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In this paper we find some new classes of solutions for a family of Cahn-Hilliard 
equations. For some equations of this family several solutions have already been 
obtained by using several methods: the Lie method, the direct method and the 
singular manifold method. We make full analysis of the symmetry reductions of the 
family of Cahn-Hilliard equations by using the classical Lie method of infinitesimals 
and the nonclassical method. New classes of nonlocal symmetries for the family of 
Cahn-Hilliard equations are obtained. These nonclassical potential symmetries are 
realized as local nonclassical symmetries of a related integrated equation. For an 
equation of the Cahn-Hilliard family with the conditional Painlevk condition, we also 
compare symmetry reductions by using the nonclassical method with those obtained 
elsewhere by the singular manifold method. For this equation, we obtain nonclassical 
symmetries that reduce the original equation to ordinary differential equations with 
the Painlevk property. Such symmetries have not been derived elsewhere neither by 
the direct method nor by the singular manifold method. 

1. Introduction 

The CahnmmHilliard equation was introduced to study phase separation in binary alloy 
glasses and polymers [4] and it is a good approach to spinodal decomposition. Based 
on the numerical version of the Fourier transformation approach to the nonlinear Cahn 
Hilliard diffusion equation, computer simulations of the spinodal decomposition for a 
model alloy were carried out by Liu and Haasen [14]. The Cahn-Hilliard diffusion equa- 
tion is also an equation that serves as a model for many problems in physical chemistry, 
developmental biology [2], and population movement [8]. The existence of a weak solution 
for the Cahn--Hilliard equation with degenerate mobility was proved in [9]. 

The Cahn Hilliard flux equation describing diffusion for the decomposition of a one- 
dimensional binary solution can be written as 
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which is appropiate for the cases in which the motion is isotropic. Here u is the solute 
concentration at point 2, t is the time, f’(u) is the interdiffusion coefficient of solute, 
which is concentration dependent, lc/2 is the gradient energy coefficient describing the 
contribution of the diffuse interface to the decomposition. In [S] bifurcations of the 
equilibrium to nonuniform states have been discussed for f(u) = Da + 02~’ and in [15] 
several nonlinear results were derived. 

Although the direct method is found to be more powerful than the Lie classical 
method [5], similarity reductions for the Cahn-Hilliard equation (l), with f(u) = u and 
f(u) = u2, have been obtained in [17] by using classical Lie symmetries as well as the 
direct method. The direct method did not yield any reduction that could not be obtained 
by Lie classical symmetries. 

In this paper we solve a complete group classification problem for Eq. (1) by study- 
ing those diffusion coefficients f(u) which admit the classical symmetry group. Both the 
symmetry group and the diffusion coefficients will be found through consistent applica- 
tion of the Lie-group formalism. The fundamental basis of the technique is that, when 
a differential equation is invariant under a Lie group of transformations, a reduction 
transformation exists. 

Motivated by the fact that symmetry reductions for many partial differential equa- 
tions (PDE’s) are known that are not obtained by using the classical Lie group method, 
there have been several generalizations of the classical Lie group method for symmetry 
reductions. Clarkson and Kruskal [5] have developed a direct method for deriving sim- 
ilarity reductions of PDE’s; this method does not employ group theory. Bluman and 
Cole [3] developed a nonclassical method to study the symmetry reductions of the heat 
equation. Recently, the family of Cahn-Hillard equations (1) has raised a great interest 
because of an apparent contradiction between the scope of the singular manifold method 
(SMM) and the nonclassical symmetry reductions. 

In [lo] Estevez and Gordoa developed a method for identifying the nonclassical sym- 
metries of PDE’s using the SMM, based on the Painleve property (PP), as a tool. They 
studied six different equations, of which four were equations with the PP while the other 
two were equations with only the conditional PP. The obtained results allowed them to 
propose the following conjecture: “The singular manifold method allows us to identify 
nonclassical symmetries that reduce the original equation to an ODE with the Painlevk 
property”. 

The combination of this statement with the Ablowitz, Ramani and Segur conjecture 
[I] means that for equations with the PP, the SMM should identify all nonclassical 
symmetries. Nevertheless, for equations with the conditional PP, the SMM is only able to 
identify the symmetries for which the associated reduced ODE’s are of the Painleve type. 
Recently Tanriver and Choudhury [18] have applied this method to a family of Cahn 
Hilliard equations and their results were in apparent contradiction with the conjecture 
proposed in [lo]. However, EstRvez and Gordoa proved in [ll] that the results of [18] 
were incomplete. 

In [ll] the authors claim that, for (1) with f(u) = U, the SMM allows them to 
determine two different symmetries and that these symmetries are the only ones in which 
the associated similarity reduction leads to an ODE of Painleve type. Nevertheless, for 
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(1) with f(u) = U, apart from the symmetries derived in [II], we have derived two GUI’ 
nonclassical symmetries for which the corresponding associated similarity reductions lead 
to two different, ODE’s of the Painlevk type. 

2. Lie symmetries and optimal systems 

To apply the classical method to (1) we require that the infinitesimal genc’rator 

v = [(x, t, u)a, + T(5, t, u)ai + 0(x: f. u)a, 12) 

leaves invariant the set of solutions of (1). This yields an overdetermined, linear system 
of equations for the infinitesimals [(z, t. u), ~(2, t, U) and 0(x, t, u). Having determined 
the infinitesimals, the symmetry variables are found by solving the invariant, surface 
condition 

@ = <U, + 7ut - d, = 0. c:o 

We consider the classical Lie group symmetry analysis of Eq. (1). The invariance 
of Eq. (1) under a Lie group of point transformations with infinitesimal gcnerat.or (2) 
kads to a set of forty determining equations for the infinitesimals <(CC, t. u). ~(.r. t, u) 
and 4(x&~). The solutions of this system depend on f(u). For f(u) arbitrary, the, 
only symmetries admitted by (1) are the group of space and time translations, which arc’ 
defined by the infinitesimal generators 

Vl = a, : v, = a, 

111 this case, we obtain travelling wave reductions 

z = 5 - At, zl= h(z), 

where h(z), after integrating once with respect to z: satisfies 

ML” - f(h)h’ - Ah = ICI. (4) 

Eq. (4) is invariant under translations and this allows us to reduce the order by OIK:. 
The only functional forms of f(u), with f(u) # con&., for which Eq. (1) has extra 
symmetries, are f(u) = (au + b)” and f(u) = deau, and these symmetries are definrd 
respectively by the following infinitesimal generators: 

V; = sdz + 40, - i(,, + b)&, v; = xdx + 4ta, - ?a,,. 
a 

For the sake of completeness, we provide the generat,ors of the nontrivial one-dimensional 
optimal system which are: 

~ for f(u) = (au + b)” the set {(K)? (Vz), (6 + V2), (Vi)}: 
for f(u) = deau, the set {WI), (Vi), WI + Vz), (V,“)>. 

Since Eq. (1). with f(u) = (au + b)” and f(u) = deau, has additional symmetries. and 
t,he reductions that correspond to VI and Vz have already been derived. we must only 
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determine the similarity variables and similarity solutions corresponding to Vi and V:, 
which are: 
- for Vi: 

z=.t-a, u zz t-&h@) - b 
a’ 

where h(z) satisfies the ODE 

/&“” - .nhnh” - fh’ - nanhn-i(/$‘)2 - -& = 0. (5) 

Eq. (5) does not admit Lie symmetries. Nevertheless, for n = 2 this equation can be 
easily integrated with respect to z, yielding 

/&“’ _ a2h2h’ _ :h = ki ; 
4 

for Vz: 

p5t-a, ‘1~ = -iln (tih(a)) , 

where h(z) satisfies the ODE 

4kh3 h”” - 4d [h2h” - 2h (h’)2] - 4kh2 [,,‘h”’ + 3 (h”)2] 

-zh3h’ + 48kh (h’)2 h” - 24k (h’)4 + 2h4 = 0. 

Eq. (6) does not admit Lie symmetries. 

(6) 

3. Nonclassical symmetries 

The basic idea of the method is that the PDE (1) is augmented with the invariance 
surface condition (3) which is associated with the vector field (2). By requiring that 
both (1) and (3) are invariant under the transformation with infinitesimal generator 
(2), one obtains an overdetermined nonlinear system of equations for the infinitesimals 
<(z, t, u), ~(2, t, u) and 4(x, t, u). To obtain nonclassical symmetries of (l), we apply the 
algorithm described in [7] for calculating the determining equations. We can distinguish 
two different cases: 
- In the case r # 0, without loss of generality, we may set ~(2, t, u) = 1. The nonclassical 
method applied to (1) gives rise only to the classical symmetries. 
- In the case r = 0, without loss of generality, we may set [ = 1 and the determining 
equation for the infinitesimal 4 is 
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We cannot solve (7) in general because of its complexity. Thus we proceed by making 
an ansatz on the form of 4(x, t, u). Due to the invariance under temporal and spat,ial 
translations, we can take to = 0 and ~0 = 0 without loss of generality, and in this way 
we have found many new solutions. In Table 1 we list the functional forms of f(u) for 
which we obtain nonclassical symmetries, the corresponding similarity solutions and the 
corresponding ODE’s. 

Table 1: Each row shows the functions, infinitesimals, similarity solutions and ODE,. 

2 
z 

u 
3t 

-g + w(t) 3tw’ + ui = 0 

3 k1u2 + kzu 
i -- 

2m 
w(t) - LE- 

2m 
4kltw’ + 2kl w + kz .= 0 

4 kluf k 
2u - 

\/-;L 
x%(t) w’ - 6klw’ = II 

2 

6 -hfl (u) + : + kg 4kTt’w’ + 2kltu~f2(w) + ku, = 0 

In Table 1 cli = (n + l)(n + 2), fl(~) = log u - 1 and fz(2c) = ICI log w - k3 
Solutions of all these similarity equations can be obtained by using elementary techniques 
in ODE’s. Consequently, we obtain exact solutions of Eq. (l), 

2ka t 

u1= - ( > n2x2 ’ 
” 

XL 

u4 = - 6klt ’ 

x2 kl 
%12=-t+z. 

X3 

u5 = 16&j-k@ ’ 
2~6 = exp 

We must point out that: 
- For i = 1, we obtain travelling waves. 
-- For i = 2: u2 is not a travelling wave reduction and it is not mwwiant under the 

scaling group. 
~ For i = 3,4,5, when j’(u) takes the functional forms of f3, f4 and fs. Eq. (1) does 

not admit any classical symmetry but translations. Consequently, these solution cannot 
be obtained by Lie classical symmetries. The scaling reduction can be used to reduce ( 1) 
to a system of ODE’s, 

For i = 6, when f(u) takes the functional form fs. Eq. (1) does not admit any 
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classical symmetries but translations, and consequently this solution is unobtainable by 
Lie classical symmetries. We point out that us is a noncharacteristic solution. Most of 
the solutions obtained are characteristic solutions, and consequently, they do not feel the 
influence of the diffuse interface. 

The complexity of the determining equation (7) appears for many r = 0 symmetries 
[6] and one advantage of the SMM is that it provides nontrivial solutions of (7). In a 
recent paper [ 111, Estevez and Gordoa have studied the Cahn-Hilliard equations (1) with 
f(u) = u and f(u) = u2 by using the SMM method. Below we compare these results 
with ours by using the nonclassical method. 

In [ll] the authors claim that besides the trivial generator 

<=O, 7 = 1, $=O (8) 

(which corresponds to a classical symmetry). For f(u) = u2 the only nontrivial infinites- 
imal generators of the nonclassical symmetries that reduce (1) to an ODE with the PP 
are 

E= 1, r=o, 4= -&2. (9) 

(9) is a particular case i = 1, with n = 2. This last infinitesimal generator yields the 
similarity reduction ui, where w(t) satisfies ODEi which satisfies the PP. 

For f(u) = u they got the following symmetry 

E= 1, r=o, (p=1” 
It:+20’ 

which corresponds to case i = 4 with ICI = 1 and kg = 0. In [II] the authors claim 
that the SMM allows to determine two different symmetries, and that these symmetries 
are the only ones in which the associated similarity reduction leads to an ODE of the 
Painleve type. 

Nevertheless, it is easy to check that the following symmetry 

E= 1, r=o, 

u3/2 

d’-5’ 

which is a particular case of i = 1 with n = 1, satisfies Eq. (7) for the nonclassical 
symmetries with r = 0 and yields the similarity reduction ui, where w(t) satisfies ODEI, 
which also satisfies the PP. 

It is also easy to check that the following symmetry, corresponding to the case i = 2, 

E= 1, r=o, +-; 

satisfies Eq.(7) for the nonclassical symmetries with r = 0 and yields the similarity 
reduction 

U = -; + w(t), 
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where w(t) satisfies the linear ODE 

3tw’ + w = 0 

which satisfies the PP. 
Therefore, for the Cahn-Hilliard equation (1) with f(u) = u, we have obtained sym- 

metry reductions by using the nonclassical method that were not obtained in [17] by the 
direct method, nor in [ll] by the SMM. 

4. Nonclassical potential symmetries 

In order to find the potential symmetries of (l), we write the equation in a conserved 
form, and the associated auxiliary system is given by 

V 5 = u ) 

vt = f(uhz - hmx . 
(10) 

If (U(X), v(z)) satisfies (lo), then U(X) s$ves the CahnHilliard equation and z)(r) solves 
an integrated CahnHilliard equation 

The basic idea for obtaining nonclassical potential symmetries is that (10) or (11) are 
augmented with the invariance surface condition 

Ev, + rut - $0 = 0. (1’2) 

By requiring that both (11) and (12) are invariant under the transformations with in- 
finitesimal generator 

x = l(T t, VP% + r(2, t, up, + cp(x, t, v)& 

one obtains an overdetermined, nonlinear system of equations for the infinitesimals 
[(x, t, v), ~(2, t, v) and cp(zr, t, u). We obtain nonclassical potential symmetries if any 
of the following conditions 

(CPLJU # 0 > ((PL1: # 0 (13) 

is satisfied. 
In the case r # 0, without loss of generality we may set ~(5, t, v) = 1. The nonclassical 

method applied to (11) gives rise only to the classical symmetries. 
In the case r = 0, without loss of generality we may set [ = 1 and we obtain the 

determining equation for the infinitesimal cp which is solved by making an ansatz on the 
form of cp(z, t, v). In this way we have found some new solutions of (11). 

In Table 2 we list the functions fi, infinitesimals (pi, similarity solutions v, and reduced 
ODE’s corresponding to each i = 1, . ,4. 
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Table 2: Each row shows the functions, infinitesimals, similarity solutions and ODEi. 

-log(v,) -!- w(t) exp -?- 
( ) 

W2 
1 

& & 
4t2w’+tw10g 2t +kw=0 

( > 

; + w(t) dw’ - 21cr = 0 

$% 
vf 3 - 
tS 

(- W(t) 3 X 
-__ 

3t+ 3 > 

v+ 
4 -?J;+lcrv, 

tt ( 2 + W(t))2 

3twl+ w = 0 

4tw’ + w - k& = 0 

By using elementary techniques in ODE’s, we obtain the following exact solutions of 
Eq. (11): 

Although by (10) we get exact solutions of (l), these solutions have been obtained in 
Section 3 by the nonclassical method. We must point out that for i = 1,2 the symmetries 
obtained do not satisfy (13), and consequently, these symmetries are not nonclassical 
potential symmetries, while for i = 3,4 the symmetries obtained do satisfy (13) and this 
means that we have nonclassical potential symmetries. 

For i = 1,2,4, when f(v,) takes the functional form j’r, f2 and f4, solutions ~1, 212 
and u4 are not group-invariant; consequently, they cannot be obtained by Lie classical 
symmetries. 

5. Concluding remarks 

In this paper we have seen a classification of symmetry reductions of a family of 
Cahn-Hilliard equations (1) using the classical Lie method of infinitesimals. We have 
found that the nonclassical method yields symmetry reductions which are unobtainable 
by using the classical Lie method. For f(u) = u and f(u) = u2, the nonclassical method 
with T = 0 leads to symmetry reductions that were not obtained in [17] by the direct 
method. 
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We have also derived a new class of nonlocal symmetries: these nonclassical potential 

symmetries are realized as local nonclassical symmetries of (11) and yield solutions of 
(11) which are not group-invariant. 

Tt is known [16] that the Cahn-Hilliard equation with f(u) = u has the conditional 
Painlevk property. We have compared the symmetry reductions of this equation by using 
the nonclassical method with those derived in [ll] by the singular manifold method. For 
this Cahn--Hilliard equation we have obtained nonclassical symmetries that reduce t,hc 
equation to ODE’s with the Painlevi: property and were not obtained in [ll] by the 
singular manifold method. 
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