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Abstract

A procedure has been developed for analyzing the evolution with time of the volume fraction crystallized and reaction mechanism and
for calculating the kinetic parameters at non-isothermal transformations in materials involving formation and growth of nuclei. Considering
the assumptions of extended volume and random nucleation, a general expression of the fraction crystallized as a function of the time has
been obtained in isothermal crystallization processes. The application of the crystallization rate equation to the non-isothermal processes
has been carried out under the restriction of a nucleation which takes place early in the transformation and the nucleation frequency is
zero thereafter. In these conditions, the correct reaction mechanism has been obtained plotting the logarithmic form of various kinetic
equations versus the reciprocal temperature, and choosing that equation, which gives the plot with the best fit to a straight line. The kinetic
parameters, activation energy and frequency factor, have been deduced from the slope and intercept of the above-mentioned straight line.
The theoretical method developed has been applied to the crystallization kinetics of the semiconducting Sb0.16As0.36Se0.48 alloy, thus
obtaining values for the quoted parameters that agree very satisfactorily with the calculated results by other mathematical treatments. This
fact shows the reliability of the theoretical method developed. © 2000 Elsevier Science S.A. All rights reserved.
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1. Introduction

The classical theory of nucleation and crystal growth has
been well developed over the last 60 years. The treatment of
condensed systems was adapted from the classical theory of
the vapor–liquid transition by Turnbull and Fisher [1]. A full
development of the theory is given by Christian [2] and a re-
cent review published by Kelton [3]. The last decades have
seen a strong theoretical and practical interest in the applica-
tion of isothermal and non-isothermal experimental analysis
techniques to the study of phase transformations. While
isothermal experimental analysis techniques are in most
cases more definitive, non-isothermal thermo-analytical
techniques have several advantages. The rapidity with which
non-isothermal experiments can be performed makes these
types of experiments attractive. There has been an increas-
ingly widespread use of non-isothermal techniques to study
solid state transformations and to determine the kinetic pa-
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rameters of the rate controlling processes. The techniques
have become particularly prevalent for determination of the
thermal stability of amorphous alloys and in the investiga-
tion of the processes of nucleation and growth that occur
during transformation of the metastable phases in a glassy
alloy as it is heated. These techniques provide rapid infor-
mation on such parameters as glass transition temperature
and transformation enthalpy, temperature and activation en-
ergy over a wide range of temperature [4,5]. In addition, the
physical form and high thermal conductivity as well as the
temperature at which transformations occur in most amor-
phous alloys make these transformations particularly suited
to analysis in a differential scanning calorimeter (DSC).
There is a large variety of theoretical models and mathe-
matical treatments to explain the crystallization kinetics.
While all of the treatment are based on the formal theory of
transformation kinetics, they differ greatly in their assump-
tions and in some cases lead to contradictory results. It was
suggested by Henderson [5] in a notable work that many of
the treatments are based on an incomplete understanding of
the formal theory of transformation kinetics.
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It should be noted that glass-forming liquids provide sys-
tems in which the temperature of the liquid–crystal inter-
face is well defined by the temperature of the system, and
therefore, the time evolution of the crystallization kinetics
can meaningfully be measured using thermal analysis tech-
niques. Thus, it is not surprising that recently the differential
scanning calorimetry has been considered as a technique that
is applicable to the study of the crystallization kinetics of
glass-forming liquids [6–12]; with very few exceptions the
analysis of the data obtained has been carried out using the
Johnson–Mehl–Avrami (JMA) transformation rate equation.

In this work, a theoretical method has been developed
for determining the volume fraction crystallized, the correct
reaction mechanism and the kinetic parameters by DSC,
using non-isothermal techniques in solid systems involving
formation and growth of nuclei, starting from the formal
theory of transformation kinetics. The quoted method has
been used to analyze the crystallization kinetics of the
glassy semiconducting Sb0.16As0.36Se0.48 by using DSC
with continuous-heating techniques.

2. Theoretical background

The crystallization is a particular case of the nucleation
and grain growth controlled solid-state transformation pro-
cesses, the theory of which is well-known [13–18]. If an
embryo of the transformed phase nucleates at momentτ

and grows thereafter anisotropically with principal growth
velocities,ui(t′) (i=1, 2, 3), in three mutually perpendicular
directions, then its volumev at momentt (whereτ<t′<t) is

v(τ, t) = g
∏
i

∫ t

τ

ui(t
′)dt ′ (1)

beingg a geometric factor which depends on the shape of the
growing crystal and the expression

∏
i

∫ t

τ
ui(t

′)dt ′ condenses
the product of the integrals corresponding to the values of
the above quoted subscripti.

When the possible overlap of grains is neglected, it is pos-
sible to define an extended volume of transformed material,
Ve, by the relationship

dVe = ν(τ, t)Iv(τ )(Va + Vb)dτ = ν(τ, t)VIv(τ )dτ (2)

where,Iv(τ ) is the nucleation frequency per unity volume;
Va andVb, the untransformed and transformed volumes, re-
spectively, andV, the volume of whole assembly. As the
change of the real transformed volume, dVb, and that of the
extended volume, dVe, are related by

dVb =
(

1 − Vb

V

)
dVe = (1 − x)dVe (3)

beingx=Vb/V, the volume fraction transformed. Differenti-
ating this expression and substituting the result in Eq. (3),
one obtains

dx

1 − x
= dVe

V
(4)

equation, which one relates to Eq. (2), where the value for
ν(τ , t) from the Eq. (1) has been included, yielding

x(t) = 1 − exp

{
−g

∫ t

0
Iv(τ )

[∏
i

∫ t

τ

ui(t
′)dt ′

]
dτ

}
(5)

the basic nucleation-growth equation for the transformed
fraction,x.

When the crystal growth rate is isotropic,ui(t′)=u(t′),
assumption which is in agreement with the experimental
evidence, since in many transformations the reaction product
grows approximately with the same rate in all directions, the
Eq. (5) can be written as:

x(t) = 1 − exp

[
−g

∫ t

0
Iv(τ )

(∫ t

τ

u(t ′)dt ′
)m

dτ

]
. (6)

Herem is an integer or half integer, which depends on the
mechanism of growth and the dimensionality of the crystal.

Eq. (6) is evidently valid under any thermal conditions.
Up to this point, no assumptions have been made regarding
the origin of the time dependence ofIv andu, however, it
should be noted an important limitation of this equation,
which stems from the use of Eq. (3), which describes a
completely random overlap of growing crystallites.

For the important case of isothermal crystallization with
nucleation frequency and growth rate independent of time,
Eq. (6) can be integrated to yield

x(t) = 1 − exp(−g′Ivu
mtn) (7)

wheren=m+1 for Iv 6=0 andg′ is a new shape factor.
Eq. (7) can be taken as a detailed specific case of the JMA

[13,16] transformation equation

x(t) = 1 − exp
[−(Kt)n

]
(8)

In this equation, the reaction rate constant,K, is a function
of temperature, and as it is proportional to (Ivum)1/n , in
general, depends on both the nucleation frequency and the
crystal growth rate, andn is a parameter which reflects the
nucleation frequency and/or growth morphology.

The isothermal transformation rate, dx(t)/dt, can be eas-
ily determined from Eq. (8) by differentiating with respect
to time and substituting in resulting expression the explicit
relation betweenx andt given by Eq. (8) to yield

dx

dt
= nK(1 − x) [−ln(1 − x)](n−1)/n (9)

This equation is sometimes referred to as the JMA transfor-
mation rate equation.
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2.1. Applicability of the JMA transformation rate equation
under conditions of continuous heating

It should be noted that Eq. (8) and, therefore, Eq. (9) as
developed by JMA are based on the following important
assumptions:
1. Isothermal transformation conditions;
2. Spatially random nucleation;
3. Growth rate of new phase dependent only on temperature

and not time (i.e., linear growth kinetics).
In the past decades, Eq. (9) has been applied without qual-

ification to the analysis of non-isothermal phase transfor-
mations [19–21]. However, according to literature [22], the
above-mentioned equation can only be rigorously applied to
transformations involving nucleation and growth in a lim-
ited number of special cases under non-isothermal condi-
tions. In particular, if it can be shown that the transformation
rate depends only on the state variables of fraction trans-
formed,x, and temperature,T, and not on thermal history,
then Eq. (9) can be used to describe non-isothermal as well
as isothermal transformations consistent with assumptions
(2) and (3) above. Therefore, the criteria which are necessary
in order to apply Eq. (9) to the non-isothermal crystalliza-
tion process in glass forming liquids are thus restrictive. Un-
der these restrictions, an example of a system which allows
the non-isothermal application of Eq. (9) is one in which
the nucleation process takes place early in the transforma-
tion and the nucleation frequency is zero thereafter. This
case has been referred to as ‘site saturation’ in the literature
[23–25]. In addition, in the cases as the above-mentioned,
the reaction rate constant can be defined by a function with
an Arrhenian temperature dependence,K=K0exp (−E/RT)
[26]. In this expression of the rate constant,K0 is the fre-
quency factor;E, the overall effective activation energy, and
R, the ideal gas constant.

2.1.1. Obtaining the correct reaction mechanism by
non-isothermal techniques

In the derivation of relationships for analyzing the mech-
anism of the solid state transformations by using techniques
of continuous heating, it is necessary as previously said, a re-
action rate independent of the thermal history and expressed
as the product of two separable functions of absolute tem-
perature and the fraction transformed. In these conditions,
Eq. (9) can be written as

dx

dt
= Kf(x) = K0f (x)

[
exp

(−E

RT

)]
(10)

where,f(x)=n(1−x)[−ln (1−x)](n−1)/n is a function which
depend on the mechanism of the process.

Bearing in mind that the heating rate isβ=dT/dt, Eq. (10)
must be integrated by separation of variables and one obtains

g(x) =
∫ x

0

dx′

f (x′)
= K0

β

∫ T

T0

[
exp

(−E

RT′

)
dT ′

]
(11)

and replacingE/RT′ with y′, the logarithmic form of Eq.
(11) can be expressed as

ln [g(x)] = ln
K0E

βR
+ ln

[∫ ∞

y

e−y′
y′−2dy′

]

= ln
K0E

βR
+ ln [p(y)] (12)

if it is assumed thatT0�T, so thaty0 can be taken as infin-
ity. This assumption is justifiable for any heating treatment
which begins at a temperature where nucleation and crystal
growth are negligible, i.e., belowTg (glass transition tem-
perature) for most glass forming systems [26].

The function
∫∞
y

e−y′
y′−2dy′ is not integrable in closed

form and the authors Vázquez et al. [27] have developed a
method to evaluate it by an alternating series, resulting

p(y) =
[
−e−y′

y′2

∞∑
k=0

(−1)k(k + 1)!

y′k

]∞

y

= e−y

y2

∞∑
k=0

(−1)k(k + 1)!

yk
. (13)

The expression ln [p(y)] is, to a first approximation, a linear
function of 1/T if y is sufficiently large, therefore, in the range
of values ofy, 20<y<60, the function ln [p(y)] with k=0
can be fitted very satisfactorily by a linear approximation,
(see Fig. 1) giving

ln(e−yy−2) ∼= −5.1202− 1.052y. (14)

It should be noted that the term ln [K0E(βR)−1] in Eq.
(12) is independent of temperature. Thus, the difference of
ln [g(x)] and ln [p(y)], both functions of the temperature, does
not depend upon the temperature in the whole temperature

Fig. 1. Representation of ln(e−yy−2) vs. y and corresponding straight
regression line for the range of values 20<y<60.
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Table 1
Theoretical kinetic model equations considered

Equation f(x) g(x) Rate-controlling process Label

Tamman (2x)−1 x2 One-dimensional diffusion D1
Valensi [−ln (1−x)]−1 (1−x) ln (1−x)+x Two-dimensional diffusion, cylindrical symmetry D2

Jander (3/2)(1−x)1/3[(1−x)−1/3−1]−1 [1−(1−x)1/3]2 Three-dimensional diffusion, spherical symmetry D3

Ginstling–Brownshtein (3/2)[(1−x)−1/3−1]−1 1−(2/3)x−(1−x)2/3 Three-dimensional diffusion, spherical symmetry D4

Jonson–Mehl–Avrami (JMA) n(1−x)[−ln (1−x)](n−1)/n [−ln (1−x)]1/n Random nucleation An
Mampel unimolecular law 1−x −ln (1−x) Random nucleation, one nucleus on each particle F1

JMA (n=2) 2(1−x)[−ln (1−x)]1/2 [−ln (1−x)]1/2 Random nucleation; Avrami equation I A2

JMA (n=3) 3(1−x)[−ln (1−x)]2/3 [−ln (1−x)]1/3 Random nucleation; Avrami equation II A3

2(1−x)1/2 1−(1−x)1/2 Phase boundary reaction, cylindrical symmetry R2

Shrinking sphere 3(1−x)2/3 1−(1−x)1/3 Phase boundary reaction, spherical symmetry R3

interval in which the process proceeds. In addition, consid-
ering Eq. (12) and the above-mentioned fact that ln [p(y)] is
a linear function of 1/T, the relation ln [g(x)] must also be a
linear function of 1/T. For the correct mechanism ln [g(x)],
thus, be linear function of 1/T. The values of ln [g(x)] cal-
culated for the various rate processes using DSC trace and
plotted versus the corresponding 1/T values should give a
straight line only for the rate process, which can be desig-
nated as the most probable. The others, for which this plot is
not linear, can be refused. The sensitivity of this procedure
for the mechanism determination is, as in all non-isothermal
methods, not too high. But it yet gives valuable and useful
informations. Therefore, the analysis off(x) is useful if we
want to distinguish which one of the several kinetic mod-
els [28,29] can describe the crystallization process. Several
kinetic equations are presented in Table 1. Some equations,
labelled D, correspond to reactions controlled by diffusion
through the sample. Others, labelled R, correspond to a reac-
tion process controlled by diffusion across the interface. The
consideration of a nucleation process prior to crystal growth
is taken into account in other kinetic models labelled A. The
curves of Fig. 2 are the plots of ln [g(x)] versus 1/T being
calculated from DSC trace of the Sb0.16As0.36Se0.48 glassy
alloy forβ=8 K min−1 employing the different kinetic equa-
tions given in Table 1. A set of values for the magnitudes
T andx in the intervals 536.2–579.9 K and 0.08–0.96 K, re-
spectively, has been chosen for the above-mentioned plots.
It should be noted that only the plot for ln [−ln (1−x)] (F1)
gives a good straight line (correlation coefficientr2=0.999).
The other equations can be refused. Deviations from the lin-
earity are comparatively very small in the case of the la-
belled equations A2 and A3. The other informations about
the process studied are evidently required for the correct de-
cision concerning the choice of the true mechanism for the
process investigated.

2.1.2. Calculating the kinetic parameters by using the p(y)
function

The functionp(y) is obtained, as previously said, by inte-
gration of the temperature dependent reaction rate constant
within a temperature interval fromT0 to T(T0�T) and is

expressed by the series of Eq. (13). For the correct reaction
mechanism, and according to Eq. (12), the linear plots of
ln [g(x)] versus 1/T and ln [p(y)] versus 1/T have the same
slope, which can be designated as tanα, yielding

tanα = d{ln[p(y)]}
d(1/T )

= E

R

d{ln[p(y)]}
dy

(15)

Taking the derivative of logarithmic form of Eq. (13) with
respect toy, one obtains

d{ln[p(y)]}
dy

= −1 − 2y−1

+
[ ∞∑

k=0

(−1)k(k + 1)(k + 2)!

yk+2

][ ∞∑
k=0

(−1)k(k + 1)!

yk

]−1

= −
[ ∞∑

k=0

(−1)k(k + 1)!

yk

]−1

(16)

Fig. 2. Plots of ln [g(x)] vs. 1/T calculated from the DSC trace of the
Sb0.16As0.36Se0.48 glassy alloy forβ=8 K min−1 and using the different
kinetic equations given in Table 1.
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and introducing Eq. (13) into Eq. (16), the slope of ln [p(y)]
versus 1/T is then

tanα=−E

R

1

y2eyp(y)
=−E

R

[ ∞∑
k=0

(−1)k(k+1)!

yk

]−1

. (17)

For large values ofy, it is possible to use only the two first
terms of the above series, without making any appreciable
error and thus the activation energy can be calculated ap-
proximately from the equation

E ∼= R

2

(
−tanα +

√
tan2 α + 8T̄ tanα

)
(18)

beingT̄ the mean temperature. The value ofE can be found
easy by a comparison of the slope of the straight line of
ln [g(x)] versus 1/T with a set of the lines of ln [p(y)] versus
1/T (Fig. 3) constructed for the different values ofE. The
slope of both functions should be the same in the temperature
interval in which the process proceeds.

In addition, substituting the linear approximation of
ln [p(y)] (Eq. (14)) into Eq. (12) results

ln[g(x)] = ln
K0E

βR
− 5.1202− 1.052

E

RT
(19)

the equation of a straight line, the intercept of which gives
the frequency factor,K0.

Fig. 3. Plots of−ln [p(y)] vs. 1/T for various activation energies,E.

On the other hand, in order to establish the range of the
validity of the above mentioned linear approximation the
well-know Taylor expansion can be put to use:

ln[p(y)] = ln[p(y1)] + (y − y1)
d{ln[p(y)]}

dy

∣∣∣∣
y=y1

+ (y − y1)
2

2

d2{ln[p(y)]}
dy2

∣∣∣∣
y=y1

+ . . . (20)

wherey1 is the chosen point of the approximation. Neglect-
ing terms of the exponent above two in Eq. (20), after sub-
stitution

ln[p(y)] = ln[p(y1)] + A(y1)(y − y1) + 1
2B(y1)(y − y1)

2

(21)

whereA(y1) = − [y2
1ey1p(y1)

]−1
has been obtained from

Eqs. (16) and (13) and

B(y1) =
{

d

dy

[
−y−2e−y [p(y)]−1

]}∣∣∣∣
y=y1

=
{

e−yy−2 [p(y)]−1
[
y + 2

y

+ [p(y)]−1 dp(y)

dy

]}∣∣∣∣
y=y1

= −y1 + 2

y1
A(y1) − A2(y1).

In practice, the graphical comparison of the linear with the
parabolic substitution in Eq. (21) gives evidence for the va-
lidity range of the linear approximation. Table 2 provides
data of ln [p(y1)] and the coefficientsA(y1) andB(y1)/2. The
most unfavourable case,y1=10, is illustrated diagrammati-
cally in Fig. 4 with regard to (y−y1) in Eq. (21). Bearing in
mind the relationship (E/RT)−(E/RT1)=y−y1 and defining
1T=T−T1, one obtains

1T = ±
∣∣∣∣∣ −RT2

1(y − y1)

E + RT1(y − y1)

∣∣∣∣∣
This expression has allowed to obtain the1T-values, shown
in Fig. 4, from the activation energies and temperatures also
given in Fig. 4. It is easily seen that the parabolic term has a
negligible influence for (y−y1) below about one, since only
represents the 0.2% of the overall value of the ln [p(y)]. This
fact means that for a normal temperature interval within
about 100 K the straight line is really an excellent approxi-
mation. Therefore, the value of the activation energy can be

Table 2
Values of ln [p(y1)] and of the coefficientsA(y1) and (1/2)B(y1)

Quantity Values

y1 10 20 30 40 50
−ln [p(y1)] 14.7 26.1 36.8 47.4 57.8
−A(y1) 1.163 1.093 1.064 1.049 1.039
(1/2)B(y1) 2.2×10−2 3.8×10−3 1.4×10−3 5×10−4 5×10−4
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Fig. 4. Graphical comparison of the linear with the parabolic substitution
in Eq. (21).

easily obtained, equalling the slope,〈A(y1)〉ER−1, of the lin-
ear approximation of ln [p(y)] with that of the experimental
ln [g(x)] versus 1/T plot. It should be noted that theE-values
thus obtained and those calculated from Eq. (18) compare
well, and also with the ones obtained by conventional meth-
ods [26,27].

3. Experimental procedures

High purity (99.999%) antimony, arsenic and selenium in
appropriate percent proportions were weighed into a quartz
glass ampoule (6 mm diameter). The contents of the am-
poules (7 g total) were sealed in a pressure of 10−2 N m−2

and heated in a rotating furnace at around 1225 K for 24 h,
submitted to a longitudinal rotation of 1/3 rev min−1 in or-
der to ensure the homogeneity of the molten material. It
was then immersed in a receptacle containing water in order
to solidify the material quickly, avoiding crystallization of
the compound. The amorphous nature of the material was
checked through a diffractometric X-ray scan, in a Siemens
D500 diffractometer. The thermal behavior was investigated
using a Perkin–Elmer DSC7 differential scanning calorime-
ter with an accuracy of±0.1 K. Temperature and energy cal-
ibrations of the instrument were performed, for each heating
rate, using the well-known melting temperatures and melt-
ing enthalpies of high-purity zinc and indium supplied with
the instrument. Powdered samples weighing about 20 mg
(particles size around 40mm) were crimped in aluminium
pans and scanned at room temperature through their glass
transition temperature,Tg, at different heating rates: 1, 2,
4, 8, 16, 32 and 64 K min−1. An empty aluminium pan was
used as reference and in all cases a constant flow of nitrogen
was maintained in order to extract the gases emitted by the

Fig. 5. Typical DSC trace of Sb0.16As0.36Se0.48 glassy alloy at a heating
rate of 32 K min−1. The hatched area showsAT the area betweenTi andT.

reaction, which are highly corrosive to the sensory equip-
ment installed in the DSC furnace. The glass transition tem-
perature was considered as a temperature corresponding to
the inflection point of the lambda-like on the DSC scan, as
shown in Fig. 5.

The crystallized fraction,x, at any temperature,T, is given
asx=AT /A, whereA is the total area of the exotherm between
the temperatureTi where the crystallization is just beginning
and the temperatureTf where the crystallization is completed
and AT is the area between the initial temperature and a
generic temperature, see Fig. 5.

4. Results and discussion

The typical DSC trace of Sb0.16As0.36Se0.48 chalcogenide
glass obtained at a heating rate of 32 K min−1 and plot-
ted in Fig. 5 shows three characteristic phenomena which
are resolved in the temperature region studied. The first
(T=474.2 K) corresponds to the glass transition temperature,
Tg, the second (T=562.1 K) to the extrapolated onset crys-
tallization temperature,Tc, and the third (T=583.7 K) to the
peak temperature of crystallizationTp of the above men-
tioned chalcogenide glass. This behavior is typical for a
glass-crystalline transformation. The temperature valuesTg,
Tc and Tp increase with increasing heating rate. The area
under the DSC curve is directly proportional to the total
amount of alloy crystallized. The ratio between the ordinates
and the total area of the peak gives the corresponding crys-
tallization rates, which makes it possible to plot the curves
of the exothermal peaks represented in Fig. 6. It may be ob-
served that the (dx/dt)p values increase in the same propor-
tion as the heating rate, a property which has been widely
discussed in the literature [30,31].

With the aim of analyzing the crystallization kinetics
of the glassy alloy Sb0.16As0.36Se0.48, the values of the
magnitudes described by the thermograms for the differ-
ent heating rates, quoted in Section 3, are obtained and
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Fig. 6. Crystallization rate versus temperature of the exothermal peaks at
different heating rates.

given in Table 3. The crystallization mechanism has been
analyzed and kinetic parameters have been calculated, ac-
cording to the preceding theory. Thus, for a heating rate
of 8 K min−1, it has been found that the kinetic equation
g(x)=−ln (1−x)=Kt (a JMA transformation equation with
n=1) gives the best fit to a straight line. Therefore, the
above-mentioned mechanism can be described by means
a process of random nucleation with one nucleus on each
particle, i.e. the kinetic exponentn=1. From the above
mentioned fit, the following equation is obtained

ln[−ln(1 − x)] = −26124.14T −1 + 46.21

= −T −1tanα + 46.21 (22)

whose slope together withT =558.0 K, the mean value of
the temperature in the interval 536.2–579.9 K, have been
substituted into Eq. (18), resulting the activation energy of
the process,E=49.9 kcal mol−1. The intercepts of Eqs. (19)
and (22) have been equated to obtain the frequency factor
K0=1.1×1017 s−1

Also the activation energy has been calculated equalling
the slope of Eq. (22) with the expression〈A(y1)〉ER−1,

Table 3
Experimental data obtained from the thermograms corresponding to the
crystallization process of alloys Sb0.16As0.36Se0.48

β (K min−1) Tg (K) Ti (K) Tp (K) 103×(dx/dt)p (s−1)

1 456.4 518.0 545.0 0.487
2 461.0 524.9 549.5 0.974
4 462.4 528.9 555.3 1.988
8 467.1 529.6 564.9 4.112

16 470.9 549.0 574.3 8.227
32 474.2 554.1 583.7 16.454
64 480.2 571.3 598.4 31.542

quoted in Section 2.1.2 and taking for〈A(y1)〉 the mean
value of the corresponding data in Table 2. A value of
48.3 kcal mol−1 for above-mentioned energy has been ob-
tained. It should be noted that theE-values calculated by the
two forms described compare well, since only differ a 3.2%.

Trying to confirm the reliability of the theoretical method
described the kinetic parametersE, n andK0 have been also
obtained, in the work, from other mathematical treatments,
quoted in the literature [5,30,32–35].

As an example, the values of the above-mentioned param-
eters, calculated by Kissinger method [33,34] are presented.
By using the linear relationship

ln

(
T 2

p

β

)
= E

RTp
− ln

(
K0R

E

)

it is possible to obtain both the overall effective activation
energy and the frequency factor of the crystallization pro-
cess.

From the experimental data, a plot of ln(T 2
p /β) versus

1/Tp has been drawn at each heating rate and also the straight
regression line shown in Fig. 7. From the slope and the
intercept of the experimental straight line the values of the
activation energy,E=47.2 kcal mol−1, and frequency factor,
K0=1.2×1016 s−1, respectively, has been deduced.

In addition, the experimental dataTp and (dx/dt)p
(Table 3), which correspond to the maximum crystallization
rate for each heating rate, and the above-mentioned value
of the activation energy, make it possible to determine,
through relationship

n = RT2
p

dx

dt

∣∣∣∣
p
(0.37βE)−1,

the kinetic exponent for each the experimental heating rates,
whose mean value is〈n〉 = 1.1.

Fig. 7. Experimental plots of ln(T 2
p /β) vs. 103/Tp and straight regression

line of Sb0.16As0.36Se0.48 alloy (β in K s−1).
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These results agree very satisfactorily with the theoretical
values obtained by means of the developed method, con-
firming the reliability of the above-mentioned method.

From the obtained values for the kinetic parameters and
according to the Avrami theory [14–16] of nucleation, the
relatively high value found for the pre-exponential factor
(frequency factor related to the probability of molecular col-
lisions) seems to confirm the fact that in the crystallization
reaction mechanism there is a random nucleation, coherent
with the basic formalism used. Bearing in mind the usual cri-
teria for the interpretation of kinetic exponent [2,36], some
observations relating to the morphology of the growth can be
worked out. In the glassy alloy Sb0.16As0.36Se0.48, there is a
relatively stable crystallization phase (E=49.9 kcal mol−1),
exhibiting a bulk nucleation, and according to the literature
[2] the crystalline phase may exhibit a growth of ‘needles and
plates of finite long dimensions small in comparison with
their separation’, since the value of kinetic exponent isn=1.

5. Conclusions

The described theoretical procedure enable us to study the
evolution with time of the volume fraction transformed in
materials involving nucleation and crystal growth processes.
This method assumes the concept of the extended volume
in transformed material and the condition of random nu-
cleation. Using these assumptions has been obtained a gen-
eral expression s for the transformed fraction, as a function
of the time in bulk crystallization processes. In the case of
isothermal crystallization, the above-mentioned expression
has been transformed in an equation, which can be taken as
a specific case of the JMA transformation equation. The ap-
plication of this equation to non-isothermal transformations
implies restrictive conditions, as it is the case of a transfor-
mation rate, which depends only on the fraction transformed
and the temperature. Under this restriction, the correct reac-
tion mechanism is obtained plotting the logarithmic form of
various kinetic equations (functions of the transformed frac-
tion) versus the reciprocal temperature, and choosing that
equation, which gives the plot with the best fit to a straight
line. In addition, the integration of the reaction rate gives a
temperature integral, which has been evaluated by an alter-
nating series. The linear plots of the logarithmic form of the
sum of this series versus 1/T and that of the kinetic equa-
tion versus 1/T, for the correct mechanism, have the same
slope, which allows to calculate the activation energy of the
process. Finally, the frequency factor is obtained from the
intercept of the linear plot of the logarithmic form of the
kinetic equation versus 1/T.

The theoretical method developed has been applied to the
experimental data corresponding to the Sb0.16As0.36Se0.48
glassy alloy. The theoretical results obtained for the kinetic
parameters agree very satisfactorily with the calculated val-
ues by other mathematical treatments, confirming the relia-
bility of the method described.
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