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† Departamento de Matemáticas, Universidad de Cádiz, E11510, Puerto Real, Cádiz, Spain

E-mail: manuel@darboux.fis.ucm.es, luism@eucmos.sim.ucm.es and
elena.medina@uca.es

Received 12 November 1999

Abstract. The formalism of multicomponent KP hierarchies is applied to deriving efficient
dressing methods for conjugate nets. The notion of the Cauchy propagator is used for characterizing
these nets in terms of spectral data. Explicit examples in dimensions N = 2 and 3 are given. In
particular, periodic nets and Cartesian nets with a Gaussian localized deformation are exhibited.

(Some figures in this article appear in black and white in the printed version.)

1. Introduction

In recent years [5, 22, 23] it has been found that the theory of integrable systems is a useful
tool to study geometric nets x = x(u1, . . . , uM) of conjugate type in Euclidean space [1, 2].
They are characterized by the Laplace equations

∂2x

∂ui∂uj
= ∂ lnHi

∂uj

∂x

∂ui
+
∂ lnHj

∂ui

∂x

∂uj
i, j = 1, . . . ,M i �= j (1)

where Hi are the so-called Lamé coefficients. The compatibility conditions for the above
equations provide a relevant integrable model: the Darboux system

∂βik

∂uk
= βikβkj i, j and k different (2)

for the rotation coefficients βij

βji := 1

Hj

∂Hi

∂uj
.

Each solution βij of (2) determines a family of parallel conjugate nets x given by the solutions
of

∂x

∂ui
= HiXi .

Here Xi stands for the re-normalized tangent vectors of the net defined by

∂Xi

∂uj
= βijXj i �= j.
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One of the main examples of conjugate nets is the class of orthogonal systems of curvilinear
coordinates in Euclidean space [3, 16] or, equivalently, the set of flat diagonal metrics

ds2 =
M∑
i=1

H 2
i (dui)

2.

In this case the rotation coefficients and the tangent vectors are constrained by additional
differential equations [16,22]. A particularly important type of orthogonal net, the ∂-invariant
Egorov net [8, 10], is defined by supplementing (2) with the conditions

βij = βji ∂βij = ∂Hi = 0

where ∂ := ∑M
i=1

∂
∂ui

. The analysis of the integrability properties of these nets has revealed
their importance in the problem of the characterization of two-dimensional topological field
theories (TFT) and related mathematical structures as, for example, solutions of the Witten–
Dijkgraff–Verlinde–Verlinde (WDVV) equation [4, 21], Frobenius manifolds and systems of
hydrodynamic type. In this context, given a ∂-invariant Egorov net, a prominent role is played
by the deformed flat coordinates θα(z,x) of its associated Frobenius manifold [8], where xα

are the flat coordinates of the Egorov net and z is the spectral parameter of the underlying
integrability theory.

In [5,18] the formalism of multicomponent KP hierarchies was used for studying conjugate
and orthogonal nets and it was proved that βij ,Hi andXi can be written in terms of τ -functions
and wavefunctions (Baker–Akhiezer functions). Moreover, dressing transformations for these
geometric objects were given. However, no similar results for the net function x(u1, . . . , uM)

were derived. In this sense we note that, in addition to its intrinsic geometric value, the
characterization of the net function as an analytic object in the framework of the KP theory is
a basic step in order to design an efficient dressing method for solving (1).

This paper deals with the description of the net function in the KP theory and the
formulation of the corresponding dressing method. These questions are considered within
the context of the Grassmannian formalism of the KP hierarchies [19]. A basic ingredient of
our study is the use of a Cauchy propagator �(z, z′) [13, 20]

∂�

∂z̄
(z, z′) = πδ(z− z′)

satisfying appropriate boundary conditions. We note [14] that the notion of the Cauchy
propagator is useful for calculating the Virasoro action on the algebraic-geometric data of KP
solutions as well as the action of vertex operators on the corresponding τ -functions. To describe
our main results, we recall [5] that given a KP wavefunctionψ(z) and its adjoint functionψ∗(z),
the corresponding solution βij of (2) admits tangent vectors and Lamé coefficients given by
(Xi )j := Xij and Hi = Hli , (l = 1, . . . , N), where

X(u) :=
∫

C

ψ(z,u)N(z) d2z

and

H(u) :=
∫

C

M(z)ψ∗(z,u) d2z.

Here N(z) and M(z) are appropriate N × N matrix distributions. In this paper it is proved
that the corresponding net functions are the rows of

x(u) :=
∫

C×C

M(z′)�(z, z′)N(z) d2z d2z′ + x0
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where x0 is an arbitrary constant matrix. From this characterization we are able to formulate
a dressing method for Cauchy propagators based on the use of ∂̄-equations. Furthermore, we
obtain a closed formula for the dressing transformations corresponding to the separable case of
the ∂̄-equation involved. The outcome is a dressing method for conjugate nets which constitutes
a spectral version of the classical fundamental transformation [7,11,12,15]. Several interesting
classes of explicit conjugate nets obtained by this method are exhibited. In particular, we
concentrate on periodic and Hermite nets. The former are trigonometric nets which exhibit a
periodic behaviour, while the latter represent a Cartesian net with a localized dislocation.

We must note that in [7] an alternative ∂̄ approach to the geometrical transformations of
conjugate nets and quadrilateral lattices was given. It should also be stressed that a detailed
study of the Cauchy propagator for quadrilateral lattices and a general ∂̄ reduction theory which
includes, as distinguished examples, the continuous and discrete orthogonal, symmetric, d-
invariant and Egorov cases and the construction scheme for the separable solutions of the above
geometric objects can be found in [6].

The second paper of this series will be concerned with the theories of orthogonal and
∂-invariant Egorov nets [3, 8, 9, 16]. In particular, the following questions will be dealt with:

(i) The reductions of the dressing method.
(ii) The generation of relevant classes of orthogonal nets.

(iii) The use of Cauchy propagators and dressing methods for analysing deformed flat
coordinates θα in the theory of ∂-invariant Egorov nets and the free-energy functions
of the corresponding TFT.

2. KP theory of conjugate nets

2.1. Multicomponent KP hierarchies

The N -component KP hierarchy can be introduced from the consideration of a certain family
of flows in an infinite-dimensional Grassmannian [19]. To describe this process we denote by
D(r) and γ (r) the disc {z ∈ C : |z| � r} and its boundary {z ∈ C : |z| = r}, respectively, and
introduce the set Hγ(r) of Laurent series

∞∑
n=−∞

anz
n

with coefficients an in the algebraMN(C) ofN ×N complex matrices, which converge on the
circle γ (r). Next, two different Grassmannians Grγ (r) and Gr∗γ (r) are required.

Definition 1. The elements of Grγ (r) are the subsets W of Hγ(r) such that:

(1) W is a MN(C) left-module.
(2) The projection operator P+ : W −→ H +

γ (r) from W into H +
γ (r) = {w ∈ Hγ(r) : w =∑∞

n=0 anz
n} is a bijective map.

Similarly, Gr∗
γ (r) is given by the subsets V of Hγ such that:

(1*) V is a MN(C) right-module.
(2*) The projection operator P+ : V −→ H +

γ (r) is a bijective map.

There is a map

Grγ (r)
∗−→ Gr∗γ (r) W �→W ∗
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which associates to each W ∈ Grγ (r) the element W ∗ ∈ Gr∗γ (r) given by those v ∈ Hγ(r) such
that ∫

γ (r)

w(z)v(z) dz = 0 ∀w ∈ W. (3)

One of the most useful ways for characterizing elements in the Grassmannians is the
∂̄-method. It starts from an appropriate N × N matrix distribution R(z, z′) with support in
D(r)×D(r), and then determinesW ∈ Grγ (r) as the set of restrictions to γ (r) of the solutions
w = w(z) of the equation

∂w

∂z̄
(z) =

∫
D(r)

w(z′)R(z′, z) d2z′.

In this case the corresponding element W ∗ ∈ Gr∗γ (r) is determined by the solutions of

∂v

∂z̄
(z) = −

∫
D(r)

R(z, z′)v(z′) d2z′.

The KP flows on the Grassmannians are implemented by multiplication operators as
follows.

Definition 2. Given W ∈ Grγ (r) and V ∈ Gr∗
γ (r) their KP flows are defined by

W(u) = Wψ−1
0 (z,u)

V (u) = ψ0(z,u)V

where u := (u1,u2, . . . ,uN) denotes N infinite sequences ui := (ui,1, ui,2, . . .) ∈ C
∞, and

ψ0(z,u) := exp

[∑
n�1

zn
( N∑

i=1

ui,nEi

)]
(Ei)jk = δij δik.

In order to prevent ψ0(z,u) from having singularities as a function of z in D(r), we will
assume henceforth that the domain of each variable ui is

U(r) =
{
a = (a1, a2, . . .) ∈ C

∞ :
∑
n�1

znan converges for z ∈ D(r)

}
.

From this assumption it follows that the subsets of the Grassmannians characterized by the
∂̄-method are invariant under the action of the KP flows. Thus, if W ∈ Grγ (r) is determined
by a kernel R(z, z′), then W(u) is in turn determined by

R(z, z′,u) := ψ0(z,u)R(z, z
′)ψ0(z

′,u)−1.

Definition 3. Given W ∈ Grγ (r) we define its associated KP wavefunction (Baker–Akhiezer
function) as the unique function ψ = ψ(z,u) such that it admits a convergent expansion of
the form

ψ(z,u) = χ(z,u)ψ0(z,u) χ(z,u) = IN +
∑
n�1

an(u)

zn

u ∈ U(r)N z ∈ γ (r).

Furthermore, we define the adjoint KP wavefunction associated to W as the unique function
ψ∗ = ψ∗(z,u), with an expansion of the form

ψ∗(z,u) = ψ0(z,u)
−1χ∗(z,u) χ∗(z,u) = IN +

∑
n�1

a∗
n(u)

zn

u ∈ U(r)N z ∈ γ (r).
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In the above definition we denote by IN := ∑N
i=1 Ei the identity matrix in MN(C). We

notice that for all u ∈ U(r)N , both χ(z,u) and χ∗(z,u) are analytic functions of z on the
domain C\D(r).

From (3) we deduce that these wavefunctions satisfy the bilinear identity∫
γ (r)

ψ(z,u)ψ∗(z,u′) dz = 0. (4)

A handful of relations can be derived by using this identity, in particular if we set u = u′ we
get a∗

1 = −a1.
A very helpful notion for deriving differential identities in KP hierarchies is the concept

of normalization.

Definition 4. Let w = w(z,u) be a function such that its restriction to γ (r) satisfies either

w(·,u) ∈ W(u) ∀u ∈ U(r)N

or

w(·,u) ∈ W ∗(u) ∀u ∈ U(r)N .
Then, its normalization is defined by

N[w(z,u)] := P+w(z,u).

From definition 1 it is clear thatw(·,u) ∈ W(u) orw(·,u) ∈ W ∗(u) are uniquely determined
by their normalization. In particular χ(z,u) and χ∗(z,u) of definition 3 are the functions with
unit normalization in W(u) and W ∗(u), respectively. Thus, by taking into account that

N

[
∂ψ

∂ui,n
ψ−1

0

]
= znEi + O(zn−1)

N[(∂nψ)ψ−1
0 ] = zn + O(zn−1) ∂ :=

N∑
i=1

∂

∂ui,1

and by identifying elements with the same normalization, we get the KP hierarchy of linear
equations

∂ψ

∂ui,n
= Pi,n(u, ∂)ψ i = 1, . . . , N, n � 1 (5)

where Pi,n(u, ∂) is a family of linear differential operators in ∂ .
The simplest members of the hierarchy (5) are

∂ψ

∂ui,1
= Ei∂ψ + [a1, Ei]ψ i = 1, . . . , N.

Thus, we get

∂ψi

∂uk
= βikψk i �= k (6)

with

ψi := (ψi1, . . . , ψiN) uk := uk,1 β = a1.

In a similar fashion, one finds

∂ψ∗
j

∂uk
= ψ∗

kβkj j �= k (7)
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where

ψ∗
i :=


 ψ∗

1i
...

ψ∗
Ni


 .

The compatibility of either (6) or (7) implies the Darboux system of equations for a conjugate
net (2). Moreover, (6) and (7) show that for a given set of rotation coefficients βij there is
an associated family of conjugate nets with tangent vectors and Lamé coefficients given by
(Xi )j := Xij and Hi = Hli , (l = 1, . . . , N), where

X(u) :=
∫

C

ψ(z,u)N(z) d2z

and

H(u) :=
∫

C

M(z)ψ∗(z,u) d2z.

Here N(z) and M(z) are appropriate N ×N matrix distributions.

2.2. The Cauchy propagator

Definition 5. Let W be an element of Grγ (r), we define its associated Cauchy propagator as
the Green function � = �(z, z′,u) of the ∂̄-operator

∂�

∂z̄
(z, z′,u) = πδ(z− z′) z, z′ ∈ C\D(r) u ∈ U(∞)N

satisfying the following boundary conditions:

(1) For every fixed u ∈ U(∞)N and z′ ∈ C\D(r) the restriction of � to γ (r), as a function
of z, is an element of W .

(2) As z −→ ∞
�(z, z′,u) = O

(
1

z

)
ψ0(z,u).

Observe that there cannot be two different Cauchy propagators associated to a given
W ∈ Grγ (r). Indeed, if there were two, let us say �1 and �2, then ( := (�1 −�2)ψ

−1
0 would

be an analytic function of z on C\D(r), such that

lim
z−→∞((z, z′,u) = 0.

Thus, its restriction to γ (r), as a function of z, would satisfy

N[((z, z′,u)] = 0.

Therefore, as this restriction belongs to W(u), we conclude that ((z, z′,u) vanishes, which
proves the uniqueness of the Cauchy propagator.

The next theorem shows how the Cauchy propagator can be expressed in terms of the KP
wavefunctions. The following notational convention is used:

[z] = ([z]1, . . . , [z]N) [z]i =
(

1

z
, . . . ,

1

nzn
, . . .

)
.

Theorem 1. The Cauchy propagator associated to an element W of Grγ (r) can be written in
terms of the KP wavefunctions ψ and ψ∗ as

�(z, z′,u) =




− 1

z′ψ
∗(z′,u)ψ(z,u + [z′]) for |z| � |z′|

1

z
ψ∗(z′,u− [z])ψ(z,u) for |z′| � |z|.



Dressing methods for geometric nets: I. Conjugate nets 2877

Proof. Let us first show that

�(z, z′,u) = IN

z− z′ + O(1) z −→ z′. (8)

To do that, we note the following basic relation:

ψ0(z,u + [z′]) = z′

z′ − z
ψ0(z,u) |z′| � |z|

where for |z| = |z′| we define

ψ0(z,u + [z′]) := lim
ε−→0+

ψ0(z,u + [(1 + ε)z′]).

Hence, by setting u → u + [z′] and u′ → u in the bilinear identity (4) and by calculating the
residues of the integrand at z = z′ and ∞ one gets

res(ψ(z,u + [z′]))z=z′ψ∗(z′,u) = −z′IN . (9)

If we instead set u′ → u− [z′] and u ∈ U(∞)N , we obtain

ψ(z′,u)res(ψ∗(z,u− [z′]))z=z′ = −z′IN . (10)

These relations imply at once that

−res

(
1

z′ψ
∗(z′,u)ψ(z,u + [z′])

)
z=z′

= res

(
1

z
ψ∗(z′,u− [z])ψ(z,u)

)
z=z′

= IN .

Therefore, (8) follows.
Let us next prove that for |z| = |z′|

− 1

z′ψ
∗(z′,u)ψ(z,u + [z′]) = 1

z
ψ∗(z′,u− [z])ψ(z,u). (11)

From (9) and (10) we deduce that

zres(ψ∗(z′,u)ψ(z,u + [z′]))z=z′ = z′res(ψ∗(z′,u− [z])ψ(z,u))z′=z

or, equivalently

ψ0(z
′,u)−1χ∗(z′,u)χ(z′,u + [z′])ψ0(z

′,u) = ψ0(z,u)
−1χ∗(z,u− [z])χ(z,u)ψ0(z,u).

Hence, in the limit z −→ ∞ we find

χ∗(z′,u)χ(z′,u + [z′]) = IN . (12)

If we set now u → u + [z′] and u′ → u− [z′′] in (4), then by calculating the residues of the
integrand at z = z′ and z = z′′ we get

χ(z′,u + [z′])χ∗(z′,u− [z′′]) = χ(z′′,u + [z′])χ∗(z′′,u− [z′′]). (13)

By using (12) we can rewrite (13) as

χ∗(z′,u− [z′′])χ(z′′,u) = χ∗(z′,u)χ(z′′,u + [z′]).

This identity immediately leads to (11). The rest of the proof is trivial. �

We now proceed to derive the main property of the Cauchy propagator in connection with
the theory of conjugate nets.

Theorem 2. The entries of the Cauchy propagator satisfy the differential equation

∂�jk

∂ui
(z, z′,u) = ψ∗

ji(z
′,u)ψik(z,u). (14)
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r

r

Figure 1. The two discs D(r) and D(r̃).

Proof. For a given z′ ∈ C\D(r) both members of (14) are analytic functions of z on C\D(r).
Furthermore, as z −→ ∞
∂�

∂ui
(z, z′,u) = ∂

∂ui

[
1

z
ψ∗(z′,u− [z])ψ(z,u)

]
=
[
ψ∗(z′,u)Ei + O

(
1

z

)]
ψ0(z,u).

As ∂�
∂ui
ψ−1

0 is analytic on C\D(r), its Laurent series expansion near z = ∞ can be extended
to γ (r). Hence

N

[
∂�

∂ui
ψ−1

0

]
= ψ∗(z′,u)Ei

and therefore
∂�

∂ui
(z, z′,u) = ψ∗(z′,u)Eiψ(z,u)

which proves (14). �
As a consequence of (14) the net function of the conjugate net with tangent vectors and

Lamé coefficients given by (Xi )j := Xij and Hi = Hli , (l = 1, . . . , N), respectively, is
given by the lth row of the matrix function

x :=
∫

C×C

M(z′)�(z, z′)N(z) d2z d2z′ + x0 (15)

where x0 is an arbitrary constant matrix.

2.3. Dressing method for conjugate nets

LetD(r) andD(r̃) be two disks with r < r̃ and respective boundaries γ (r) and γ (r̃). We will
denote by A the circular annulus D(r̃)\D(r). See figure 1.

One can define a correspondence between Grassmannians as in the following definition.

Definition 6. Given a matrix distribution R = R(z, z′) with support in A × A, we define an
associated dressing transformation

Grγ (r) −→ Grγ (r̃) W �→ W̃ (16)

where for every W ∈ Grγ (r), the corresponding W̃ ∈ Grγ (r̃) is defined as the set of boundary
values on γ (r̃) of matrix functions w = w(z) defined on A such that:

(1) The restriction of w to γ (r) is an element of W .
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(2) The following ∂̄-equation on A is satisfied:

∂w

∂z̄
(z) =

∫
A

w(z′)R(z′, z) d2z′ z ∈ A.

As we are going to show there are wide classes of data R(z, z′) for which the dressing
transformation (16) is well defined.

In view of the direct relationship between Cauchy propagators and conjugate nets, our
main concern now is to learn how they transform under (16). It is proved below that, in the
separable case, they do according to the classical geometrical fundamental transformation.

Let � and �̃ be the Cauchy propagators associated with W and W̃ , respectively. It is
clear that �̃ satisfies

∂�̃

∂z̄
(z, z′) = πδ(z− z′) +

∫
A

�̃(z′′, z′)R(z′′, z) d2z′′ |z| > r |z′| > r̃. (17)

The problem to address here is how to express �̃ in terms of �. To this end we try the ansatz

�̃(z, z′) = �(z, z′) +
∫
A

c(z′, z′′)�(z, z′′) d2z′′ (18)

for some matrix distribution c(z, z′). Introducing (18) in (17) and recalling that in C\D(r)
one has ∂̄�(z, z′) = πδ(z− z′), we conclude that

c(z′, z) = 1

π

∫
A

�̃(z′′, z′)R(z′′, z) d2z′′. (19)

Now, using (18) in (19) we get

c(z′, z) = 1

π

∫
A

�(z′′, z′)R(z′′, z) d2z′′ +
1

π

∫
A×A

c(z′, z′′′)�(z′′, z′′′)R(z′′, z) d2z′′ d2z′′′.

(20)

This integral equation for c(z, z′) can be solved by standard means when R is a separable
kernel

R(z, z′) = π

m∑
k=1

n∑
l=1

fk(z)Ck1g1(z
′) (21)

where Ck1 are N × N constant complex matrices, and fk, g1 are scalar distributions. To
describe the solution of (20) some notation conventions are helpful.

Definition 7. We shall use the following notation:

µk(z) :=
∫
A

fk(z
′)�(z′, z) d2z′ k = 1, . . . , m

ν1(z) :=
∫
A

�(z, z′)g1(z′) d2z′ 1 = 1, . . . , n

ω1k :=
∫
A×A

fk(z
′)�(z′, z′′)g1(z′′) d2z′ d2z′′ k = 1, . . . , m 1 = 1, . . . , n

as well as

µ := (µ1, . . . , µm) : A → MN×mN(C) ν :=

 ν1

...

νn


 : A → MnN×N(C)

C := (Ckl) ∈ MmN×nN(C) ω = (ω1k) ∈ MnN×mN(C).
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We also denote

λk(z) :=
∫
A

c(z, z′)µk(z′) d2z′ k = 1, . . . , m

λ := (λ1, . . . , λm) : A → MN×mN(C)

g :=

 g1

...

gn


 : A → MnN×N(C).

With these expressions at hand we prove the following theorem.

Theorem 3. In the separable case given by (21) the dressed Cauchy kernel reads

�̃(z, z′) = �(z, z′) + µ(z′)C(InN − ωC)−1ν(z). (22)

Proof. Introducing (21) in (20) we find

c(z′, z) = µ(z′)Cg(z) +
∫
A

c(z′, z′′′)µ(z′′′)Cg(z) d2z′′′ (23)

or in terms of λ

c(z′, z) = (µ(z′) + λ(z′))Cg(z). (24)

Hence, if we insert (24) in (23) and assume that all the entries in g are functionally independent,
we get

λ(z′)C = µ(z′)CωC(InN − ωC)−1

and therefore, using (24), we derive

c(z′, z) = µ(z′)C(InN + ωC(InN − ωC)−1)g(z)

= µ(z′)C(InN − ωC)−1g(z).

By inserting this expression in (18) we deduce (22). �
There are several observations in order:

(1) A similar analysis can be applied to derive the formulae for the dressed waveψ(z) function,
adjoint wavefunction ψ∗(z) and the matrix of rotation coefficients β. They turn out to be

ψ̃(z) = ψ(z) + ϕC(InN − ωC)−1ν(z)

ψ̃∗(z) = ψ∗(z) + µ(z)C(InN − ωC)−1ϕ∗

β̃ = β + ϕC(InN − ωC)−1ϕ∗

with

ϕ := (ϕ1, . . . , ϕm) ϕk =
∫
A

fk(z)ψ(z) d2z

ϕ∗ :=

ϕ∗

1
...

ϕ∗
n


 ϕ∗

1 =
∫
A

ψ∗(z)g1(z) d2z.

(2) The dressing of the parallel nets x of (15) is

x̃ := x +MC(InN − ωC)−1N

where

M =
∫

C

M(z)µ(z) d2z N =
∫

C

ν(z)N(z) d2z.
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The dressed tangent vectors and Lamé coefficients are obtained from

X̃ = X + ϕC(InN − ωC)−1N

H̃ = H +MC(InN − ωC)−1ϕ∗.

(3) All these formulae are just a generalization of the vectorial fundamental transformation [7,
11, 12, 15, 17], as it is deduced from the following description of transformed and
transformation data. We have a row of x say the lth x(l), representing a conjugate
net with tangent vectors given by the rows of X, say Xj , j = 1, . . . , N , and Lamé
coefficients given byHj := Hlj ; the points of the netx(l) satisfy ∂x(l)/∂uj = XjHj . The
transformation data are theN rows of ϕC: {ϕjC}Nj=1 and theN columns of ϕ∗: {ϕ∗

j }Nj=1.
Here InN −ωC is a potential for these transformation data: ∂/∂uj (InN −ωC) = ϕ∗

jϕjC.
Moreover, MlC and N satisfy the corresponding potential equations:

∂(MlC)

∂uj
= HjϕjC

∂N

∂uj
= ϕ∗

jXj .

The generalization provided by the dressing transformations involves one new ingredient:
the transformation data ϕj and ϕ∗

j are vectors in linear spaces with different dimensions.

3. Explicit examples of conjugate nets

This section is devoted to show the effectiveness of the dressing method we have presented.
First, we consider how the basic Cartesian net appears in relation with ψ0, i.e. with the zero
background of the KP hierarchy. This Cartesian net will be the departure point for our dressing
method: we show how the Cartesian net transforms under a general dressing transformation,
then we consider the case n = m = 1, the simplest separable kernel. In the latter case we
provide bounds for ensuring that the new coordinates are non-singular and constitute a locally
regular set of conjugate coordinates.

Despite the fact that two-dimensional nets in the plane are trivial examples of conjugate
nets, their analysis is interesting because it captures the essence of the behaviour in higher
dimensions. Perhaps the most interesting case is the three-dimensional one, where the problem
of constructing triply conjugate systems of surfaces is far from being trivial.

Among the wide families of examples of explicit conjugate nets, provided by the simplest
separable case of the dressing method, we consider two particular ones:

• Periodic conjugate nets: here the spectral input data are real combinations of Dirac
delta functions with point support over the imaginary axis and the net is periodic and
of trigonometric type. These examples can be extended, as we will show in the next paper
of this series, to functions of elliptic type or even with a more general periodic behaviour.

• Hermite conjugate nets: the spectral distributions are now of Gaussian type. In this case
the nets are expressed in terms of Gaussian, error and Hermite functions. In all cases, the
coordinate lines (in two dimensions) or surfaces (in three dimensions) are asymptotically
Cartesian. However, the most relevant aspect of a very large subset in the Hermite family of
conjugate nets, is that these nets are deformed Cartesian nets with a Gaussian perturbation
localized at the origin; i.e., in the two-dimensional case for any ε > 0 there exists a disc
D(0, δ) centred at the origin of radius δ, such that for any pair of undressed coordinate
line c and its corresponding dressed coordinate curve c̃, both nonintersecting D(0, δ), the
maximum length of the orthogonal segments to c, with ends lying on c and c̃ is less than ε.
In three dimensions a similar statement for coordinate surfaces and planes holds. Again,
this behaviour is not exclusive to these Hermite nets, and there are other families with a
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similar localization, for example, instead of Gaussian type of rational type that we shall
present elsewhere.

We should emphasize that all these examples can be ensured to be regular and singularity
free, provided the relevant parameters are small enough.

3.1. Dressing a Cartesian net

The points of a Cartesian net are of the form by
∑N

i=1 viui +v, where vi , v are constant vectors,
with {vi}Ni=1 a linear basis in R

N , the tangent vectors can be taken as Xi = vi/Hi while the
Lamé coefficients are arbitrary constants H1, . . . , HN (obviously βij = 0). A Cartesian net
can be recovered from the element H +

γ (r) of Grγ (r). In this case, one has

ψ(z) = ψ0(z) ψ∗(z) = ψ0(z)
−1 �(z, z′) = 1

z− z′ψ0(z
′)−1ψ0(z).

Thus, a set of parallel conjugate nets is given by the rows of

x =
∫

C2
M(z′)

ψ0(z
′)−1ψ0(z)

z− z′ N(z) d2z d2z′ + x0.

In particular, for M(z) = δ(z − p)A, N(z) = δ(z − q)B, with A,B ∈ MN(C) and
x0 = AB/(p − q) + x′

0, we have

x = Aψ0(p)
−1ψ0(q)− ψ0(p)

q − p
B + x′

0.

Now, by setting p, q → 0, it becomes

x(l)(u) = Alψ0(0,u)
−1 ∂ψ0

∂z
(0,u)B + x′

0 =
N∑
j=1

AljujBj + x′(l)
0

which represents a Cartesian net with Hj = Alj andXj = Bj , j = 1, . . . , N . The potentials
M and N are Aµ(0) and ν(0)B, respectively.

Proposition 1. The dressing of a Cartesian net gives a new conjugate net defined by

x̃(l) := x(l) +Alµ(0)C(InN − ωC)−1ν(0)B

X̃j := Bj + ϕjC(InN − ωC)−1ν(0)B

H̃j := Alj +Alµ(0)C(InN − ωC)−1ϕ∗
j

β̃jk = ϕjC(InN − ωC)−1ϕ∗
k.

The standard Cartesian net corresponds to the choice Al1 = . . . = AlN = 1 and B = IN . For
n = m = 1, the spectral data are the distributions f (z) and g(z). If we define

φi(ui) :=
∫
A

ezui f (z) d2z φ∗
i (ui) :=

∫
A

e−zui g(z) d2z

µi(ui) :=
∫
A

ezui

z
f (z) d2z νi(ui) := −

∫
A

e−zui

z
g(z) d2z

ωi(ui) :=
∫
A×A

e(z−z
′)ui

z− z′ f (z)g(z
′) d2z d2z′

and write C = (cij ), then the dressing transformation gives us the following proposition.
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Proposition 2. The next data characterize a conjugate net

(x̃1, . . . , x̃N ) = (u1, . . . , uN)

+(µ1, . . . , µN)C(IN − diag(ω1, . . . , ωN)C)
−1diag(ν1, . . . , νN)

X̃j := ej [IN + diag(φ1, . . . , φN)C(IN − diag(ω1, . . . , ωN)C)
−1diag(ν1, . . . , νN)]

H̃j := 1 + (µ1, . . . , µN)C(IN − diag(ω1, . . . , ωN)C)
−1et

jφ
∗
j

β̃jk = φjφ
∗
kejC(IN − diag(ω1, . . . , ωN)C)

−1et
k

where {ej }Nj=1 stands for the canonical basis in R
N .

An important issue regarding this new conjugate net is the local regularity of the change
of variables; i.e. if

∂(x̃1, . . . , x̃N )

∂(u1, . . . , uN)
�= 0.

By recalling that ∂x̃
∂uj

= H̃jX̃j , it is clear that the Jacobian is

∂(x̃1, . . . , x̃N )

∂(u1, . . . , uN)
= det(X̃1, . . . , X̃N)

N∏
j=1

Hj .

Thus, the transformation is not locally regular when either det(X̃1, . . . , X̃N) or any of the
Lamé coefficients H̃j vanishes. On the one hand

det(X̃1, . . . , X̃N) = det(IN + φ=ν)

with φ := diag(φ1, . . . , φN), = := C(IN − diag(ω1, . . . , ωN)C)
−1 and ν :=

diag(ν1, . . . , νN)). This means that only when −1 is an eigenvalue of φ=ν the determinant
vanishes. We can prevent this happening in many ways, for example, the Hirsch bound told
us that if λ is an eigenvalue then |λ| � N maxi,j (|φi=ij νj |); hence, we may conclude that if
∀i, j = 1, . . . , N |φi ||=ij ||νj | < 1/N then

det(X̃1, . . . , X̃N) �= 0.

On the other hand as H̃j = 1 +
∑N

i=1 µi=ijφ
∗
j it is obvious that if|µi ||=ij ||φ∗

j | < 1/N ,

∀i, j = 1, . . . , N , then
∏N

l=1 H̃l �= 0.
Another important aspect to be considered is the possible presence of singularities in the

net, which appear only if (IN − ωC) is not invertible; i.e. when

> := det(IN − ωC) = 1 +
N∑
k=1

(−1)k
∑
i1,...,ik

det(Ci1...ik )ωi1 . . . ωik

has a zero. Here i1, . . . ik are different numbers taken form 1, . . . , N and Ci1...ik is the matrix
built up from the i1, . . . , ik rows and columns of C. The same Hirsch argument applies an we
conclude that if |ωi ||cij | � 1/N , ∀i, j = 1, . . . , N , then > �= 0.

3.2. Examples in two and three dimensions

For the simplest (n = m = 1) bidimensional case N = 2 we have

>(u1, u2) = 1 − c11ω1(u1)− c22ω2(u2) + |C|ω1(u1)ω2(u2).
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The dressed net, renormalized tangent vectors, Lamé and rotation coefficients are given by

x̃i = ui +
1

>
[µi(cii − |C|ωj) + µjcji]νi

X̃i =
(

1 +
cii − |C|ωj

>
φiνi

)
ei +

cij

>
φiνjej

H̃i = 1 +
1

>
[µi(cii − |C|ωj) + µjcji]φ

∗
i

β̃ij = cij

>
φiφ

∗
j

with i, j cyclic. Here the matrix = is defined by

=ii = cii − |C|ωj
>

=ij = cij

>
i �= j.

In order to consider the three-dimensional case N = 3, the cofactors κij of the coefficient
cij are required. We have

> = 1 − c11ω1 − c22ω2 − c33ω3 + κ33ω1ω2 + κ22ω1ω3 + κ11ω2ω3 − |C|ω1ω2ω3

and the corresponding formulae are

x̃i = ui +
1

>

[
µi(cii − κjjωk − κkkωj + |C|ωjωk) +

∑
j �=i

µj (cji + κijωk)

]
νi

X̃i =
(

1 +
cii − κjjωk − κkkωj + |C|ωjωk

>
φiνi

)
ei +

∑
j �=i

cij + κjiωk
>

φiνjej

H̃i = 1 +
1

>

[
µi(cii − κjjωk − κkkωj + |C|ωjωk) +

∑
j �=i

µj (cji + κijωk)

]
φ∗
i

β̃ij = cij + κjiωk
>

φiφ
∗
j

with i, j, k cyclic. Here, = is

=ii = cii − κjjωk − κkkωj + |C|ωjωk
>

=ij = cij + κjiωk
>

i �= j.

3.2.1. Periodic conjugate nets of trigonometric type. An example of periodic net is provided
by the choice

f (z) = A

2
(eiαδ(z− ip) + e−iαδ(z + ip))

g(z) = B

2
(eiβδ(z− iq) + e−iβδ(z + iq))

with p, q, α, β ∈ R, so that

φj (uj ) = A cos(puj + α) φ∗
j (uj ) = B cos(quj − β)

µj (uj ) = A

p
sin(puj + α) νj (uj ) = B

q
sin(quj − β)

ωj (uj ) = AB

2

(
sin((p − q)uj + α + β)

p − q
+

sin((p + q)uj + α − β)

p + q

)
.
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Figure 2. Plot of the coordinate lines forN = 2 andC = 1
4

(
1 1

−1 1

)
, p = 2, q = 1, α = β = 0,

A = B = 1.

For N = 2 and C = 1
4

(
1 1

−1 1

)
, p = 2, q = 1, α = β = 0, A = B = 1, the net is

given by

x1(u1, u2) := u1 + 3(−12 sin(2u2) sin(u1) + (12 − 3 sin(u2)

− sin(3u2)) sin(2u1) sin(u1)){288 − 12(3 sin(u1) + sin(3u1) + 3 sin(u2)

+ sin(3u2)) + (3 sin(u1) + sin(3u1))(3 sin(u2) + sin(3u2))}−1

x2(u1, u2) := u2 + 3(12 sin(2u1) sin(u2) + (12 − 3 sin(u1)

− sin(3u1)) sin(2u2) sin(u2)){288 − 12(3 sin(u1) + sin(3u1) + 3 sin(u2)

+ sin(3u2)) + (3 sin(u1) + sin(3u1))(3 sin(u2) + sin(3u2))}−1

for which the coordinate lines are plotted in figure 2.

For N = 3 and C = 1
2

( 0 1 0
0 0 1
1 0 0

)
, p = 2, q = 1, α = β = 0, A = B = 1, the net is

given by

x1(u1, u2, u3) := u1

+3((144 sin(2u3) sin(u1) + (12 sin(2u2) + sin(2u1)(3 sin(u2)

+ sin(3u2)))(3 sin(u3) + sin(3u3)) sin(u1)){1728 − (3 sin(u1)

+ sin(3u1))(3 sin(u2) + sin(3u2))(3 sin(u3) + sin(3u3))}−1)

x2(u1, u2, u3) := u2

+3((144 sin(2u1) sin(u2) + (12 sin(2u3) + sin(2u2)(3 sin(u3)
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+ sin(3u3)))(3 sin(u1) + sin(3u1)) sin(u2)){1728 − (3 sin(u1)

+ sin(3u1))(3 sin(u2) + sin(3u2))(3 sin(u3) + sin(3u3))}−1)

x3(u1, u2, u3) := u3

+3((144 sin(2u2) sin(u3) + (12 sin(2u1) + sin(2u3)(3 sin(u1)

+ sin(3u1)))(3 sin(u2) + sin(3u2)) sin(u3)){1728 − (3 sin(u1)

+ sin(3u1))(3 sin(u2) + sin(3u2))(3 sin(u3) + sin(3u3))}−1)

and the triply conjugate surfaces ui = constant, i = 1, 2, 3, are plotted in figure 3.
A plot of a generic surface and its conjugate net of coordinate lines is shown in figure 4.
We notice that the trigonometric family has the straightforward extension

f (z) =
r∑

k=1

Ak

2
(eiαk δ(z− ipk) + e−iαk δ(z + ipk))

g(z) =
s∑
l=1

Bl

2
(eiβl δ(z− iql) + e−iβl δ(z + iql)).

3.2.2. Hermite conjugate nets. The form of the functions φ, φ∗ and µ, ν strongly suggests
the use of integral transforms of Fourier and Laplace type. The particular case we are going
to analyse here is that giving Hermite functions. The corresponding spectral distributions

f (z) = Ak/
√

2πδ

(
z + z̄

2

)
zrek

2z2/2

g(z) = Bl/
√

2πδ

(
z + z̄

2

)
zsel

2z2/2

are concentrated on the imaginary axis. Here A,B, k, l real and r, s non-negative integers. In
what follows this choice will be denoted by (r, s).

This example involves the Gaussian distribution and functions related to it: the error
function erf(u) := 2/

√
π
∫ u

0 e−t2 dt and the Hermite polynomials Hn(u) defined by

Hn(u) = eu
2 dne−u2

dun
=

[n/2]∑
k=0

(−1)k
n!

k!(n− 2k)!
(2u)n−2k.

Two useful formulae are
k√
2π

∫
R

(it)−1e− k2 t2

2 eitudt = k

√
π

2
erf

(
u√
2k

)
k√
2π

∫
R

(it)ne− k2 t2

2 eitu dt = 1

(
√

2k)n
Hn

(
− u√

2k

)
e− u2

2k2 n � 0.

After some computations one can derive the following form of the transformation data:

φ(u) = A

(
√

2k)r
Hr

(
− u√

2k

)
e− u2

2k2

φ∗(u) = B

(
√

2l)s
Hs

(
u√
2l

)
e− u2

2k2

µ(u) =



Ak

√
π

2
erf

(
u√
2k

)
r = 0

A

(
√

2k)r−1
Hr−1

(
− u√

2k

)
e− u2

2k2 r > 0
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Figure 3. Plot of the triply conjugate surfaces ui = constant, i = 1, 2, 3, for N = 3 and

C = 1
2

( 0 1 0
0 0 1
1 0 0

)
, p = 2, q = 1, α = β = 0, A = B = 1.

Figure 4. Plot of a generic surface and its conjugate net of coordinate lines N = 3 and

C = 1
2

( 0 1 0
0 0 1
1 0 0

)
, p = 2, q = 1, α = β = 0, A = B = 1.
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ν(u) =



Bl

√
π

2
erf

(
u√
2l

)
s = 0

− B

(
√

2l)s−1
Hs−1

(
u√
2l

)
e− u2

2l2 s > 0

and for r + s even

ω(u) = 1

2r+s
(−1)

r+s
2 kl√

k2+l2
2

r+s+1AB

[√
π

2

(r + s)!
r+s
2 !

erf

(
u

√
k2 + l2√

2kl

)

−
r+s
2∑

p=1

∑
m+n=2p

(−1)n+p

(
r

m

)(
s

n

)
k2n−2pl2m−2p (r + s − 2p)!

r+s−2p
2 !

×H2p−1

(
u

√
k2 + l2√

2kl

)
e−u2 k2+l2

2k2 l2

]
while for r + s odd

ω(u) = 1

2r+s
(−1)

r+s+1
2√

k2+l2
2

r+s+1AB

r+s−1
2∑

p=0

∑
m+n=2p+1

(−1)n+p

(
r

m

)(
s

n

)

×k2n−2pl2m−2p (r + s − 1 − 2p)!
r+s−1−2p

2 !
H2p

(
u

√
k2 + l2√

2kl

)
e−u2 k2+l2

2k2 l2 .

An important observation regarding the family of Hermite conjugate nets of type (r, s),
with s > 0, is that asymptotically the surfaces uj = c −→ ∞ correspond to x̃j = c.
Hence, asymptotically these nets become the Cartesian net, while there is a Gaussian
localized deformation in a neighbourhood of the origin. This follows from the form of
x̃j = uj +

∑N
k=1 µk(uk)=kj (u1, . . . , uN)νj (uj ) and the fact that µk and =kj are bounded

functions. Hence for uj large, the Gaussian decay of ν implies the statement.
We are going to analyse the cases (0, 0) and (0, 3); the second one describes a Hermite

net which is asymptotically Cartesian.

• Case (0, 0): the error net. We take

µj(uj ) = νj (uj ) = erf

(
uj√

2

)

ωj(uj ) = 1√
π

erf(uj ).

For the bidimensional case N = 2 with C = 1
4

(
1 1

−1 1

)
, the net is given by

x1(u1, u2) := u1 +
√
πerf

(
u1√

2

) −2
√
πerf( u2√

2
) + (2

√
π − erf(u2))erf( u1√

2
)

8π − 2
√
πerf(u1)− 2

√
πerf(u2) + erf(u1)erf(u2)

x2(u1, u2) := u2 +
√
πerf

(
u2√

2

) 2
√
πerf( u1√

2
) + (2

√
π − erf(u1))erf( u2√

2
)

8π − 2
√
πerf(u1)− 2

√
πerf(u2) + erf(u1)erf(u2)

and exhibits the plot shown in figure 5.
Notice that asymptotically all the coordinate lines are straight; however, the perturbation

of the Cartesian net is not localized. Instead, the bend of the coordinate lines does not decay
asymptotically.
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Figure 5. Plot of the net for the bidimensional case N = 2 with C = 1
4

(
1 1

−1 1

)
.

For N = 3 and C = 1
2

( 0 1 0
0 0 1
1 0 0

)

x1(u1, u2, u3) = u1 +
√
πerf

(
u1√

2

)

×
4πerf( u3√

2
) + 2erf( u2√

2
)erf(u3) + erf( u1√

2
)erf(u2)erf(u3)

8
√
π3 − erf(u1)erf(u2)erf(u3)

x2(u1, u2, u3) = u2 +
√
πerf

(
u2√

2

)

×
4πerf( u1√

2
) + 2erf( u3√

2
)erf(u1) + erf( u2√

2
)erf(u1)erf(u3)

8
√
π3 − erf(u1)erf(u2)erf(u3)

x3(u1, u2, u3) = u3 +
√
πerf

(
u3√

2

)

×
4πerf( u2√

2
) + 2erf( u1√

2
)erf(u2) + erf( u3√

2
)erf(u1)erf(u2)

8
√
π3 − erf(u1)erf(u2)erf(u3)

and the corresponding plot of the triply conjugate family of surfaces is shown in figure 6.
The plot of a generic surface with its conjugate net of coordinate lines is shown in figure 7.
The surface is asymptotically flat, and approaches to different planes depending on which

quadrant we consider.
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Figure 6. Plot of the triply conjugate family of surfaces for N = 3 and C = 1
2

( 0 1 0
0 0 1
1 0 0

)
.

Figure 7. Plot of a generic surface with its conjugate net of coordinate lines for N = 3 and

C = 1
2

( 0 1 0
0 0 1
1 0 0

)
.
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Figure 8. Plot for the bidimensional case N = 2 with C = 1
4

(
1 1

−1 1

)
, k = l = 1.

• Case (0, 3). Now, we take

µj(uj ) =
√
π

2
erf

(
uj√

2

)
νj (uj ) = (1 − u2

j )e
− u2

j

2

ωj(uj ) = 1
2 (u

2
j − 2)e−u2

j .

For the bidimensional case N = 2 with C = 1
4

(
1 1

−1 1

)
, k = l = 1 the net is given by

x1(u1, u2) = u1 +

√
π

32

×
(1 − u2

1)e
−u2

1 [−2erf( u2√
2
) + (2 − (u2

2 − 2)e−u2
2)erf( u1√

2
)]

8 − 2(u2
1 − 2)e−u2

1 − 2(u2
2 − 2)e−u2

2 + (u2
1 − 2)(u2

2 − 2)e−u2
1−u2

2

x2(u1, u2) = u2 +

√
π

32

×
(1 − u2

2)e
−u2

2 [2erf( u1√
2
) + (2 − (u2

1 − 2)e−u2
1)erf( u2√

2
)]

8 − 2(u2
1 − 2)e−u2

1 − 2(u2
2 − 2)e−u2

2 + (u2
1 − 2)(u2

2 − 2)e−u2
1−u2

2

as plotted in figure 8.
Unlike the error net, we see that in this case the bend of the coordinate lines decays

asymptotically, and the net is a Cartesian net with a Gaussian localized perturbation.
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Figure 9. Plot for N = 3 with C = 1
2

( 0 1 0
0 0 1
1 0 0

)
.

Figure 10. A generic coordinate surface for N = 3 and C = 1
2

( 0 1 0
0 0 1
1 0 0

)
.
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For N = 3 and C = 1
2

( 0 1 0
0 0 1
1 0 0

)
, the net is given by
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x3(u1, u2, u3) = u3 +

√
π
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3)e
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[
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(
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)
and the corresponding plot is shown in figure 9. A generic coordinate surface plots as in
figure 10.
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[18] Mañas M and Martı́nez Alonso L 1998 Phys. Lett. B 436 316
[19] Segal G and Wilson G 1985 Publ. Math. I. H. E. S. 61 5
[20] Witten E 1988 Commun. Math. Phys. 113 529
[21] Witten E 1990 Nucl. Phys. B 340 281
[22] Zakharov V E 1998 Duke Math. J. 94 103

Zakharov V E and Manakov S E 1998 Dokl. Math. 57 471
[23] Zakharov V E and Manakov S E 1985 Func. Anal. Appl. 19 89


