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Abstract

Nonclassical symmetries of one-dimensional reaction diffusion equations, of theλ–ω type, have been studied. The functional
forms ofλ andω for which the system admits nonclassical symmetries have been determined and the corresponding reduced
systems have been obtained. Some of these reduced systems admit symmetries which lead to further reductions. Among the
several classes of exact solutions that have been obtained, asymptotically periodic plane waves appear as similarity solutions
of λ–ω systems. We also have obtained a family of solutions that exhibit a blow-up process. © 2000 Elsevier Science B.V.
All rights reserved.
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1. Introduction and preliminaries

Reaction diffusion equations whose kinetic ordinary differential equations (ODEs) possess a stable limit cycle
have been widely studied in the last two decades. Let us consider a reaction diffusion system of the form

ut = 1xu+ f (u, v, γ ), vt = 1xv + g(u, v, γ ) (1.1)

such that the corresponding diffusionless system exhibits a Hopf bifurcation to a limit cycle at the bifurcation value
γc. Kopell and Howard [11] proved that (1.1) can be transformed into a system of the form

ut = 1xu+ λ(z)u− ω(z)v, vt = 1xv + ω(z)u+ λ(z)v (1.2)

nearγc.
On the other hand, systems of type (1.2) are important, among reaction diffusion systems, by their symmetry

properties. In fact, if a system (1.1) is invariant under rotations in(u, v) space, then it has the form (1.2) [1]. The
λ–ω systems exhibit many different types of solutions: spiral and scroll waves [8–10], periodic plane waves [11,13],
spatiotemporal chaos [12]. Sherratt [18–20] has studied the evolution of many of the above-mentioned types of
solutions, from given initial conditions, by considering some specific cases ofλ andω.
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Although group analysis of differential equations has been applied in many fields of mathematical physics, only a
few studies have been made forλ–ω systems. Steeb and Strampp [21] studied the particular caseλ = c−z2,ω = 2.
Suhubi and Chowdhury [22] obtained the most general symmetry group admitted by one-dimensional reaction
diffusion equations with arbitrary source functions. Archilla et al. [1] obtained classical symmetries ofλ–ω systems
in two-dimensional media and characterized these systems, among reaction diffusion systems, by their symmetry
properties.

In this work, we study the classical and nonclassical symmetries of (1.2) in the one-dimensional case and we
reduce (1.2) to systems of ODEs. Besides, by means of additional symmetries of one of these reduced systems, we
characterize some families of solutions of (1.2) presenting the following behaviours:
1. Source solutions that lead to asymptotically periodic plane waves propagating with opposed velocities depending

on whetherx > x0 or x < x0, x0 being an arbitrary point.
2. Solutions exhibiting a blow-up process at finite time. This blow-up process propagates through a fixed pointx0

with non-constant velocity.
3. Bounded solutions which behave as the sources whent is large enough.

Van Saarloos and Hohenberg [23] have studied the generalized Ginzburg–Landau equation which contains, as a
particular case, system (1.2). They are primarily interested in the study of uniformly translating solutions, that have
the formu + iv = a(ξ)ei(φ(ξ)−ωt), and several classes of solutions have been found. Solution (3.60) in [23], that
has been obtained by means of a specific ansatz, is physically the same as one of the solutions that appear in our
Section 4 and are referred to as source solutions.

The classical method for finding symmetry reductions of partial differential equations (PDEs) is the Lie group
method of infinitesimal transformations. The fundamental basis of this technique is that, when a differential equation
is invariant under a Lie group of transformations, a reduction transformation exists. The machinery of Lie group
theory provides a systematic method to search for these special group invariant solutions. For systems of PDEs with
two independent variables, a single group reduction transforms the system of PDEs into a system of ODEs, which, in
general, is easier to solve than the original system. Most of the required theory and description of the method can be
found in [3,14,17]. To apply the classical method to system (1.2), one looks for an infinitesimal generator, of the form

V = ξ(x, t, u, v)
∂

∂x
+ η(x, t, u, v)

∂

∂t
+ ψ1(x, t, u, v)

∂

∂u
+ ψ2(x, t, u, v)

∂

∂v
, (1.3)

that leaves invariant system (1.2). This yields an over-determined linear system for the infinitesimalsξ, η, ψ1 and
ψ2. Classical symmetry reductions have been derived for the(2 + 1)-dimensionalλ–ω system in [1], and for the
(1 + 1)-dimensional case in [22], via an isovector approach.

In the last decades several generalizations of the classical Lie group method for symmetry reductions have been
formulated. Bluman and Cole [2] developed the nonclassical method to study the symmetry reductions of the heat
equation. Clarkson and Mansfield [5] presented an algorithm for calculating the determining equations associated
with the nonclassical method. This method has been used, with much success, to generate many new symmetry
reductions and exact solutions for several physically significant PDEs. These solutions are not obtainable using the
classical Lie method [4,6,7].

In order to apply the nonclassical method to system (1.2), we require only the subset of solutions of system (1.2)
and the surface condition

ξux + ηut − ψ1 = 0, ξvx + ηvt − ψ2 = 0 (1.4)

to be invariant under the transformation with infinitesimal generator (1.3). These methods were generalized by Olver
and Rosenau [15,16] to include “weak symmetries”, “side conditions” and “differential constraints”, although their
methods are too general to be practical.
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2. Determination of theλλλ–ωωω systems which admit nontrivial symmetries

We impose that the transformation group generated byV , as defined in (1.3), leaves invariant (1.2) when (1.4) is
satisfied. We study the problem separately, depending on whetherη 6= 0 orη = 0.

Case 1. If η 6= 0, we may setη(x, t, u, v) = 1 without loss of generality. The nonclassical method applied to (1.2)
gives rise to 15 determining equations for the infinitesimals. From these equations, it is easily found that

ξ(x, t, u, v) = ξ1(x, t),

ψ1(x, t, u, v) = ψ11(x, t)u+ ψ12(t)v + ψ13(x, t),

ψ2(x, t, u, v) = ψ21(t)u+ ψ22(x, t)v + ψ23(x, t). (2.1)

Besides, if we exclude the case whereλ andω are constant functions, we have thatψ13 = ψ23 = 0, ψ21 = −ψ12

andψ22 = ψ11. By substituting (2.1) into the determining equations, it is found thatξ1, ψ11 andψ12 must satisfy

−2
∂ψ11

∂x
+ ∂2ξ1

∂x2
− 2ξ1

∂ξ1

∂x
− ∂ξ1

∂t
= 0, (2.2)

−ψ11z
dλ

dz
− ∂2ψ11

∂x2
+ ∂ψ11

∂t
+ 2ψ11

∂ξ1

∂x
− 2λ

∂ξ1

∂x
= 0, (2.3)

ψ11z
dω

dz
+ dψ12

dt
+ 2ψ12

∂ξ1

∂x
+ 2ω

∂ξ1

∂x
= 0. (2.4)

From these equations we deduce:

Case 1.1.Forλ andω arbitrary functions, the only symmetries that are admitted by (1.2) are

ξ = k1, η = 1, ψ1 = k2v, ψ2 = −k2u, (2.5)

wherek1 andk2 are arbitrary constants. It can be checked that symmetry (2.5) is a classical symmetry. This symmetry
just expresses the invariance of (1.2) with respect to translations in the independent variables, and rotations in the
phase space(u, v).

Case 1.2.For

λ(z) = a logz+ b, ω(z) = c logz+ d, (2.6)

wherea, b, c andd are arbitrary constants, two subcases can be considered for which additional symmetries are
found:

Case 1.2.1.If a 6= 0,

ξ = k1, ψ1 = k2 eatu+
(

ck2

a
(1 − eat)+ k3

)
v, ψ2 = −

(
ck2

a
(1 − eat)+ k3

)
u+ k2 eatv. (2.7)

Case 1.2.2.If a = 0,

ξ = k1, ψ1 = k2u+ (−ck2t + k3)v, ψ2 = −(−ck2t + k3)u+ k2v. (2.8)

We remark that (2.7) contains (2.8) (if we take limit asa → 0 in (2.7) we get (2.8)). We also point out that symmetry
(2.7) is a classical symmetry.
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Case 1.3.For

λ(z) = azn + b, ω(z) = czn + d, (2.9)

wherea, b, c, d andn are arbitrary constants, we obtain that

ψ11 = −2

n
ξ1x,

and thatξ1x, ψ12 are related by the following conditions:

ψ12t + 2ξ1xψ12 = 0, ξ1xxx − 2(ξ1x)
2 − nbξ1x − ξ1xt = 0, nξ1xx + 4ξ1xx − 2nξ1xξ1 − nξ1t = 0. (2.10)

We can consider two subcases:

Case 1.3.1.If ψ12 6≡ 0 it is easy to see that (2.10) is a compatible system if and only ifb = 0. Then

ξ = − x − x0

2(T − t)
, ψ1 = u

n(T − t)
−
(

k1

T − t
+ d

)
v, ψ2 =

(
k1

T − t
+ d

)
u+ v

n(T − t)
. (2.11)

It can be checked that symmetries (2.11) correspond to classical symmetries.

Case 1.3.2.If ψ12 ≡ 0, the first equation in (2.10) becomes trivial, and our problem reduces to determiningξ1.
Due to the difficulty to solve this system, we look for solutions of (2.10) in whichξ1 does not depend ont . Then,
ξ1(x) verifies

ξ ′′′
1 − 2(ξ ′

1)
2 − bnξ ′

1 = 0, (2.12)

(n+ 4)ξ ′′
1 − 2nξ1ξ

′
1 = 0. (2.13)

This is possible only ifn = 2 andk1 = −9b. We can consider two subcases:

Case 1.3.2.1.If b 6= 0, i.e.λ(z) = az2 + b andω(z) = cz2 + d, then the infinitesimals for our symmetry group
are

ξ = −3

√
b

2
coth

[√
b

2
(x + k2)

]
, ψ1 = −3

2
b cosech2

[√
b

2
(x + k2)

]
u− dv,

ψ2 = du+ 3

2
b cosech2

[√
b

2
(x + k2)

]
v. (2.14)

This is a nonclassical symmetry which does not correspond to a classical symmetry.

Case 1.3.2.2.If b = 0, then the infinitesimals are

ξ = − 3

x + k2
, ψ1 = − 3u

(x + k2)2
− dv, ψ2 = du− 3v

(x + k2)2
.

This result can be obtained from (2.14) by means of taking the limit asb → 0.

Case 2. If η = 0, then we can take, without loss of generality,ξ = 1. In this case, it is found that:
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Case 2.1.For arbitraryλ andω, the unique admitted group is given by

ξ = 1, η = 0, ψ1 = k1v, ψ2 = −k1u,

which means the invariance of (1.2) with respect to translations inx and rotations in(u, v).

Case 2.2.Forλ(z) = a logz+ b, ω(z) = c logz+ d, we have

ψ1(x, t, u, v) = ψ11(t)u+ ψ12(t)v, ψ2(x, t, u, v) = −ψ12(t)u+ ψ11(t)v, (2.15)

whereψ11(t), ψ12(t) must satisfy

ψ̇11 − aψ11 = 0, ψ̇12 + cψ11 = 0.

Therefore,

ψ1 = k1 eatu−
[

ck1

a
(eat − 1)+ k2

]
v, ψ2 =

[
ck1

a
(eat − 1)+ k2

]
u+ k1 eatv. (2.16)

Whena = 0 infinitesimalsψ1 andψ2 can be obtained by taking the limit asa → 0 in (2.16).

3. Symmetry reductions

In this section, we investigate the reduced system of ODEs that corresponds to each one of the symmetries found
in Section 2. The reductions that can be derived through the groups of translations and rotations can be obtained as
in [1].

The onlyλ–ω systems which admit nontrivial symmetries are of the form

λ(z) = aδ(z)+ b, ω(z) = cδ(z)+ d,

whereδ(z) stands forδ(z) = zn or δ(z) = logz. These two cases will be studied separately.
Before doing this, and for further computations, it is convenient to change from variables(u, v) to polar variables

(z, φ), where

u = z cosφ, v = z sinφ.

In terms of variables(z, φ), (1.2) can be written as

zt = zxx − zφ2
x + zλ(z), φt = φxx + 2

z
zxφx + ω(z). (3.1)

We may setd = 0 without loss of generality. In fact, definingϕ = φ − dt, then (3.1) is transformed to

zt = zxx − zϕ2
x + azδ(z)+ bz, ϕt = ϕxx + 2

z
zxϕx + cδ(z). (3.2)

The symmetries we have found in Section 2, that are written in terms of variables(u, v), must be then written in
polar variables. The similarity variables can be obtained solving the invariant surface condition or, equivalently,
solving the characteristic system

dx

dt
= ξ,

dz2

dt
= 2uψ1 + 2vψ2,

dϕ

dt
= − v

u2 + v2
ψ1 + u

u2 + v2
ψ2. (3.3)
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Reduction 1.2. η = 1, δ(z) = logz. Let us first suppose thata 6= 0. From (2.7) and (3.3), we obtain that similarity
variablesw,χ andk are given by

w = x − k1t, z = exp

[
k2

a
(eat − 1)

]
χ(w), ϕ = ck2

a2
(eat − at − 1)− k3t + k(w),

and the ODE reduced system takes the form

k2χ − k1χ
′ + χζ 2 − χ ′′ − aχ logχ − bχ = 0, k3χ + k1χζ + χζ ′ − 2χ ′ζ + cχ logχ = 0,

whereζ = k′ and ′ stands for d/dw. If a = 0 similarity variables and solutions can be obtained from the above
expressions by taking limit asa → 0.

Reduction 1.3.1.η = 1, δ(z) = zn, b = 0. From (2.11) and (3.3), we can deduce that the classical symmetry
reduction is given by

w = x − x0√
T − t

, z = (T − t)−1/nχ(w), ϕ = −k1 log(T − t)+ k(w), (3.4)

and the reduced system is

χ ′′ − 1

2
wχ ′ − 1

n
χ − χζ 2 + aχn+1 = 0, ζ ′ − 1

2
wζ + 2

χ
χ ′ζ + cχn − k1 = 0, (3.5)

whereζ and′ are defined as above.

Reduction 1.3.2.η = 1, δ(z) = z2. From (2.14) and (3.3), we obtain the nonclassical symmetry reduction

w = t + 2

3b
log

[
cosh

[√
b

2
(x + k2)

]]
, z =

√
2

b
tanh

[√
b

2
(x + k2)

]
χ(w), ϕ = k(w), (3.6)

and the reduced system is

9b2χ + 18aχ3 − 9bχ ′ − 2χζ 2 + 2χ ′′ = 0, −9bχζ + 18cχ3 + 2χζ ′ + 4χ ′ζ = 0, (3.7)

whereζ and′ are defined as above.
We point out that (3.6) and (3.7) stand forb = 0, by means of taking the limit asb → 0. In fact, whenb = 0, the

nonclassical symmetry reduction is given by

w = t + 1
6(x + k2)

2, z = (x + k2)χ(w), ϕ = k(w),

and the reduced system is

χζ 2 − χ ′′ − 9aχ3 = 0, χζ ′ + 2χ ′ζ + 9cχ3 = 0.

This system coincides with (3.7) ifb = 0.

Reduction 2.1. η = 0, δ(z) = logz. From (2.16) and (3.3), it follows that the symmetry reduction is given by

z = exp(k1 eatx)χ(t), ϕ =
[

ck1

a
(eat − 1)+ k2

]
x + k(t).
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The reduced system is a nonhomogeneous linear system for logχ andk whose solutions are

logχ = −c
2k2

1

a3
(e2at − 2ateat − 1)− 2ck1k2

a2
(ateat − eat + 1)+ k2

1

a
eat(eat − 1)+ b − k2

2

a
(eat − 1)+ k3 eat,

k = c3k2
1

2a4
(e2at − 4ateat + 4 eat − 2at − 5)− c2k1k

2
2

a3
(2ateat − 4 eat + 2at + 4)

+3ck2
1

2a2
(e2at − 2 eat + 1)+ bc− ck2

2

a2
(eat − 1 − at)+ 2k1k2 + ck3

a
(eat − 1)+ k4.

We finally remark that ifa = 0 similarity variables and solutions can be obtained from the above expressions by
taking limit asa → 0.

4. The caseδ(z) = z2δ(z) = z2δ(z) = z2: new reductions and solutions

As it was pointed out in Section 1, theλ–ω systems that have drawn the most interest are those that, in absence
of diffusion, possess a stable limit cycle. In order to find the functional forms ofλ andω corresponding to these
systems we write the diffusionless dynamical system associated to (1.2) in terms of the polar coordinates in the
phase space(z, φ):

dz

dt
= zλ(z),

dφ

dt
= ω(z).

It is clear that this system exhibits a stable limit cycle if and only if there existsz0 > 0 such thatλ(z0) = 0
and (d/dz)(zλ(z))|z=z0 < 0. One of the simplest examples verifying these conditions isλ(z) = az2 + b with
a < 0, b > 0. On the other hand, in the previous sections we have found that theλ–ω system corresponding to
λ(z) = az2 + b, ω(z) = cz2 + d admits a nonclassical symmetry and we have reduced the system by means of
this symmetry to the ordinary system (3.7). Since this system presents the behaviour we are interested in, we focus
our attention on this reduction, takinga < 0 andb > 0. We also observe that this system is a generalization of the
one studied by Steeb and Strampp ([21],λ = c− z2, ω = 2). In this section, we obtain a family of solutions of the
correspondingλ–ω system by means of classical symmetries of the reduced system (3.7).

System (3.7) has two fixed points:(−χ̄ , ζ̄ ) and(χ̄ , ζ̄ ), where

χ̄ = −
√

3

2

b

2|c|
√

3a +
√

9a2 + 8c2, ζ̄ = 3b

4c
(3a +

√
9a2 + 8c2), (4.1)

if c 6= 0 and

χ̄ = − b√−2a
, ζ̄ = 0, (4.2)

if c = 0. By standard methods it can be checked that two of the three eigenvalues of the linear associated system
have positive real part, consequently, these solutions are not linearly stable. The corresponding solutions of theλ–ω
system will be considered later.

4.1. Reduction to a first-order autonomous system

In order to get classical symmetries for system (3.7), we look for an infinitesimal generator of the form

v = ξ1(w, χ, ζ )
∂

∂w
+ φ1(w, χ, ζ )

∂

∂χ
+ φ2(w, χ, ζ )

∂

∂ζ
,
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that leaves invariant (3.7). The infinitesimalsξ1, φ1 andφ2 must satisfy a linear system of six determining equations.
Since looking for the general solution of this system is too difficult, we restrict ourselves to solutions of the form

ξ1(w, χ, ζ ) = ξ1(w),

φ1(w, χ, ζ ) = φ11(w)χ + φ12(w)ζ + φ13(w),

φ2(w, χ, ζ ) = φ21(w)χ + φ22(w)ζ + φ23(w).

Introducing these last expressions in the system of determining equations, it is easy to find that

ξ1(w, χ, ζ ) = k1 + k2 e−(3b/2)w, φ1(w, χ, ζ ) = 3
2bk2 e−(3b/2)wχ, φ2(w, χ, ζ ) = 3

2bk2 e−(3b/2)wζ,

wherek1 andk2 are arbitrary constants. Hence, two infinitesimal generators are

v1 = ∂

∂w
, v2 = e−(3b/2)w

[
∂

∂w
+ 3b

2
χ
∂

∂χ
+ 3b

2
ζ
∂

∂ζ

]
.

It can be checked that [v1, v2] = −3
2bv2. If we reduce (3.7) by usingv2, we get that the similarity variables are

w1 = χ e−(3b/2)w, χ1 = χ ′

χ2
− 3b

2χ
, ζ1 = ζ e−(3b/2)w. (4.3)

In terms of these variables, (3.7) is reduced to the first-order system

w3
1χ1

dχ1

dw1
+ 2w2

1χ
2
1 − ζ 2

1 + 9aw2
1 = 0, w1χ1

dζ1
dw1

+ 2χ1ζ1 + 9cw1 = 0. (4.4)

We can use symmetryv1 to transform (4.4) into an autonomous system. By writingv1 in terms of variables (4.3),
we obtain

ṽ1 = −3b

2
w1

∂

∂w1
+ 3b

2
ζ1

∂

∂ζ1
.

It can be checked thatṽ1 is a classical symmetry of (4.4). The corresponding canonical coordinates are given by

w2 = − 2

3b
logw1, χ2 = χ1, ζ2 = ζ1

w1
. (4.5)

In terms of these variables, (4.4) takes the form

dχ2

dw2
= 3b

2

2χ2
2 − ζ 2

2 + 9a

χ2
,

dζ2
dw2

= 9b

2

χ2ζ2 + 3c

χ2
. (4.6)

4.2. Sources and blow-up solutions

Using the previous reductions, we are going to obtain some families of solutions of theλ–ω system we are
considering.

System (4.6) has two stationary solutions of the form

(χ2, ζ2) = ±(χ̄2, ζ̄2)

with

χ̄2 = 1

2

√
3
√

9a2 + 8c2 − 9a, ζ̄2 = −sgn(c)

√
3
√

9a2 + 8c2 + 9a

2
,
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where the sign function is defined as usual: sgn(c) = 1 if c > 0, sgn(c) = 0 if c = 0 and sgn(c) = −1 if c < 0.
Before proceeding further, we remark that solutions corresponding to both signs± vary only in the signs ofu and
v. Therefore, it is not worth getting on our discussion with the double sign. From now on we take the solution
(χ2, ζ2) = (χ̄2, ζ̄2). This solution is transformed by (4.5) into a solution of (4.4):

χ1 = χ̄2, ζ1 = ζ̄2w1.

In order to get the corresponding solution of (3.7), we need to solve the second equation in (4.3) forχ , i.e.

χ ′

χ2
− 3b

2χ
= χ̄2 (4.7)

with an initial condition that we take as

χ(0) = χ0 with χ0 6= 0. (4.8)

By standard methods we obtain that the solution of (4.7) and (4.8) is given by

χ(w) =
[(

1

χ0
− 1

χ̄

)
e−(3b/2)w + 1

χ̄

]−1

, (4.9)

which exhibits different behaviours depending onχ0. It is easily found that
1. If χ0 = χ̄ , (4.9) is the constant function

χ(w) = χ̄

corresponding to (4.1) or (4.2).
2. If χ0 > 0, (4.9) becomes infinity at

w = w̄ = 2

3b
log

(
1 − χ̄

χ0

)
> 0.

3. If χ̄ < χ0 < 0, (4.9) is a bounded solution satisfying

lim
w→∞χ(w) = χ̄ . (4.10)

4. If χ0 < χ̄ , (4.9) remains bounded in [0,∞) and verifies (4.10). On the other hand, by (4.3), we also have

ζ = ζ̄2

[(
1

χ0
− 1

χ̄

)
e−(3b/2)w + 1

χ̄

]−1

,

and sinceζ = k′

k = 2

3b
ζ̄ log

∣∣∣∣
(

1

χ0
− 1

χ̄

)
e−(3b/2)w + 1

χ̄

∣∣∣∣+ ζ̄w + C, (4.11)

whereC is an arbitrary constant.
Now, we will analyse the associated solutions of theλ–ω system we are studying. Let us observe that condition

(4.8) means that we have fixed the solution of (1.2) on a curve:

z =
√

2

b
tanh

[√
b

2
(x − x0)

]
χ0 when t + 2

3b
log

[
cosh

[√
b

2
(x − x0)

]]
= 0,

where we have takenk2 = −x0 in (3.6). Hence, the solutions we are studying are solutions of (1.2) with boundary
conditions.
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We will consider four cases, depending on the values ofχ0:
1. χ0 = χ̄ , in this case from (4.9) and (4.11), we have

χ(w) = χ̄ , k(w) = ζ̄w +D (4.12)

with D = C − (2ζ̄ /3b) log |χ̄ |. Coming back to (3.6) withk2 = −x0 and taking into account thatφ = ϕ + dt,
from (4.12) we get

z =
√

2

b
tanh

[√
b

2
(x − x0)

]
χ̄ , (4.13)

φ = 2

3b
ζ̄ log

[
cosh

[√
b

2
(x − x0)

]]
+ (ζ̄ + d)t +D. (4.14)

System (3.2), withδ(z) = z2, can be written in complex form as

At = 1xA+ (a + ci)|A|2A+ bA, (4.15)

whereA = u + iv. This is a particular case of the complex Ginzburg–Landau equation. For this equation, van
Saarloos and Hohenberg [23] have studied several classes of uniformly translating solutions, i.e. solutions of the
form

A = α(ξ)ei(ψ(ξ)−ωt), (4.16)

whereξ = x − Vt andV,ω are arbitrary constants. By making the specific ansatz

A = a2

(
1 + z e−2k0ξ

1 + e−2k0ξ

)
exp

(
i

(
q+
2
ξ + q−

2k0
log coshk0ξ − ωt + E

))
, (4.17)

wherea2, k0, q+, q− are real andz is complex, they have proved that, for some values of the constants, (4.17) is
a solution of (4.15). Our solution (4.13) and (4.14), withx0 = 0, is a particular case of (4.17): it corresponds to
a2 = √

2/bχ̄, z = −1, V = 0, q+ = 0, k0 = √
b/2, q− = √

8/9bζ̄ andw = −ζ̄ .
In order to classify our solution (4.13) and (4.14), among the different classes of coherent structures studied

in [23], we must put it in the corresponding settings. If we define the variablesq(ξ) = dφ/dξ andk(ξ) =
(1/α)dα/dξ , insertion of (4.16) into (4.15) leads to the system

dα

dξ
= kα,

dk

dξ
= −k2 − Vk+ q2 − aα2 − b,

dq

dξ
= −2qk− Vq− ω − cα2. (4.18)

The classification of coherent structures: pulses, fronts and domain boundaries (sources and sinks) [23] can be
established in terms of the fixed points of system (4.18). SinceV = 0, it is easy to check that there are four fixed
points of (4.18) whose first coordinate is not null. These are denoted byN1, N2, N3 andN4 and their coordinates
appear in the second column of Table 1. These nonlinear fixed pointsNi = (αi, qi, ki), correspond to travelling
wave solutions of (4.15) of the formA(x, t) = αi e−ωt i+qixt. The linear stability character ofNi , for 1 ≤ i ≤ 4,
can be obtained by linearization of (4.18) aboutNi and by determining the sign of the real parts of the roots of
the corresponding secular equationsλ3 + ai1λ

2 + ai2λ+ ai3 = 0; these signs appear in Table 1.
We will now analyse the relationship between these fixed points and our solution (4.13) and (4.14). For this

solution

α(x) =
√

2

b
tanh

(√
b

2
x

)
χ̄ , q(x) =

√
2

3
√
b
ζ̄ tanh

(√
b

2
x

)
, (4.19)
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Table 1

Fixed points Coordinates Real parts of roots

c > 0 c < 0

N1

(
+
√

−ω
c
,+
√
(b − a

c
ω),0

)
(+,+,−) (+,−,−)

N2

(
+
√

−ω
c
,−
√
(b − a

c
ω),0

)
(+,−,−) (+,+,−)

N3

(
−
√

−ω
c
,+
√
(b − a

c
ω),0

)
(+,+,−) (+,−,−)

N4

(
−
√

−ω
c
,−
√
(b − a

c
ω),0

)
(+,−,−) (+,+,−)

andk(x) = (1/α(x))α′(x). Since
√

2/bχ̄ = √−ω/c and 1
3

√
2/bζ̄ = √

b − (a/c)ω, it follows that

lim
x→−∞(a(x), q(x), k(x)) = N4, lim

x→+∞(a(x), q(x), k(x)) = N1, χ̄ > 0, c > 0,

lim
x→−∞(a(x), q(x), k(x)) = N2, lim

x→+∞(a(x), q(x), k(x)) = N3, χ̄ < 0, c > 0,

lim
x→−∞(a(x), q(x), k(x)) = N3, lim

x→+∞(a(x), q(x), k(x)) = N2, χ̄ > 0, c < 0,

lim
x→−∞(a(x), q(x), k(x)) = N1, lim

x→+∞(a(x), q(x), k(x)) = N4, χ̄ < 0, c < 0.

Therefore, our solutions (4.13) and (4.14) correspond to heteroclinic trajectories of (4.18) that connect two
nonlinear fixed points and, hence, they correspond to domain boundaries, either ifc > 0 or c < 0. The group
velocities in the corresponding frames moving with velocityV = 0 are given, according with formula (2.51)
in [23], by ṽg = 4qicα2

i . In every case, these domain boundaries have outgoing waves: the fixed points in the
left column(x → −∞) have negativevg and those in the right column(x → +∞) have positivevg for the
corresponding signs of̄χ andc. Therefore [23], these heteroclinic trajectories are sources (target).1

Now, we will analyse some asymptotic aspects of solution (4.13) and (4.14). Let us observe that

z(x) ∼ (x − x0)χ̄ as x → x0, φx(x0) = 0,

and thatz(x) andφx are bounded functions as(x−x0) → ∞. This type of solutions corresponds to a wave which
is emitted on alternating sides of the corex = x0 and periodically. This type of solutions is, for two-dimensional
λ–ω systems, the analogue to spiral waves.

Let us analyse the behaviour of solutions given by (4.13) and (4.14) nearby and faraway the core. From (4.14),
it is clear that

if

√
b

2
|x − x0| � 1 then φ ∼ 1

3

√
2

b
|x − x0|ζ̄ + (ζ̄ + d)t +D − 2ζ̄

3b
log 2,

while

if

√
b

2
|x − x0| � 1 then φ ∼ 1

6
(x − x0)

2ζ̄ + (ζ̄ + d)t +D.

1 It should be mentioned that the nomenclature for coherent structures is not uniform in the literature. We have adopted the terminology in
Ref. [23].
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Fig. 1. Source solution corresponding toa = −1, b = 2
3 , c = √

2, d = √
2, x0 = 0, χ0 = 1/

√
6.

Then, the solution of (1.2) determined by (4.13) and (4.14) can be considered as a wave with constant amplitude
and velocity when|x − x0| � 1. This wave has opposed velocities asx → ±∞. If we denote these velocities
by v± then

v± = ∓3

√
b

2

(
1 + d

ζ̄

)
,

and then the role ofx0 varies depending on the sign of the parameters. This solution, ford/ζ̄ < −1, is plotted
in Fig. 1.

If χ0 6= χ̄ , using again (3.6), we have

z(x, t)=
√

2

b

sinh [
√
b/2(x − x0)]

(1/χ0 − 1/χ̄)e−(3b/2)t + (1/χ̄) cosh [
√
b/2(x − x0)]

,

φ(x, t)= 2

3b
ζ̄ log

∣∣∣∣∣
(

1

χ0
− 1

χ̄

)
e−(3b/2)t + 1

χ̄
cosh

[√
b

2
(x − x0)

]∣∣∣∣∣+ (ζ̄ + d)t + C.

2. If χ0 > 0, the solution blows up at any fixed point at a finite time given by

t = 2

3b
log

1 − χ̄/χ0

cosh [
√
b/2(x − x0)]

, (4.20)

thus, the blow-up propagates throughx0 with a non-constant velocity

v = −3
√
b/2(1 − χ̄/χ0)e−(3b/2)t

[1 + (1 − χ̄/χ0)2e−3bt]1/2
.

We plot the amplitude of this solution in Fig. 2, the blow-up on the curve (4.20) can be clearly appreciated.
Let us observe that if we taket = eiψτ in Eq. (3.60) of [23] and assumeτ is now the temporal variable, a family

of solutions describing blow-up processes can be found. However, this behaviour is not explicitly mentioned in
[23] and the relationship between this family of solutions and our blow-up solutions is not clear.

3. If χ̄ < χ0 < 0, the solution is bounded inx andt and ast → ∞ behaves as the source (4.13) and (4.14). This
solution is plotted in Fig. 3.

4. If χ0 < χ̄ , for t > 0, the solution remains bounded and it also approaches to the source ast → ∞.
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Fig. 2. Amplitude of a solution exhibiting a blow-up process. The corresponding parameters area = −1, b = 2
3 , c = √

2, d = √
2,

x0 = 0, χ0 = 1.

Fig. 3. Bounded solution behaving as a source ast → ∞. The corresponding parameters area = −1, b = 2
3 , c = √

2, d = √
2, x0 = 0,

χ0 = − 1
100.

5. Conclusions

In this work, we have classified the one-dimensionalλ–ω systems which admit classical and nonclassical sym-
metries and we have reduced these systems to ODE systems by using some of these symmetries. Besides, we have
been able to reduce the order of one of these systems (the one obtained by using a nonclassical symmetry) and in
this way we have got some solutions of the system. Consequently, some new solutions of the correspondingλ–ω
system have been found. As far as we know, some of these theoretical results are new.

Finally, we have devoted ourselves to get the dynamical interpretation of the solutions obtained in this symmetry
reduction context. In this way, we have found
1. Special solutions consisting in sources with core in an arbitrary pointx = x0. Depending on the sign of the

asymptotic velocities the behaviour of the core varies, and both cases are not equivalent due to that (1.2) is not
invariant under temporal inversion. The asymptotic behaviour nearby and faraway the core is analysed.

2. A family of solutions which present a finite time blow-up process propagating through a fixed pointx = x0.
3. A family of solutions which behaves asymptotically (ast → ∞) as the sources.
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