Czechoslovak Mathematical Journal, 50 (125) (2000), Praha

CHARACTERIZATIONS OF COMPLETENESS OF NORMED SPACES
THROUGH WEAKLY UNCONDITIONALLY CAUCHY SERIES

F.J. PEREZ-FERNANDEZ, F. BENITE2Z-TRUJILLO and A. A1zPURU, Cadiz

{Received December 9, 1998)

Abstract. In this paper we obtain two new characterizations of completeness of a normed
space through the behaviour of its weakly unconditionally Cauchy series. We also prove
that barrelledness of a normed space X can be characterized through the behaviour of its
weakly-* unconditionally Cauchy series in X*.
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1. INTRODUCTION

o0

Let X be a real normed space and let 0 = ), z; be a series in X. Let us recall that
i=1

o is called unconditionaily convergent (uc) (resp. weakly unconditionally Cauchy

o0 1
(wuC)) if 3 zn(;) converges (resp. (Z x,‘(k)). is a weakly Cauchy sequence) for
i=1 k=1 i

o0
every permutation n of N. It is well known that 3 z; is wuC if and only if for each

i=1

z* € X* ¥ |2*(x:)| < oo, where X* is the dual space of X.
i=1

o0
Many studies have been made on the behaviour of a series of the form Y a;z;,
i=1

where (a;); is a bounded sequence of real numbers. For instance, unconditionally
convergent (resp. weakly unconditionally Cauchy) series can be characterized as the

o0 00
series Y z; such that Y a;z; is convergent for every bounded sequence (resp. for
i=1 i
every null sequence) (a;

i=1
:): (Cf. 2], {3] and [4]). The Banach space of bounded se-
quences (resp. null sequences) of real numbers, endowed with the sup norm, will be

denoted, as usual, by £, (resp. co).

889



o0
For any given series 0 = > z; in X, let us consider the set & = .#(o) (resp. S, =

i=1
<0
Fw(0a)) of sequences (a;); € o such that 3 a;x; converges (resp. converges for the
i=1
weak topology). The set &7 (resp. %), endowed with the sup norm, will be called
the space of convergence (resp. weak convergence) of the series o. Clearly % and
. are subspaces of £..

If X is a normed space and . is a subspace of ¢, such that ¢g C &, we will
denote

X(S) = {i = (Z;)ien € xN. Zaixi is convergent for every (a;)ien € .5’}
=1

In [1] it is proved that X (&) is a normed space with the norm

x
E aiZ;
=1

where B denotes the unit ball in .%, and that if X is complete then X () is
also complete. Some others properties of spaces X (%) have been studied in [1], [6]
and [7].

<O
For a given series 0 = Y. z} in X*, the set of bounded sequences (a;); of real

i=1

il = sup{l

:(aidien € By},

o0
numbers such that Y a;z} is *-weakly convergent will be denoted by Fy (o).
i=1
It is well known (see [2], [3] and [5]) that if X is a Banach space then:
1. There exists a wuC series in X which is convergent but which is not uncondi-
tionally convergent if and only if X has a copy of ¢q.
2. There exists in X a wuC and weakly convergent series which does not converge
if and only if X has a copy of ¢p.
3. There exists in X* a x-weakly unconditionally Cauchy (*-wuC) series which is
not unconditionally convergent if and only if X* has a copy of £.
It is obvious that if X does not have a copy of co then the following conditions

o0
are equivalent: 1) The series 0 = Y z; is wuC. 2) The series 0 is uc. 3) (o) =
i=1
Fw(o) = .
In this paper we characterize the completeness of X through the spaces .¥(o) and

(o), where ¢ is a wuC series in X. We also characterize the barrelledness of a
normed space X through the spaces (o), where & is a x-wuC series in X*.
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2. COMPLETENESS THROUGH CONVERGENT SERIES

o
Let us recall that if X is a normed space then ¢ = }_ z; is wuC if and only if

i=1

(2.1) E = {Zaimi: neN, |a| <1, i€ {1,...,n}}

i=1

is bounded.

Theorem 2.1. Let X be a Banach space and let o = 3, z; be a series in X. The
i=1
space () is complete if and only if o is wuC.

Proof. Let us suppose that o is wuC. Let E be the set defined by (2.1). Let us
suppose that ||z|| < M for every z € E. Let {(a§k))i}k be a sequence in .¥(o) that
converges to (a\”) ), € loo. For any given ¢ > 0, there exists ko € N such that |a{*) —
aEO), < 557, for every k 2 ko and i € N. If k > ko then there exists 4, = iz (k,€) €N

L (k) e L M SN (k) (0)
> a m,“ < g, for p > g > i Since 2¥ 3" (a;” —a; ")z € E, we

i=q i=gq

such that '

P rid
obtain that “ ¥ (a? - ag°>)xi“ < §, for k> ko, and that l ) a£°)m| < . This
i=q i=q
proves that % (o) is complete.
It is obvious that if 5(o) is complete then o is wuC. O

Theorem 2.2. Let X be a normed space. The space X is complete if and only

if for every weakly unconditionally Cauchy series 0 = 5, x; in X the space (o) is
et
complete. '

Proof. If X is not complete then there exists an absolutely convergent series

o0
o = Y. x; in X which is not convergent and is such that ||z]| < g for every i € N,

i=1

oo
Let 0/ = Y z; be the series defined by z9;—1 = iz;, 22; = —iz;, for i € N. It is clear
i=1

that ¢’ is wuC.

Let (a;); € co be the sequence defined by agi—1 = =

I8

5, a2; = — =, for i € N. Since
(o]
the series 3 a;2; does not converge we have that #(¢’) is not complete, although

i=1
o' is wuC. O

Our next result give us some information on the relationship between the spaces
S(o) and #(o’), when o and ¢’ are two different series in X. The natural frame-
works for this study are the spaces X (.%).
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[
Theorem 2.3. Let X be a Banach space. Let 0 = 3. x; be a wuC series in X

i=1
and let & = S{o).

1. If () nen Is a sequence in X (&) that converges to o then [} (on) = F(0).
nEN
2. If 0g € X(5) then the set {d’' € X(&): F(0') # F#(00)} is open in X ().

O
Proof. 1. For n € N, we denote 0, = Y, 2. It is clear that & (0,) 2 (o).
i=1

Let us suppose that (a;)ieny € ﬂ F(0,) and let € > 0. Let n € N be such that

lo—oall < §. There exists ip € N such that
Then

Z T l<-§-,f0rp>q>to

i=g4l

Z Il(az

imgt1 )LEN”

Z u<az zENu Tadienl]

i=q+1

\

2 Tl &~ %)

<o -onlls + 5 <.
2. Tt is clear that X (#(00)) is a closed subspace of X(.#). The first part of this
theorem proves that {¢' € X(5): #(0') = F(00)} is closed in X (F(09)). 0O

Remark 2.4. Let X be a Banach space and let o = § z; be a wuC series in X.
It is clear that #(o) = ¢g if and only if (z;);en does notlﬂzlwe any null subsequence.
In this case (z;):;en has a basic subsequence that is equivalent to the co-base.

Therefore, if o is wuC then (o) = .#(¢’), for every subseries ¢’ of ¢, if and only
if either &(¢) = £o or () = cp.

Nevertheless, if oy and o3 are two arbitrary wuC series in X, we do not know any
conditions on o1 and a2 that let us affirm that (o) = #(02).

If X has a copy of ¢p and Z is a closed subspace of £, such that ¢g C &, we do
not know if there exists a series ¢ in X such that #(¢) = & (if X does not have a
copy of ¢y and F # £, the answer to this question is negative).

3. COMPLETENESS THROUGH WEAKLY CONVERGENT SERIES

It is well known that if a series converges in a Banach space X then this series

is weakly convergent. Nevertheless, the converse is, in general, false. A weakly
o0

convergent series ) z; is not necessarily a weakly unconditionally Cauchy series. We
i=1

can ask, as in the second section, if the sets .#,(0) may also be used to characterize

the completeness of a normed space X.
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o0
Lemma 3.1. If X is a Banach space and 0 = Y, z; is a series in X, then o is
i=1
wuC if and only if ¢g C F(0).

Proof. It is obvious that the condition is necessary. Let us suppose that ¢y C
o0

Zw(0) and let (a;); be an arbitrary null sequence. The series ) a;z; is weakly con-
i=1
vergent. Let (ix)x be an increasing sequence of positive integers and let us consider

the set M = {i: k € N}. Let ( :); be the > sequence defined by b; = a; if i € M, and

b; =0if i ¢ M. The series E biz; = Z a;,%;, 1s weakly convergent. Therefore
i=1 k=1

Z z; is wuC. 0O

i=1

Theorem 3.2. Let X be a Banach space and let o = 5 x; be a series in X. The
i=1

space (o) is complete if and only if o is wuC.

Proof. Let us suppose that ¢ is wuC. We will prove that .%,(c) is complete.

Let {(a(k)) },C be a sequence in %, (o) that converges to (a (0)) € lo and let (23 )
(k)a: {z:) = z*(=1), for every z* € X*.

Let E be the set defined by (2 1) There exists M > 0 such that ||z|| < M, for every
z € E. For any given £ > 0, there exists kg € N such that ” (k) (a(o) [[ < 3%

for k > ko. Hence, [a(k) (O)l < 35> fort € N and & > ko. ThlS proves that

!z(aw) NO)

be a sequence in X such that z a

(3.1) <<

m
for m > 1, and we have ”Z(a&p) - agq))m,;“ < —233, forp>q>2kyandm > 1.
i=1

Therefore Y (agp) - agq)).'z;*(x,-) < %, for every z* € X* such that |[z*|| = 1 and
i=1
m 2 1. There exists zfj € X* such that ”x(‘; “ =1 and
o0
o = 24ll = 3 (a” ~ i) (z2),
i=1

for every p > ¢ > kq. Since

S = 2¢
;(agp) (q)) zt(z:) € ;(agp) —-a(q))x, < =

it is clear that {|2, — 2z,|| < e. Hence there exists zop € X such that khm 25 = 2p.
—00
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On the other hand, for any given € > 0, there exists k; € N such that |[2x— 2] < £,
for k > ky. If 2* € X* and ||z*|| = 1 then, by (3.1), ‘Z (a§°) - a§k)):c*(xi)
i=1
m € N and &k > kp. If k& > max{kq, k1} then we have that

£
< 3 for

3

f: agk):c* (z:) — 2% (1)

i=1

<%=y
3

m
3 afa* (21) — 2*(20)
i=1

O
for m € N. Since 3 agk):v*(a:,-) = x*(z), there exists mo € N guch that if m 2 mg

i=1
then }Z agk)x*(:ci) - a:*(zk)l < £. Hence IZ ago)a:*(xi) - z*(zo). < &. This proves
the theorem. O

R
Lemma 3.3. Let X be a normed space. If o = 3, z; is an unconditionally Cauchy
=1
series in X then (o) = Suw(0).

n
Proof. If (a;); € S there exists z € X such that x*(z aia:i) — z*(z), for
i=1
z* € X*. Since o is an unconditionally Cauchy series, there exists z** € X** such
oo n
that 3 a;z; = 2**. Hence z* (E a,—xi) — z**(2*), for z* € X*. This proves that
i=1

i=1

z** =z and (a;); € . a

Theorem 3.4. A normed space X is complete if and only if for every weakly

o0
unconditionally Cauchy series o = 5 x; in X the space ,(c) is complete.

i=1
Proof. Let us suppose that X is not complete. We can find, as in the proof of

(o]
Theorem 2.2, an absolutely convergent series ¢’ = Y z; that is wuC and such that
=1

co € S (0'); therefore .#(c’) is not complete. Since o' is an unconditionally Cauchy
series, by Lemma 3.3, we have that #(¢’) = ., (c’). O

4. BARRELLEDNESS THROUGH WEAK-* CONVERGENT SERIES IN X*

The study that we have made in sections 2 and 3 can be extended, in a natural
way, to series in the dual space X* of X.

o0
Theorem 4.1. Let X be a normed space and let ( = 3, x} be a series in X*.
i=1
Let us consider the following conditions:

1) ¢ is wuC.
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2) Fiw(() = les.
3) 3 |az3(z)| < +o0o for every z € X.
i=1
We have that 1 = 2= 3. -~
These three conditions are equivalent for every séries { = 3 x} in X* if and only

=1

if X is a barrelled normed space.

1

(=] oo
Proof. 1) = 2). If 3"z} is wuC and (a;); € £ then 3 a;jz} is also wuC.
i=1 i=1
Hence, (Z aiw;‘) is a bounded sequence in X* that is a Cauchy sequence for the
i=1 n

o
weak-* topology on X*. Hence we have that 3 a;x} is weak-* convergent.

i=1

2) = 3). For every z € X, let us consider the series 3 z}(z). For every (a;); € cg,

=1

o0 o0
the series ) a;z}(z) is convergent. Hence 3 |2} (z)| < +o0.
i=1 i=1

o0
Let us suppose that X is a barrelled normed space and that > z} is a series in
i=1
X* such that condition 3) is satisfied. Let us consider the set

m
E= {Za,-x;; meN, o <1, i€ {1,...,m}}.
i=1

It is clear that E is pointwise bounded and, therefore, E is bounded for the norm

oo
topology of X*. This proves that ) z} is wuC.
=1
If X is not barrelled then there exists a weak-* bounded set & C X* which is not
bounded. For every ¢ € N, there exists y7 € F# such that ”y;*" > 2%, Let us write
00
z} = %y}, fori € N. It is clear that . |:v’{ (x)l < 400 for every z € X. Nevertheless,
i=1

. o) o

since [|z}]| > 2¢ for every i € N, the series Y %z} does not converge and Y z is
=1 i=1

not a weakly unconditionally Cauchy series. This completes the proof. a

Remark 4.2. If X is a barrelled normed space, %, is complete if and only if
Few = b

Remark 4.3. The proof of Theorem 4.1 shows that X is a barrelled normed
space if and only if in X* the set of weak unconditionally Cauchy series coincides
with the set of weak-* unconditionally Cauchy series.

Let us observe that if X is a Banach space, then there exists a weakly uncondi-
tionally Cauchy series in X* which is not unconditionally convergent if and only if
X has a copy of .
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