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SPACES OF S-BOUNDED MULTIPLIER
CONVERGENT SERIES

A. AIZPURU and J. PEREZ-FERNANDEZ {Cédiz)

Abstract. We prove that some results on uniform convergence of sequences
of unconditionally convergent series, in Banach spaces, can be generalized to se-
quences of weakly unconditionally Cauchy series.

1. Introduction

The normed spaces of bounded sequences, convergent sequences, null se-
quences and eventually null sequences of real numbers, endowed with the sup
norm, will be denoted, as usual, by o, ¢, ¢g and ¢gg, respectively.

C. Swartz 7] studied a version of Schur Lemma in metric linear spaces
for bounded multiplier convergent series (BM-convergent series): i.e. series
2ie1 % such that 3772, a;x; is convergent for every (a;);cn € foo- The Schur
Lemma for Banach spaces can also be obtained as a consequence of the result
of Swartz.

If X denotes a Banach space, Qingying Bu and Congxin Wu [5] studied
the space BMC(X) of the sequences T = {;);.y such that the correspond-
ing series are BM-convergent. This space was endowed with the norm

lIE”bmc = sup { Ztlxz : (t‘i)q;eN = Bfoo}.
i=1

Let us recall that a series 3.7, z; is called unconditionally convergent if
Doio1 Ty converges for every permutation 7 of N. It is well known that, in
Banach spaces, BM-convergence is equivalent to unconditional convergence.

The results of Swartz [7] can be reformulated in Banach spaces through-
out the space BMC(X).

A serieg Zfil x; is called weakly unconditionally Cauchy if for every per-
mutation 7 of the natural numbers (Z;zl a:,,(k))t. eN is a weakly Cauchy
sequence; alternatively, > °°; ; is a weakly unconditionally Cauchy se-
ries if and only if for every z* € X* (where X* is the dual space of X),

=y |:t:*(a:,)| < 00.

In this paper we prove that some results on uniform convergence of se-

quences of unconditionally convergent series, in Banach spaces, can be gener-
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alized to sequences of weakly unconditionally Cauchy series throughout the
spaces

(o o]
X(8) = {E = (Zi);en € XN zaixi is convergent, for every (a;);cn € S},
’ i=1

where S is a subspace of £, such that ¢y €& § and whose norm is given by

HTHS = sup { Za;l‘t

These spaces will be called spaces of S-bounded multiplier convergent series.

I T = (zi);en € X(S) then it is clear that >27°, #; is a weakly uncon-
ditionally Cauchy series, because (cf. [1]) in Banach spaces weakly uncondi-
tionally Cauchy series can be characterized as the series 3 o) x; such that
3%, tix; is convergent for every null sequence ({; )2 N

It is also well known (cf. [1] and {4]) that if X is a Banach space then the
following conditions are equivalent:

1. There exists a weakly unconditionally Cauchy series which is conver-
gent —but not unconditionally— in X

2. There exists a weakly unconditionally Cauchy series which is weakly
convergent, but does not converge.

3. There exists a weakly unconditionally Cauchy series which is not
weakly convergent.

4. X has a copy of ¢.

Hence, it is meaningful to consider weakly uncondltlonally Cauchy series
that are not unconditionally convergent.

Our study contains, as special cases, several results of Swartz (cf. (7,
Theorem 3, Corollary 4 and Proposition 5]) and of Qingying Bu and Congxin
Wu (cf. [5, Proposition 1, Proposition 2, Proposition 3 and Theorem 5j).
In particular, we will prove that if X is a Banach space, these results on
uniform convergence, that are true in X(£,), are also valid in other cases.
This happens, for instance, when § is a Grothendieck space; we point out
that a space of this type does not necessarily contain a copy of £y

(L,; icN =4 BS}

2. Completeness of X(S)

It is well known that in a normed space X, 3,72, x; is a weakly uncon-
ditionally Cauchy series if and only if the set

(2.1) E={Zaiaﬁi :meN, || £1, ’iE{l,.f.,n}}
i=1
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S-BOUNDED MULTIPLIER CONVERGENT SERIES 137

is bounded (cf. [2]).
For any given series Y 5o, z; in X, let us consider the set S{ 3572, ;)
of the sequences {(a;);en € foo such that > =, a;x; converges. This set, en-

dowed with the sup norm, will be called the space of convergence of the series
>0
j=1 Li

PROPOSITION 2.1. Let X be o real normed space and let Y .o z; be
a series in X. Then 37, x; is o weakly unconditionally Cauchy series if
and only if the linear mapping o : S( et :ci) — X, defined by J((ai)ieN)
= > 72, a;x; 18 continuous.

ProoF. Let us consider a non-zero sequence (a’?)zEN € S( p :ct) and
the sequence (s;);oy of the partial sums of the series 3 -, a;x;. We have

™
msnEEw {ZOJk?Ck : mEIN, log| £1, 1 € {L-..,m}},
iEN =1

for cvery n € N. Therefore, there exists M >0 such that [[s,]
< MH (a:);en]|» for every n € N. Hence HJ((ai)ieN)H < M| {ai)senl|-
Conversely, let A = { (ai);en € coo ¢ |ou| £1} C S( ol a,t) . It is clear
that A is bounded, therefore g(A) = E is also bounded. O
In what follows, X will denote a real Banach space and & will be a sub-
space of {,, such that ¢y & §.

If §; and S are subspaces of £y such that ¢g € & € 85 then X{({y)
C X{(8) € X(81) € X(co). We also have that X{cp) is the space of the
T={(Zi)en €EX N such that 3°2°, x; is a weakly unconditionally Cauchy se-
ries and X ({o) is the space of the T = (), € X such that 32, a; is
an unconditionally convergent series.

Tt is clear that X does not have a copy of ¢p if and only if X(8) = X (£}
for every subspace § of £, such that ¢y £ S.

Let T = (z;);cn € X(8). By Proposition 2.1,

Izl s = sup{ > o

defines a norm in X (&) and

IZ| ¢ = sup {

= sup { Z ;T

Ct.z iEN e BS}

i L

s {0i)ien € BCD}

(a:) ieN € Bcgo}
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=SHP{§|f($i)1 f f‘EBx*}

Let us consider the map ¢ : X(8) — CL(S, X) defined by (%) = oz,
where 07((a:);en) = Yooy @i%i, and CL(S, X) denotes the usual space of
continuous linear maps from 8§ to X. It is clear that ¢ is a linear isometry.
Let ¢ : X(8) — CL(cy, X) denote the map defined by (T) = o5 = 7, It
is also clear that ¢’ is a linear isometry.

THEOREM 2.2. X(8) is ¢ Banach space,

PROOF. Let (Z"),.n be a Cauchy sequence in X(§), where, for ev-
ery n € N, " = (af),.y. Let us denote, for every n € N, o, = oz~ and
of, = oL.. There exists gy € CL(S, X) such that lim,_. 0 = 0o. Let 2
= ool - It follows that lim, . of, = gg in CL(cy, X).

For every i € N, we have that ||z — zf|| £ |IZF — 7|5 if p,¢ € N and,
therefore, there exists 2 such that limp_oo 2 = 39, Let Z° = (z7),.y and

b=(b1,...,0p,0,...) € coo. Then

dlesl =1itie{l,...,n}, nGN}.

o(b) = nlingo o (b) = nli_)n;o(blx’f +. b)) = bial+ ..+ bp:cg.
It is clear now that if (b;);cn € co then o6 { (bi)ien) = Toioy bix?.

Let (a;);en € Bs. We will prove that 3°2) a;z? is convergent and there-
fore, 70 = (20),. € X(8),

Let £ > 0 and m € N be such that ||go — om|| < §. There exists anng € N
such that if ¢ > p 2 ng then || E;‘; aixtm” < §. Hence, if 7= (0,...,0,ap,..
ag,0,...) then

Let o), = oL,. It is clear that o = gb- Since ||[7* — 20| g = |loy, — ggl| for

every n € N, we have lim, o T" = 70 0

REMARKS 2.3. 1. In [5], the space X(£x) is denoted by BMC(X) and
it is proved that this space is a Banach space with the norm

o0
E t;x;
=1

3

q."

E a; )

P

= [leo@|| £ [ 0@ = om(@| + || om (@] <.

”—‘f“bmc = sup {

: (ti)igN < Bﬂw }9
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S-BOUNDED MULTIPLIER CONVERGENT SERIES 139

where T = (2;);cn. It is clear that ||F)},,. = ||Z]ls when & = {

2. In [6] the space X{cg) is denoted by CMC(X). It is also clear that if
S = ¢g then ||Fi|, . = |Z|ls. If we take S = ¢ then CMC(X) is a Banach
space.

3. Let T = (z;);ey € X(8). For every n € N, let us denote

(7 2n)={0,...,0,2n, Tns1,...).

If 372, #; is an unconditionally convergent series then > ooy x; is uniformly
convergent in B, . Hence, lim, .o H;c jZn “s

Conversely, let us suppose that lim,, .. ||T( jiZn H s = 0. We will prove
that »_;2; x; is an unconditionally convergent series. If the series 3 oo, @i
is not unconditionally convergent then there exists (a:,) «N € B, such that
e j—1@;%; does not converge. Hence, there exists 4 > 0 and a strictly increas-
ing sequence of natural numbers p; <pa<...<pg... such that

H 93'; 41 aJ:cJ“ > &, for every ¢ € N. Then, for every i, we have

176G 2 pi)]| s> 6

4. Let 8 be a subspace of £, such that ¢g £ §. Let us prove that £, can
be isometrically identified with a subspace of §** in such way that & C £,
C &*, If (a:,) ieN € foo, let us consider the map @ §* = R defined, for

every g € 8%, by hig) = Z;’O:l G’jg((ej)jEN)’ where (Ej)jeN is the cp-basis.
It is clear that ||k|| = ” (a’j)jENH‘ O

3. Main results

Let X be a Banach space. We will say that X is a Grothendieck space if
every weak™ convergent sequence (x7,), . in X~ is weakly convergent.

Let M be a subspace of X** such that XEMC X We wil say that
X is M-Grothendieck if every o(X*, X }- convergent sequence (7)o i1 X*
is o(X*, M)-convergent. Let us observe that X is a Grothendieck space if
and only if X is a X**-Grothendieck space.

If we substitute, in the next theorem, § by £, we recover Theorem 3 of
[7] for Banach spaces.

THEOREM 3.1. Let X be a Banoch space and let & be a subspace of
oo such that co © S and § is an (w-Grothendieck space. Let (T%),.n
be o sequence in X(S), where T" = (a),.n for every n € N.  The se-
quence (T"), o 15 convergent in X (8) if and only if, for every (“J')jeN €S,
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140 A. AIZPURU and J. PEREZ-FERNANDEZ

lim; o0 ( Z;il aj:cj-) ezists in X. In this case, lim, o, T" =T° € X(8),
where T = (29), . is such that ¥ = lim; oo 2] for every i ¢ N,

PRrOOF. The necessity of the condition is obvious. Let us prove that the
condition is sufficient. We will prove that (Z"),.n is a Cauchy sequence in
X(8). Proceeding towards a contradiction, assume that there exist § > 0
and a sequence (ng ). of natural numbers such that ||z — e H s > 6
for every k£ € N.

Tig

For every k€N, let zF = (2f), . = (21" — E?k+1)i€N' We have

¢ € X(8) and lim; o0 ( P ajz;) =0, for every {aj),cn € 5. We also

have that ||Z*[|g > 6, for every k& € N. Let us denote oy = o € CL(S, X).
For every k € N let fy € Bx~ be such that

(3.2) S O|fzh)] > 8

=1

If (aj);en €S then fk(ak((aj)jeN)) ‘ < Hgk((a:i)jeN) || and, therefore,
(fr 0 Ok )yen is @ weak™ convergent sequence in S* that converges to (. Hence,
if h = (aj);cn € oo then

oo
. 1 . ky
kh_)r{)lo h(fk G Jkico) = I}LHOIO E 1 Clgfk(zj) = 0.
_?Z

This means that { { fx(zF)) jEN} ren 15 @ weakly convergent sequence that
converges to O in £; and, hence, converges to 0 in the norm topology. This
contradicts (3.2}.

Tt is clear that in X(S) we have lim, .o T% = Z°, where ¥ = (27),. s
such that z¥ = lim; o 2 for every i € N. O

REMARKS 3.2. 1. There exists a closed subspace & of £, such that
S # lo, 8 15 a Grothendieck space and & does not have a copy of .. To
prove this result, let us recall that Haydon [3] constructed, by transfinite
induction, a Boolean algebra F with the following characteristics:

1) F is a subalgebra of P(IN) such that {{i} : 1 € N} C F. If T is the
Stone space of F and C(T) is the corresponding space of continuous func-
tions, we can isometrically identify C{T) with a closed subspace § of {,, such
that ¢g © 8. 2) C(T) is a Grothendieck space that does not have a copy of

oo

2. Let T = {zi);ey € X(S5). Then (HEE(] z m)”)meN is a decreasing
sequence. Let us denote az = limp .eo HT(] 2 m)” s+ The number az will
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S-BOUNDED MULTIPLIER CONVERGENT SERIES 141

be called the control number of the series > ;°, ;. We have that az =0 if
and only if 7 is unconditionally convergent.

THEOREM 3.3. Let (T"), . be @ sequence in X(S) and let T° € X(S).
We set og = o and, fm‘ n &g N On = azn. Then:
1) If limy—oe B* = 20 then Hmp oo tn = ap and My oo ”:c (12n ”5
= o uniformly in i € N
2) If 1) limp_oo [|Z°(j 2 n)“s = o uniformly in i € N, ii) limp— oo 0
=0, 1il) for everyj € N lim;_.oo 2% = 3,? exists in X; then (Z"), o converges
in X(S) to T (g)jE and z° EX(é7 ).

Proor. 1) We will first prove that lim, .o @, = ap. Let £ > 0. There
exists an NV € N such that |Z° — 2°||g < §, forevery i 2 N. Let us fixi 2 N.

For aq there exists an myg such that Hfﬂ(j = mg)“ s <o+ §. For o there
exists (a; )jen € Bs such that

o0
o <TG 2 mo)l g < || - et + 2
j=mo
o
| £ o] | £ o]
j=mo F=1mg
<E40 zmo)|g+ E <ante

3

There exist an m; € N such that ||7°(j 2 m;)|| < o + § and a sequence
(a;);en € Bs such that || Z°(5 2 my)|| g < || 355 m, a529|| + §. We have that

0]

a0<Ha: (1 2 my) [S< Zaj:r? +§
F=my
[eu] [an]
< Z a3 +
=TT =T,
<o+ HiU-mmu+3<m+e

Hence, if i 2 N then ap — ¢ < o < g + £. This proves that lim,—.eo
= a’o_ )

Let us prove that lim,_ . Hfz(j 2 n)HS = ¢; uniformly in 1 € N. Let
¢ >0and N € N be such that for every i = N we have ||7* — 7°||g < §&. On
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142 A. AYZPURU and I, PEREZ-FERNANDEZ

the other hand, there exists an ng € N such that ||| Z%(j 2 n)|| ¢ — ax| < §
for every n 2 ng, where k € {1,...,N — 1} and L Hfo(j z n)”s - ao| <5
Let i 2 N and n 2 ng. There exists a sequence (aj)jeN € Bg such that

o

o SfFUzn)ls < | X o]+
j=n

o0 . o0 e

< Zaj(azg—mg) + Zaj:s? +1
j=n j=n

SIF -2l + {70 20 g+ 7 Saite

Hence, for every i € N, if n 2 ng then oy £ [|':1':‘“”'(j = n}“s T

2} Let us prove that ("), is a Cauchy sequence. Let ¢ > (. There
exists a pp € N such that oy, < £, for n 2 pp. There exists an m € N such
that | ||F(j = n)”s - ail <t formzmandieN.

Since lim; o 7], = 23, for every k € {1,...,m — 1}, there exists an inte-
ger n; € N such that ||z} — 2} < Wﬁ’ for p,q = ny.
Let p,q 2 ng = max{po,n1,n2,-..,"m-1}. 1t is clear that if (a;),en
€ Bg then
0 m~—1 oC
I AT B DORYC R R DOLIE B
Jj=1 i=1 i=m
e oG o0
< & P ol
S5+ 2wl + || 2 e
j=m j=m

By taking supremum in Bg, we have

2 25 < 5+ 26 2 m)| 5 + 796 2 m)|

m

< £ £
=g+ap+g+aq+-5'<5.

Hence (T"),.n converges to some 7° € X(§). It is easy to check that

7°=2". From 1) we deduce that oo = limu—oo, =0. Therefore

7' e X({y,). O
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S-BOUNDED MULTIPLIER CONVERGENT SERIES 143

REMARKS 3.4. 1. Let ("), be a sequence in X(S) such that
z" = (2'),.N for every n € N. Let us suppose that ( e ajx;-) ten Con-
verges uniformly in Bs. For ¢ > 0 there exists an ng such that if n = ng
then “ py aj:c}H <, for every {a;),;cn € Bs and every i € N. Ience
||f‘(j 2 n)HS < ¢ for every ¢ € N; therefore, oy = limy_, o0 H'f‘(j 2 n)”s =0
uniformly in ¢ € N and {Z* : i € N} € X{{.}. It is clear that if lim, .. "
=7" then 20 € X (foo).

Let us suppose that {Z* : i € N} € X({s) and lim,_oo T" = 2. From
Theorem 3.3 we deduce that lim,_, Hf‘(j = n)”S = 0 uniformly in i € N
and, therefore, (Z;’il aj:cfr-)i cN COnverges uniformly in B, . This result
coincides with Corollary 4 of Swartz (cf. [7]), in the case when X is a Banach
space. .

2. Let us consider in X(co) the sequence (T*);.y Where
Ti = (81, €2,y €5, 0, [N PN .),
for every 1 € N. We have o; = oz = 1, for every ¢ € N, and limiﬁm(:cé)
= ¢, for every j € N. Since [|Z*{j 2 n)| g = 1, for every i,n € N, then

lim ||Z(j 2 n)||g =1

n—0o0
uniformly in ¢ € N. The sequence (T'),.y does not converge in X (S) because
||wa‘+1|!8m1for every i € N. 0O

DEFINITION 3.5. Let X be a Banach space and § a subspace of £s, such
that o & S. If T = (23);cn € X(8), let us denote T(z) = z,, for every i € N.
Assume that 4 € X(8).

1. We will say that A is uniformly convergent if lim, ., l[ z(j 2 n)“l s
= oz uniformly in ¥ € A.
2. We will say that A is weakly uniformly convergent if

Jim 311 (@G| =0,

for every f € Bx~, uniformly in T € A,

REMARKS 3.6. 1. If § = {, these definitions coincide with Definition 4
of [5].

2. If (T"),cn 15 a convergent sequence in X(S) then {T" : n € N} is
uniformly and weakly uniformly convergent.

By Theorem 3.3, {Z" : n € N} is uniformly convergent. We will prove
that it is also weakly uniformly convergent. Proceeding towards a contra-
diction, assume that there exist f € Bx» and § > 0 such that there exists a
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subsequence of (T"),,cy, denoted also by ("), such that 3572, | fla?)
> 6, for every n € N. Let ng € N be such that || — 70| < %, for every
n 2 ng. Let n > ng be such that 3752 )] < &. Then

SO <301 -2 + 3 11D € jE - s+ g < 2_35,
j=n j=n j=n

This is a contradiction.

3. It is easy to check that if § = £, and A £ X is uniformly convergent
then A is weakly uniformly convergent. It has been proved, in the remark
following Theorem 7 of [5], that the converse is false.

THEOREM 3.7. Let X be a Banach space and let S be a subspace of fo
such that cg © 8. Let A C X(S). If A is relatively compact then

i) A(i) = {Z(i) : T € A} 1s relatively compact in X, for every i € N.

i1) A is uniformly convergent and weakly uniformly convergent.

i) # = {ag : T € A} is relatively compact in R.

PrOOF. i) Let i € N and let (Z"(1)) . be a sequence in A(i). Since A
is relatively compact, there exists a subsequence (T™*), oy of (Z"),en that
converges to some Z°. Hence limy o0 T (i) = E°(4).

ii) If A is not uniformly convergent then there exist é > 0 and a sequence
("),en in A such that aze + 8 < [|Z*(j 2 n)||g. Then, there exists a sub-
sequence (T™)pen Of (F%),en that converges to some z°. Then, by The-
orem 3.3, limy,;_co ] ”T“‘“(j b n)”S — aﬁnk] = 0 uniformly in &k € N. This
contradicts oz« + ¢ < ank(j 2 ”k)”s for every k£ € N.

If A is not weakly uniformly convergent then there exist f & Bx», §
> 0 and a sequence (Z"), ¢ in A such that 3522 | F(E) ] > §, but there
exists a subsequence (), .y 0f (™), o that converges to some z0. By Re-
mark 3.6-2, iMoo o0, ‘ HERI) l = 0 uniformly in k& € N, which con-
tradicts ;’ink ‘f(i”k(j)) l > &, for every £ € N.

iii) Let {az*),cn be @ sequence in H. There exists a subsequence
(T )en Of (E") ey that converges to some 7. By Theorem 3.3-1,
1imk%w Qigng = Q0. ]

REMARKS 3.8. 1. Theset A= {T : i & N} € X{cg), where ' is defined
as in Remark 3.4-2, satisfies conditions i), ii) and iii) of Theorem 3.7, but is
not relatively compact.

2. It has been proved in [5] that if A C X (/s ) then A is relatively com-
pact if and only if .4 is uniformly convergent and A(i) is relatively compact
in X, for every : € N. 3

THEOREM 3.9. Let X be a Banach space and let S be a subspace of £
such that co © 8. Let S' be the subspace of {x of the sequences (bn)yen
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such that (bnan), . € S for every (ap),en € S. Assume that S’ is an foo-
Grothendieck subspace of fo. Let (Z")pen be a sequence in X(S) such that

lim; o0 D072 aj:c; exists for every (aj)jEN € S. Let us denote, for every
j €N, m? = lmy, .o 2% Then 7° = (x?)jeN € X(8) and

oo e ]
: Lt ) .0
lim ( E QJ.’L'J-) = E a;xy,
TS0

for every (aj)jeN €S.

PROOF. Let us observe that ¢ & &' If § =¢, it is clear that &' = ¢
and ¢ 1s not an fo-Grothendieck space. If & = ¢ then &' =¢,,, which
is a Grothendieck space. Let ((Lj)jeN € § and let us consider, for every

ne N,y = {a,jm;?)jeN. Then, for every (b;);. € &' we have that (bj5)sex
€ S, Therefore, lim; o ( Z;il J-g;") exists. By Theorem 3.1, (§"),on I
convergent in X (&) to some 3° = (y?)jeN’ where y? = limg 0o Yy = ajﬂ??,
for every j € N. Also

o0 oC
: iy .0 .
1lirglo ( E 1 bjyj) = E 1 bjy;, for every (bj)jeN €S
j: J:

Hence, if (bj)jeN is the constant sequence b; = 1, then Z;’f’__l aj:r:? converges
and lim;—oo ( 3222 a;2t) = 2oy a0
REMARK 3.10. When 8§ = ¢y, Theorem 3.9 coincides with Proposition

5 of [7]. With the hypothesis of Theorem 3.9 it is not, in general, true that
lim, ooz =2° (cf. [7}). O

PROBLEMS 3.11. 1. Are there any subspaces 8 of {4, such that ¢g cs
and § is not an /,-Grothendieck space but such that Theorem 3.1 remains
valid? Is Theorem 3.9 still true when &' is not an f.o-Grothendieck space?

2. Let 332 e; and 302 x; be two series in £, where

_ fe, i iodd,
T = %ei, if 7 even.
Both series are weakly unconditionally Cauchy and g o= ages but
i=1 "t i=1"*
S( Zfil ei) = Cp and S( Zf:l xz) 7& cp.
Let 3772 #; and 372, 4; be two weakly unconditionally Cauchy series in
a Banach space X:
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(a) Let us suppose that S( Yo 3:1) = S(Zfﬁl yi). Is g

?
- aZil ¥

(b) If for every M &N, ays e T O is S( ) a:z)
= S( 2im yi) ?

3. Let X be a Banach space and let
L = { S subspace of £ : g € S and X(8) = X(fu) } -

If F = \ger S, is F the least subspace of o such that cg & F and X(F)
= X(fx)? Does X bave a copy of cp if and only if F =c¢? How can the
space F be characterized?
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