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We study some nonlinear elliptic systems governing the steady-state of a two-equation
turbulence model that has been derived from the so-called k–ε model. Two kinds of
problems are considered: in the first one, we drop out transport terms and we deduce
the existence of a solution for N ≥ 2; in the second one we take into account all transport
terms; in this case, the existence result holds forN = 2 or 3. Positivity and L∞-regularity
of the scalar quantities are also shown here.

1. Introduction

Mathematical problems arising in turbulence modelling have led to major chal-

lenges from both standpoints, theoretical and numerical. In general, these problems

involve systems of nonlinear partial differential equations describing the balance of

mean quantities (velocity, pressure, density and internal energy) coupled with mean

turbulent quantities (kinetic energy or dissipation, for instance).

One of the turbulence models which scientists have paid much attention is the

so-called two equations k–ε model, introduced in 1972 by Launder and Jones.7,11

In the incompressible case, this model is written in terms of the mean velocity field

u, the mean pressure p, the mean kinetic energy k and the mean rate of viscous

dissipation ε, as the system
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u,t + (u · ∇)u+∇p−∇ ·
[(
ν0 + c1

k2

ε

)
(∇u+∇uT)

]
= f ,

∇ · u = 0 ,

k,t + u∇k −∇ ·
[(
ν0 + c1

k2

ε

)
∇k
]

= c1
k2

ε
|∇u+∇uT|2 − ε ,

ε,t + u∇ε−∇ ·
[(
ν0 + c4

k2

ε

)
∇ε
]

=
1

2
c2k|∇u+∇uT|2 − c3

ε2

k
,

where ν0 is the viscosity of the fluid and c1, . . . , c4 are positive constant values

obtained via experimentation; also, f stands for an external force and | · | is the

Euclidean norm.

This model has been used by physicists and engineers leading to some extent

to satisfactory results. However, like all turbulence models, it lacks generality and

many variants have been introduced ever since. But from the mathematical point of

view, this system has not yet been solved and very few may be said about it. Some

numerical tests have shown10,11 that the model became unstable in the sense that k

may blow-up whereas ε attained negative values, which is physically unacceptable.

In an attempt to stabilize the system, in the early ’90s Mohammadi proposed a

new approach based on the introduction of two new quantities, namely θ = kε−1

and ϕ = k−3ε2. Then, he derived the respective transport equations for both θ and

ϕ from those of k and ε. Neglecting higher order derivatives terms, the θ–ϕ model

may be written as9,10

u,t + (u · ∇)u+∇p−∇ · [A(θ, ϕ)(∇u+∇uT)] = f ,

∇ · u = 0 ,

θ,t + u∇θ −∇ · [A(θ, ϕ)∇θ] = −c′1θ2|∇u+∇uT|2 + c′2 ,

ϕ,t + u∇ϕ−∇ · [A(θ, ϕ)∇ϕ] = −ϕ
(
c′3|∇u+∇uT|2 +

c′4
θ

)
,

where A(θ, ϕ) = (ν0 + c1
θϕ)I and the constants c′j > 0, j = 1, . . . , 4. A reduced

version of this system was first studied by Lewandowski and Mohammadi9 where it

was assumed that u ∈ L∞(0, T ;W 1,∞(Ω)) is a given data (not necessarily verifying

the Reynolds equation) and subject to the constraints

ess inf
Ω×(0,T )

|∇u+∇uT| > 0 , ess sup
Ω×(0,T )

|∇u+∇uT| ≤ 1

a
.

Recently, the analysis of the transient system has been carried out by the

authors3–5; it is shown that the regularity of both θ and ϕ is strongly related

to the summability L1(Ω)–L∞(Ω) of the initial conditions imposed on θ and ϕ.

The goal of this paper is to show some existence results for two kinds of elliptic

systems governing the steady-state of models like the previous one, namely, the

Stokes-like problem:
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−∇ · (A(θ, ϕ)∇u) +∇p = f , ∇ · u = 0 , in Ω

−∇ · (A(θ, ϕ)∇θ) = 1− θgθ(θ, ϕ,∇u) , in Ω

−∇ · (A(θ, ϕ)∇ϕ) = −ϕgϕ(θ, ϕ,∇u) , in Ω

u = 0 , θ = a , ϕ = b , on ∂Ω

(1.1)

and the Navier–Stokes like problem:

(u · ∇)u−∇ · (A(θ, ϕ)∇u) +∇p = f , ∇ · u = 0 , in Ω

u∇θ −∇ · (A(θ, ϕ)∇θ) = 1− θgθ(θ, ϕ,∇u) , in Ω

u∇ϕ−∇ · (A(θ, ϕ)∇ϕ) = −ϕgϕ(θ, ϕ,∇u) , in Ω

u = 0 , θ = a , ϕ = b , on ∂Ω .

(1.2)

Remarks. 1. Notice that with the choices

A(θ, ϕ) =

(
ν0 +

c1

θϕ+ r

)
I ,

gθ(θ, ϕ,∇u) = θ|∇u|2 ,

and

gϕ(θ, ϕ,∇u) = θ|∇u|2 +
1

θ + r

we recover the steady-state of the θ–ϕ model, though we have slightly modified the

definition of A and gϕ by inserting a small parameter r > 0, in order to avoid zero

denominator.

Here, we shall consider general expressions for these three nonlinear terms.

2. As we are just considering our analysis from the mathematical point of view,

we may simplify the expression ∇u + ∇uT to ∇u, and the existence results

(Theorems 1–4) will still hold due to Korn’s inequality.1 Also, all experimental

constants have been taken equal to one. In numerical tests, we must consider the

original expression of the system.

3. System (1.1) lacks all transport terms (u · ∇)u, u∇θ, u∇ϕ we may find in (1.2);

in this sense, (1.2) is more realistic than (1.1), but the mathematical analysis of

system (1.1) is also interesting.

2. Functional Spaces

In the sequel, we will make use of the following standard notations: Ω ⊂ RN is a

bounded domain with Lispchitz boundary ∂Ω, N ≥ 2 being the space dimension.

D(Ω)
def
= space of C∞ functions with compact support in Ω .

H1(Ω)
def
= {v ∈ L2(Ω) : ∇v ∈ L2(Ω)N} ,
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here ∇v = ( ∂v
∂x1

, . . . , ∂v
∂xN

)T is the gradient of v, all derivatives being taken in the

distribution sense in Ω; this is a Hilbert space endowed with the inner product

(u, v)H1(Ω) = (u, v)L2(Ω) +
N∑
i=1

(
∂u

∂xi
,
∂v

∂xi

)
L2(Ω)

, (u, v)L2(Ω) =

∫
Ω

u(x)v(x) dx

(dx indicates Lebesgue’s measure on RN , we will drop out this symbol hereafter)

H1
0 (Ω)

def
= closure of D(Ω) in H1(Ω) ;

H1
0 (Ω) being a closed linear space in H1(Ω), is also a Hilbert space. By Poincaré’s

inequality, the bilinear form

(u, v)H1
0 (Ω) =

N∑
i=1

(
∂u

∂xi
,
∂v

∂xi

)
L2(Ω)

, u, v ∈ H1
0 (Ω)

defines a new inner product on H1
0 (Ω) equivalent to (u, v)H1(Ω) on H1

0 (Ω). Also,

since we assume the boundary ∂Ω to be Lipschitz, H1
0 (Ω) may be identified to the

space {v ∈ H1(Ω) : v = 0 on ∂Ω}.

H−1(Ω)
def
= dual space of H1

0 (Ω) ,

∇ · v def
=

∂v1

∂x1
+ · · ·+ ∂vN

∂xN
, divergence of v = (v1, . . . , vN )T ,

V
def
= {v ∈ H1

0 (Ω)N : ∇ · v = 0 in Ω} ,

W
def
= H1

0 (Ω) ∩ L∞(Ω) .

For u = (u1, . . . , uN)T and v = (v1, . . . , vN )T, the vector (u · ∇)v stands for the

transport term (the field v is transported by u) and is defined as

[(u · ∇)v]i
def
=

N∑
j=1

uj
∂vi

∂xj
, i = 1, . . . , N ,

and if z is a scalar quantity, the transport term for z is given by

u∇z def
=

N∑
j=1

uj
∂z

∂xj
.

Finally, we will use the abbreviation “a.e.” meaning “almost everywhere”.

3. Main Results

We will consider the following hypotheses on the data:

(H1) f ∈ H−1(Ω)N ;

(H2) a ≥ 0, b ≥ 0 are real constants;
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(H3) A : Ω × R × R 7→ RN×N is a Caratheodory mapping (x 7→ A(x, s1, s2) is

measurable in Ω, ∀ s1, s2 ∈ R, and (s1, s2) 7→ A(x, s1, s2) is continuous in

R× R, a.e. in Ω) and there exists a constant α > 0 such that

A(x, s1, s2)ξξ ≥ α|ξ|2 , ∀ s1, s2 ∈ R, ξ ∈ RN and a.e. x ∈ Ω ;

(H4) there exists a continuous function d : R2 7→ R+ such that

A(x, s1, s2)ξξ ≤ d(s1, s2)|ξ|2 , ∀ s1, s2 ∈ R, ξ ∈ RN and a.e. x ∈ Ω .

(H5) gθ, gϕ : Ω × Rθ × Rϕ × RN×N∇u 7→ R are Caratheodory functions and there

exists c ∈ L1(Ω) such that

{
0 ≤ g(x, s1, s2, B) ≤ d(s1, s2)(c(x) + |B|2)

∀ s1, s2 ∈ R, B ∈ RN×N and a.e. x ∈ Ω ;

for both g = gθ and g = gϕ.

Remarks. 1. If θ and ϕ are two measurable functions, then by A(θ, ϕ) we are

denoting the function x 7→ A(x, θ(x), ϕ(x)). Since A is Caratheodory [hypothesis

(H3)], A(θ, ϕ) is also measurable. The same is true for gθ(θ, ϕ,∇u) and gϕ(θ, ϕ,∇u).

2. In a more general situation, instead of just A, we may think of three different

tensor viscosities Au, Aθ and Aϕ for the respective equations of u, θ and ϕ. If these

three matrix functions verify (H3) and (H4), then Theorems 1–4 below still hold.

In any case, A(θ, ϕ) is not assumed to be symmetric.

3. Hypotheses (H4) and (H5) assume general asymptotic behavior of A, gθ and gϕ
with respect to θ and ϕ. We can afford this since we are going to show the existence

of solutions θ and ϕ lying in L∞.

Now we introduce the weak formulation problems corresponding to systems (1.1)

and (1.2) respectively (remember that the pressure is gone since all test functions

are divergence free; it may be retrieved by the standard de Rham’s argument12,15):



to find u ∈ V, θ, ϕ ∈ H1(Ω) such that θ − a, ϕ− b ∈W ,∫
Ω

A(θ, ϕ)∇u∇v = 〈f, v〉 , ∀ v ∈ V ,∫
Ω

A(θ, ϕ)∇θ∇φ+

∫
Ω

θgθ(θ, ϕ,∇u)φ =

∫
Ω

φ , ∀ φ ∈W ,∫
Ω

A(θ, ϕ)∇ϕ∇φ+

∫
Ω

ϕgϕ(θ, ϕ,∇u)φ = 0 , ∀ φ ∈W ;

(3.3)
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to find u ∈ V, θ, ϕ ∈ H1(Ω) such that θ − a, ϕ− b ∈W ,∫
Ω

(u · ∇)uv +

∫
Ω

A(θ, ϕ)∇u∇v = 〈f, v〉 , ∀ v ∈ V ,∫
Ω

u∇θφ+

∫
Ω

A(θ, ϕ)∇θ∇φ +

∫
Ω

θgθ(θ, ϕ,∇u)φ =

∫
Ω

φ , ∀ φ ∈W ,∫
Ω

u∇ϕφ+

∫
Ω

A(θ, ϕ)∇ϕ∇φ +

∫
Ω

ϕgϕ(θ, ϕ,∇u)φ = 0 , ∀ φ ∈W ,

(3.4)

and the main results now follow (see also Sec. 6).

Theorem 1. Under hypotheses (H1)–(H5), there exists (u, θ, ϕ) solution to (3.3),

such that

0 ≤ θ ≤ a+
C(N,Ω)

α
, a.e. in Ω , (3.5)

0 ≤ ϕ ≤ b , a.e. in Ω , (3.6)

where C(N,Ω) is a constant value.

Theorem 2. Let N = 2 or 3 and assume (H1)–(H5). Then there exists (u, θ, ϕ)

solution to (3.4), such that (3.5) and (3.6) still hold.

The next sections are devoted to describe the proof of these two results.

Proof of Theorem 1. We will make use of the following auxiliary lemma (see

appendix for the proof).

Lemma 1. Let A ∈ L∞(Ω)N×N , u ∈ L2(Ω)N , ∇ · u = 0 in Ω and u · n = 0 on

∂Ω, f ∈ L∞(Ω) with f ≥ 0 a.e. in Ω, h ∈ L1(Ω) with h ≥ 0 a.e. in Ω and, finally,

a ∈ R+ be given. We assume that there exists α > 0 such that

A(x)ξξ ≥ α|ξ|2 , ∀ ξ ∈ RN , a.e. in Ω .

Consider the linear problem
z ∈ H1(Ω) , z − a ∈W∫

Ω

A∇z∇φ+

∫
Ω

u∇zφ+

∫
Ω

hzφ =

∫
Ω

fφ , ∀ φ ∈W .
(3.7)

Then, there exists a unique solution z to (3.7) and furthermore0 ≤ z ≤ a+
C1

α
‖f‖L∞(Ω) a.e. in Ω ,

‖z‖H1(Ω) ≤ C2 ,

(3.8)

where C1 = C1(Ω, N) and C2 = C2(a, α,Ω, N, ‖f‖L∞(Ω), ‖h‖L1(Ω)).

Remarks. 1. Though (3.7) is a linear problem, it contains coefficients with low

regularity (u and h). This rather low regularity is compensated with the (strong)

hypothesis f ∈ L∞(Ω) and the positivity conditions on both f and h.



January 25, 2000 14:42 WSPC/103-M3AS 0041

Existence of Solution to Nonlinear Elliptic Systems Arising in Turbulence Modelling 253

2. Note that the L∞-estimate in (3.8) depends neither on h, on u nor on

‖A‖L∞(Ω)N×N . This is the key which will lead us to the resolution of problems

(3.3) and (3.4).

3. Lemma 1 is still valid if f ∈ Lq(Ω) for some q > N/2 (respectively f ∈W−1,q(Ω)

for some q > N) instead of f ∈ L∞(Ω). Notice that under the assumption f ∈
W−1,q(Ω), the positivity condition f ≥ 0 reads in the distribution sense, i.e.

〈f, φ〉
W−1,q(Ω),W1,q′

0 (Ω)
≥ 0 , ∀ φ ∈W 1,q′

0 (Ω) , φ ≥ 0 a.e. in Ω ,

where 1/q + 1/q′ = 1.

Now, in order to prove the existence of solution to (3.3), we are going to apply

a Schauder fixed point technique.2 To do so, we introduce the set BR = {(θ̄, ϕ̄) ∈
L2(Ω) × L2(Ω) : 0 ≤ θ̄ ≤ R, 0 ≤ ϕ̄ ≤ b a.e. in Ω} where R ≥ a + C1/α (C1

is the constant appearing in (3.8)). Then, BR is a non-empty, closed and convex

set of L2(Ω) × L2(Ω). Next we define the operator Φ : BR 7→ L2(Ω) × L2(Ω),

Φ(θ̄, ϕ̄) = (θ, ϕ) where (θ, ϕ) is given by the following procedure:

(i) u ∈ V such that ∫
Ω

A(θ̄, ϕ̄)∇u∇v = 〈f, v〉 , ∀ v ∈ V .

(ii) θ ∈ H1(Ω) such that θ − a ∈W and∫
Ω

A(θ̄, ϕ̄)∇θ∇φ+

∫
Ω

θgθ(θ̄, ϕ̄,∇u)φ =

∫
Ω

φ , ∀ φ ∈W .

(iii) ϕ ∈ H1(Ω) such that ϕ− b ∈W and∫
Ω

A(θ̄, ϕ̄)∇ϕ∇φ+

∫
Ω

ϕgϕ(θ̄, ϕ̄,∇u)φ = 0 , ∀ φ ∈W .

Thanks to hypotheses (H1)–(H5), all terms in (i)–(iii) make sense. Step (i) is a

linear Stokes system, and therefore it has a unique solution; on the other hand, by

applying Lemma 1, problems in steps (ii) and (iii) have a unique solution in θ and

ϕ, respectively.

It is straightforward that Φ is a continuous operator. Also, thanks to the first

estimate in (3.8), we have Φ(BR) ⊂ BR. It remains to show that Φ is compact. To

do so, we make use of hypothesis (H5) and the estimates (3.8). We have, for g = gθ
and g = gϕ

0 ≤ g(θ̄, ϕ̄,∇u) ≤ D(c(x) + |∇u|2) ,

where D = max{d(s1, s2) : |s1| ≤ R, |s2| ≤ b}. Hence, for all (θ̄, ϕ̄) ∈ BR

‖g(θ̄, ϕ̄,∇u)‖L1(Ω) ≤ D(‖c‖L1(Ω) + ‖u‖2H1
0(Ω)N ) ≤ D

(
‖c‖L1(Ω) +

‖f‖2H−1(Ω)N

α2

)
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and again, using the second estimate in (3.8), we finally deduce that, for (θ, ϕ) =

Φ(θ̄, ϕ̄),

‖θ‖H1(Ω), ‖ϕ‖H1(Ω) ≤ C(a, b, α,Ω, N, ‖f‖H−1(Ω)N , ‖c‖L1(Ω)) .

This means that Φ(BR) lies in a bounded set of H1(Ω)×H1(Ω), which implies that

Φ(BR) is relatively compact in L2(Ω)× L2(Ω). Consequently, Φ is compact.

By Schauder’s fixed point theorem, there exists (θ, ϕ) such that (θ, ϕ) = Φ(θ, ϕ);

writing down (i)–(iii) for this (θ, ϕ) yields that (u, θ, ϕ) is a solution of system (3.3).

This ends the proof of Theorem 1.

Proof of Theorem 2. Now we show Theorem 2. We proceed as in the previous

section. Let us introduce the set BR = {(ū, θ̄, ϕ̄) ∈ L4(Ω)N × L2(Ω) × L2(Ω),

0 ≤ θ̄ ≤ R, 0 ≤ ϕ̄ ≤ b, ‖ū‖L4(Ω)N ≤ C0(N,Ω)
α ‖f‖H−1(Ω)N , }, where C0(N,Ω) is the

Sobolev constant of the embedding H1
0 (Ω) ↪→ L4(Ω) (remember here that N = 2

or 3); and the operator Φ : BR 7→ L4(Ω)N × L2(Ω) × L2(Ω), Φ(ū, θ̄, ϕ̄) = (u, θ, ϕ)

is defined as follows:

(i) u ∈ V such that∫
Ω

(ū · ∇)uv +

∫
Ω

A(θ̄, ϕ̄)∇u∇v = 〈f, v〉 , ∀ v ∈ V ;

(ii) θ ∈ H1(Ω) such that θ − a ∈W and∫
Ω

ū∇θφ+

∫
Ω

A(θ̄, ϕ̄)∇θ∇φ+

∫
Ω

θgθ(θ̄, ϕ̄,∇u)φ =

∫
Ω

φ , ∀ φ ∈W ;

(iii) ϕ ∈ H1(Ω) such that ϕ− b ∈W and∫
Ω

ū∇ϕφ+

∫
Ω

A(θ̄, ϕ̄)∇ϕ∇φ+

∫
Ω

ϕgϕ(θ̄, ϕ̄,∇u)φ = 0 , ∀ φ ∈W .

Step (i) is a transport Stokes system and it has a unique solution by a simple

application of the Lax–Milgram theorem. For steps (ii) and (iii), we apply Lemma 1.

Consequently, Φ is well defined.

It is straightforward that Φ is continuous and, since N ≤ 3, it is also compact.

Moreover, taking again R ≥ a+C1/α, we have Φ(BR) ⊂ BR. Consequently, Φ has

a fixed point (u, θ, ϕ), which in turn is a solution of system (3.4). This ends the

proof of Theorem 2.

Remark. In the case N = 4, problems (i)–(iii) are well posed and Φ is still well

defined. Unfortunately, since the embedding H1
0 (Ω) ↪→ L4(Ω) is no longer compact,

the operator Φ is not compact either, and the procedure described here does not

work.

4. Final Comments and Generalizations

The uniqueness of solution for this kind of problems is difficult to obtain, even in the

case of the Stokes like system (in general, we cannot expect uniqueness for system
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(3.4) since this does not hold for the steady state Navier–Stokes equations, unless

‖f‖H−1(Ω) were small enough). Mainly, this is due to the strong coupling of the

unknowns through the nonlinear diffusion matrix A(θ, ϕ) and the nonlinear terms

θgθ(θ, ϕ,∇u) and ϕgϕ(θ, ϕ,∇u). We may try to relax this strong coupling in order

to obtain the uniqueness of positive solutions; for instance, we may take A = A(θ)

verifying the local Lipschitz condition: for every M > 0, there exists LM ≥ 0 such

that ‖A(x, s1)−A(x, s2)‖ ≤ LM |s1−s2|, for all s1, s2, 0 ≤ s1, s2 ≤M and a.e. x ∈ Ω

(‖ · ‖ being a matrix norm); and also gθ = gθ(θ) and gϕ = gϕ(θ, ϕ), verifying

(s1gθ(x, s1)− s2gθ(x, s2))(s1− s2) ≥ 0, (s1gϕ(x, s, s1)− s2gϕ(x, s, s2))(s1− s2) ≥ 0,

for all s, s1, s2 ≥ 0, and a.e. x ∈ Ω. But as one can readily see, these conditions are

very restrictive as the system becomes practically uncoupled.

Along the proof of Theorems 1 and 2, we observe that the L∞-regularity has

played a fundamental role. We can extend these results to more general situations

in which the nonlinear terms gθ and gϕ may also depend on u: g(θ, ϕ, u,∇u). In

fact, it will be sufficient that these terms lie in L1(Ω). To assure this, we may change

(H5) to (H5)′, namely:

(H5)′ gθ, gϕ : Ω × Rθ × Rϕ × RNu × RN×N∇u 7→ R are Caratheodory functions and

such that

— if N > 2: there exists c ∈ L1(Ω) with{
0 ≤ g(x, s1, s2, v, B) ≤ d(s1, s2)(c(x) + |v|2N/(N−2) + |B|2)

∀ s1, s2 ∈ R, v ∈ RN , B ∈ RN×N and a.e. x ∈ Ω ;

— if N = 2: ∀ δ > 0 there exists cδ ∈ L1(Ω) with{
0 ≤ g(x, s1, s2, v, B) ≤ d(s1, s2)(cδ(x) + exp(δ|v|2) + |B|2)

∀ s1, s2 ∈ R, v ∈ RN , B ∈ RN×N and a.e. x ∈ Ω ;

for both g = gθ and g = gϕ.

In effect, in the case N > 2, we make use of the continuous Sobolev embed-

ding H1
0 (Ω) ↪→ L2N/(N−2)(Ω); on the other hand, when N = 2 we may use the

Trudinger–Moser inequality.6 Now, the two problems are:

to find u ∈ V, θ, ϕ ∈ H1(Ω) such that θ − a, ϕ− b ∈W ,∫
Ω

A(θ, ϕ)∇u∇v = 〈f, v〉 , ∀ v ∈ V ,∫
Ω

A(θ, ϕ)∇θ∇φ +

∫
Ω

θgθ(θ, ϕ, u,∇u)φ =

∫
Ω

fθφ , ∀ φ ∈W ,∫
Ω

A(θ, ϕ)∇ϕ∇φ +

∫
Ω

ϕgϕ(θ, ϕ, u,∇u)φ =

∫
Ω

fϕφ , ∀ φ ∈W ;

(4.9)
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to find u ∈ V, θ, ϕ ∈ H1(Ω) such that θ − a, ϕ− b ∈W ,∫
Ω

(u · ∇)uv +

∫
Ω

A(θ, ϕ)∇u∇v = 〈f, v〉 , ∀ v ∈ V ,∫
Ω

u∇θφ+

∫
Ω

A(θ, ϕ)∇θ∇φ +

∫
Ω

θgθ(θ, ϕ, u,∇u)φ =

∫
Ω

fθφ , ∀ φ ∈W ,∫
Ω

u∇ϕφ+

∫
Ω

A(θ, ϕ)∇ϕ∇φ +

∫
Ω

ϕgϕ(θ, ϕ, u,∇u)φ =

∫
Ω

fϕφ , ∀ φ ∈W ,

(4.10)

then, we have the following results:

Theorem 3. Let fθ, fϕ ∈ L∞(Ω) be given such that, fθ ≥ 0, fϕ ≥ 0 a.e. in Ω.

Assume hypotheses (H1)–(H4) and (H5)′. Then there exists (u, θ, ϕ) solution to

(4.9), such that

0 ≤ θ ≤ a+
C(N,Ω)

α
‖fθ‖L∞(Ω) , a.e. in Ω , (4.11)

0 ≤ ϕ ≤ b+
C(N,Ω)

α
‖fϕ‖L∞(Ω) , a.e. in Ω . (4.12)

Theorem 4. Let N = 2 or 3. Under the assumptions of Theorem 3, there exists

(u, θ, ϕ) solution to (4.10) such that (4.11) and (4.12) still hold.

Remarks. Theorems 3 and 4 still hold with the hypothesis fθ, fϕ ∈ L∞(Ω) change

to fθ, fϕ ∈ Lq(Ω) for some q > N/2 (respectively fθ, fϕ ∈ W−1,q(Ω) for some

q > N) and in the estimates (4.11) and (4.12), we have ‖fθ‖Lq(Ω) and ‖fϕ‖Lq(Ω)

(respectively ‖fθ‖W−1,q(Ω) and ‖fϕ‖W−1,q(Ω)) instead of ‖fθ‖L∞(Ω) and ‖fϕ‖L∞(Ω).

The function d appearing in (H4), (H5) or (H5)′ needs not be continuous. In

fact, it is sufficient to assume that d : R2 7→ R+ maps bounded sets in R2 onto

bounded sets in R+ and Theorems 1–4 remain true.

There are an intermediate situation between problems (4.9) and (4.10) in which

Theorem 3 applies. In effect, consider the problem in which we drop out the trans-

port term (u · ∇)u in the equation for the velocity field in (4.10), but we still keep

u∇θ and u∇ϕ in the respective equations for θ and ϕ. It is straightforward that in

this case Theorem 3 still holds.

We have considered in our analysis only Dirichlet boundary conditions on all

the unknowns. We may generalize to other boundary conditions (Fourier, mixed

Dirichlet–Neumann, etc.) on the velocity field, provided that the corresponding

Stokes problem is well-posed. In those cases, all the results shown here are still valid.

But we have not analyzed what happens when the constant Dirichlet boundary

conditions on θ and ϕ are not considered. This seems a very difficult task to take

in, even in the “simple” case of non-constant Dirichlet boundary conditions.

To end this work, we notice that the steady-state k–ε turbulence model (see

the Introduction) is not a particular case of the problems studied here. This is not
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only because of the singular coefficients of this model (k2/ε and ε2/k which may

be approximated by k2/γ(ε) and ε2/γ(k), γ being a continuous and nonvanishing

function which approximates the identity [this is an idea of Lewandowski8]) but

also, the nonlinear term c1
k2

ε
|∇u +∇uT|2 does not satisfy hypothesis (H5). That

is the main difference between the two models k–ε and θ–ϕ, and that is why we

may consider this last model as a stabilization of the first one.

Appendix. Proof of the Auxiliary Lemma 1

Along this Appendix we develop the proof of Lemma 1.

The uniqueness of solution is straightforward. Due to the hypotheses under the

field u, there exists a sequence (uk) ⊂ D(Ω) such that ∇ · uk = 0 and uk → u in

L2(Ω)-strongly. We also consider (hk) ⊂ L∞(Ω) such that 0 ≤ hk ≤ h a.e. in Ω,

and hk → h in L1(Ω)-strongly (take for example hk = min(k, h), k = 1, 2, . . .).

Then we set up the approximated problems, namely
zk ∈ a+H1

0 (Ω)∫
Ω

A∇zk∇v +

∫
Ω

uk∇zkv +

∫
Ω

hkzkv =

∫
Ω

fv , ∀ v ∈ H1
0 (Ω) .

(A.1)

For every k ≥ 1, by the Lax–Milgram theorem, there exists a unique solution to

(A.1). Then, Lemma 1 will be shown if we prove that the estimates (3.8) hold

uniformly for all zk, k ≥ 1.

To begin with, we show the existence of a constant, not dependent on k, such

that 0 ≤ zk ≤ C, a.e. in Ω.

Taking the test function v = z−k = max{0,−zk} ∈ H1
0 (Ω) (since a ≥ 0), we

deduce z−k = 0, which means that zk ≥ 0, a.e. in Ω.

Now, in order to state the uniform bound of (zk) we are going to apply Stampac-

chia’s technique based on truncations.13,14 To do so, we first consider the following

problems 
yk ∈ H1

0 (Ω)∫
Ω

A∇yk∇v +

∫
Ω

uk∇ykv =

∫
Ω

v , ∀ v ∈ H1
0 (Ω)

(A.2)

and let’s see that there exists a constant C = C(N,Ω, α) > 0 such that yk ≤ C,

∀ k ≥ 1 and a.e. in Ω.

For every M > 0, take v = (yk −M)+ ∈ H1
0 (Ω) as a test function in (A.2); it

yields

α

∫
yk≥M

|∇yk|2 ≤
∫
yk≥M

(yk −M)+ .

On the other hand, by the Sobolev embedding H1
0 (Ω) ↪→ L2∗(Ω) [2∗ = 2N/(N − 2)

if N > 2, 2∗ = q, any finite q] we have(∫
Ω

|(yk −M)+|2∗
)2/2∗

≤ C∗(Ω, N)

∫
Ω

|∇(yk −M)+|2
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hence

α

C∗(Ω, N)

(∫
Ω

|(yk −M)+|2∗
)2/2∗

≤
∫

Ω

|(yk −M)+| .

On the other hand,(∫
yk≥M

(yk −M)+

)2

≤
(∫

yk≥M
|(yk −M)+|2∗

)2/2∗

|{yk ≥M}|2−2/2∗

≤ C∗(Ω, N)

α

(∫
yk≥M

(yk −M)+

)
|{yk ≥M}|2−2/2∗

and therefore ∫
yk≥M

(yk −M)+ ≤ C∗(Ω, N)

α
|{yk ≥M}|2−2/2∗ .

Let H >M ; we have∫
yk≥M

(yk −M)+ ≥
∫
yk≥H

(yk −M)+ ≥ (H −M)|{yk ≥ H}|2−2/2∗ .

We introduce the function ψ : R+ 7→ R+ given by ψ(H) = |{yk ≥ H}|, so that

ψ(H) ≤ C∗(Ω, N)

α(H −M)
ψ(M)2−2/2∗ , ∀ H >M .

At this point, we make use of the following result due to Stampacchia.13,14

Lemma A.1. Let k0 ∈ R and ψ : [k0,+∞) 7→ R+ be a decreasing function such

that

ψ(h) ≤ C

(h− k)α
(ψ(k))β , ∀ h > k > k0

for some non-negative constants C, α and β. Then,

• if β > 1, ψ(k0 + d) = 0, with d = C(ψ(k0))β−12αβ/(β−1).

• if β = 1, ψ(h) ≤ e exp(−ξ(h− k0))ψ(k0) where ξ = (eC)−1/α.

• if β < 1 and k0 > 0, ψ(h) ≤ 2µ/(1−β)(C1/(1−β) + (2k0)µψ(k0))h−µ where µ =

α/(1− β).

Since 2 − 2
2∗ = N+2

N
= β > 1, we apply Lemma A.1 with k0 = 0 and deduce

that ψ(d) = 0, for d = C∗(Ω,N)
α
|Ω|(N+2)/N−12β.

Consequently, there exists a constant value C(Ω, N) such that

yk ≤
C(Ω, N)

α
, a.e. in Ω .

Consider the function z̃k = zk − a − ‖f‖L∞(Ω)yk, which is a solution to the

problem
z̃k ∈ H1

0 (Ω)∫
Ω

A∇z̃k∇v +

∫
Ω

uk∇z̃kv =

∫
Ω

(f − ‖f‖L∞(Ω) − hkzk)v , ∀ v ∈ H1
0 (Ω) .
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By the maximum principle we have z̃k ≤ 0, i.e. zk ≤ a + ‖f‖L∞(Ω)yk. So, in

conclusion we have proved that

0 ≤ zk ≤ a+
C(Ω, N)

α
‖f‖∞(Ω) , ∀ k ≥ 1 , a.e. in Ω .

It remains to show that the sequence (zk) is bounded in H1(Ω). To do so, it will

be sufficient to show that the sequence (z̄k), z̄k = zk − a is bounded in H1
0 (Ω). We

have 
∫

Ω

A∇z̄k∇v +

∫
Ω

uk∇z̄kv +

∫
Ω

hkz̄kv

=

∫
Ω

fv −
∫

Ω

ahkv , ∀ v ∈ H1
0 (Ω)

taking v = z̄k as a test function in this formulation yields∫
Ω

A∇z̄k∇z̄k +

∫
Ω

hk|z̄k|2 =

∫
Ω

f z̄k −
∫

Ω

ahkz̄k ,

hence

‖z̄k‖2H1
0(Ω) ≤

1

α2
max(aα,C(Ω, N)‖f‖L∞(Ω))(|Ω|‖f‖L∞(Ω) + a‖h‖L1(Ω)) .
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