE), TKE
dissipation rate and the mixing length. Let us consider the case when the turbulent BBL extends
over the whole water column and, following Charney (1969), assume that the effective vertical
eddy viscosity in the BBL is limited from above by the estimate ke5UhRec

�1, where U is the
velocity amplitude in a friction-free flow; h is the water depth (or the BBL height if it is smaller
than the water depth) and Rec� 160 is the critical Reynolds number for the oscillatory, turbulent
BBL. Let us define the characteristic scales for the velocity, vertical eddy viscosity, mixing length,
TKE, length and time as U, UhRec

�1, cm
1/4hRec

�1/2, cm
�1/2U 2Rec

�1, h and s�1, respectively. Here, s is
the prescribed tidal frequency and, cm=0.125 is the numerical constant in the Kolmogorov
similarity relationship for the TKE dissipation rate. Then the equations for the above variables in
the dimensionless form are written as

Sh
@

@tn
un � ufn
� �

¼ @

@zn
Re�10 þ Re�1c kn
� �@un

@zn
; ðA:1Þ

c�1=2m Sh
@bn
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¼ c�1=2m
@

@zn
a�1M Re�10 þ a�1bT Re

�1
c kn

� �@bn
@zn

þ kn
@un
@zn

����
����
2

� b2n
kn
; ðA:2Þ

kn ¼ ln
ffiffiffiffiffi
bn

p
; ðA:3Þ

ln ¼ kRe1=2c bn=bonð Þ1=2 zn þ
Z Zn

Zon

bn=bonð Þ�1=2 dzn
� �

; ðA:4Þ
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where Sh=sh/U is the Strouhal number; Re0=Uh/n is the flow Richardson number based upon
the molecular viscosity n; aM=12.5 is the molecular Schmidt number; abT=1.37 is the turbulent
Prandtl number; un and ufn are the dimensionless velocity and its value in the friction-free flow;
kn is the dimensionless vertical eddy viscosity; ln is the dimensionless mixing length; bn and
bon=(Reo

�1+Rec
�1kn) |qun/qzn|zn=zon are the dimensionless TKE and its value at the roughness

length zon; k is von Karman’s constant; zn is the dimensionless vertical coordinate directed
upwards; and tn is dimensionless time.
Eqs. (A.1)–(A.4) describe, respectively, the momentum budget, the TKE budget, the

Kolmogorov similarity relationship for the vertical eddy viscosity and the integral analogue of
generalized von Karman’s formula for the mixing length.
A no-slip condition

un ¼ 0; ðA:5Þ

and a zero vertical TKE flux condition

a�1M Re
�1
0 þ a�1bTRe

�1
c kn

� �@bn
@zn

¼ 0; ðA:6Þ

are set at a bottom roughens length (at zn=zon). At the sea surface (at zn=1), zero vertical flux of
momentum and TKE are prescribed:

ðRe�10 þ Re�1c knÞ
@un
@zn

¼ 0; ðA:7Þ

a�1M Re�10 þ a�1bT Re
�1
c kn

� �@bn
@zn

¼ 0: ðA:8Þ

If the BBL extends over the whole water column, these boundary conditions may be replaced by
the asymptotic ones un ! ufn; bn ! 0 at zn ! 1 whereby the TKE is assumed to tend to zero,
and the velocity to tend to its friction-free value as the height above the bottom increases. Notice
that in the absence of wind, density stratification and wave breaking, ufn remains constant in
height.
Instead of initial conditions, the time-periodic conditions for velocity and TKE

un tnð Þ ¼ un tn þ 2pð Þ; bn tnð Þ ¼ bn tn þ 2pð Þ ðA:9Þ

are employed. If one is not interested in a transient period, these conditions are not contradictory
to those used by Davies and Lawrence (1995). According to their procedure, model equations are
integrated forward in time from a state of rest with M2 } tidal forcing at open boundaries and
after establishing of a time-periodic regime, the sought for variables are harmonically analyzed
yielding the required amplitudes and phases.
These equations and boundary conditions, being first rewritten in terms of the deviations of

velocity from its friction-free value, are solved at a given change in the friction-free velocity in
time. In so doing, the water depth is specified such that the tidal velocity in the upper layer reaches
its friction-free value, the linear vertical coordinate is transformed into the logarithmic one by the
relationship x=ln(zn/z0n) and the friction-free velocity is represented as the sum of two harmonic
oscillations with different amplitudes and frequencies
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Eqs. (A.1)–(A.9) are integrated using a semi-implicit finite-difference scheme with central
differencing in the vertical and one-side differencing in time. A time step which is limited from
above by the condition for high-frequency wave orbital oscillations to be resolved is taken as (2p/
30) times the ratio between frequencies of low-frequency and wave components of motion. The
amount of levels in the transformed vertical is taken as 200.This amount of levels is more than
sufficient to resolve the near-bottom region of maximum velocity shear in the wave BBL and its
overlying logarithmic layer produced by a specified low-frequency flow.

Appendix B

B.1. The resistance law for an oscillatory turbulent BBL over a hydrodynamically rough surface

Let us define the wave orbital velocity or the tidal velocity within and outside the appropriate
BBL as u=ReU exp [i(st+j )] and u1=ReU1 exp (ist), respectively. Here, U and U1 are the
velocity amplitudes in the BBL and the friction-free flow; s is the oscillation frequency; and
j is the phase shift between u and u1. Accordingly, the expression for the velocity defect,
(u�u1)=Re(U�U1) exp [i(st�p�jd)], where (U�U1) and jd are, respectively, the velocity
defect amplitude and the phase shift between (u�u1) and u1, which can be expressed in terms of
U, U1 and j as

ðU �U1Þ ¼ ½U2sin2jþ ðU1 �U cosjÞ2�1=2; tanjd ¼ U@ðU1 �U sin jÞ:

Similarly, we define the bottom friction velocity amplitude in the wave or tidal BBL as
U*=(|tb|/r)

1/2 and, following Jonsson (1980), take U* as a characteristic velocity scale in this
BBL. Here,tb is the bottom stress; and r is the mean density of sea water.
Then the vertical distribution of the dimensionless (normalized by U*) velocity in the region of

small heights above a hydrodynamically rough surface will be described by the expression

u

U
*

¼ Re fu
z

zo

� �
exp i stþ j0ð Þ½ �; ðB:1Þ

where fu(z/zo) is a non-negative function of its arguments; and jo is a phase shift between near-
bottom and friction –free velocities, the shift which remains constant within the near-bottom layer
and must be found.
Evidence from laboratory and field measurements (Jonsson, 1980; Marchuk and Kagan, 1977)

as well as results of direct simulation of an oscillatory turbulent BBL over a hydrodynamically
rough surface (Spalart and Baldwin, 1989) indicate convincingly that the vertical distribution of
velocity adheres to the law of the wall (Eq. (B.1) with fu(z/zo)=(1/k) ln (z/z0) in the near-bottom
layer and the velocity defect law

u� u1
U
*

¼ Re
1

k
cu

z

d

� �
exp i st� p� jdð Þ½ �; ðB:2Þ

in the outer part of the BBL. Here, cu(z/d) is a non-negative, decreasing function of its argument;
and d is the height of the oscillatory turbulent BBL.
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At the intermediate heights (in the region of overlapping), the asymptotic expansions (B.1) and
(B.2) have to be matched. On equating the real and imaginary parts of these expressions, we come
to the relationships

ln
d
zo

� �
cosjo �

kU1
U
*

¼ �ln z

d

� �
cosjo � cu

z

d

� �
cosjd ; ðB:3Þ

ln
d
zo

� �
sin jo ¼ �ln z

d

� �
sin jo þ cu

z

d

� �
sin jd : ðB:4Þ

The left-hand side of relationships (B.3) and (B.4) is independent of z and the same is to be for the
right-hand sides. Let

lim
z=d!0

�ln z

d

� �
sin jo þ cu

z

d

� �
sin jd

h i
¼ 2:3A; ðB:5Þ

lim
z=d!0

�ln z

d

� �
cosjo � cu

z

d

� �
cosjd

h i
¼ 2:3Bþ ln 2�5=2k; ðB:6Þ

where the factor ln 10� 2.3 before the numerical constants A and B as well as the second term on
the right-hand side of equality (B.5) are introduced for the sake of convenience. Then, on
rearrangement, we obtain

ln
d
zo

� �
¼ 2:3Að Þ2þ 2:3Bþ ln 2�5=2kþ kU1=U

*

� �2� �1=2
; ðB:7Þ

tanjo ¼ 2:3A 2:3Bþ 2�5=2kþ kU1=U
*

� ��1
; ðB:8Þ

where, with allowance made for the equality d=z0 ¼ k2ðkU1=U
*
Þ�1Ro following immediately

from the definition d ¼ kU
*
=s, we find

lnRo� ln
kU1
U
*

þ ln k2 ¼ ð2:3AÞ2 þ 2:3Bþ ln 2�5=2kþ kU1
U
*

 !2
2
4

3
5
1=2

; ðB:9Þ

Relationships (B.8) and (B.9) represent the resistance law for an oscillatory turbulent BBL over a
hydrodynamically rough surface.
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