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In this paper, a sufficient condition for non-negative random variables to be
ordered in the Generalized Lorenz sense is presented. This condition does not
involve inverse distribution functions. Applications of this result to several income
distribution models are given. Journal of Economic Literature Classification
Numbers: D36, D69. � 2000 Academic Press

1. INTRODUCTION

In economics, the relationship between income-welfare-inequality and its
principal field of application, namely the comparison and ranking of
income distribution of different social states, has been the subject of
numerous studies (see Atkinson [3], Rothschild and Stiglitz [14],
Dasgupta et al. [6] or Kakwani [9]).We may suppose that there exists a
social welfare function

|=|(x)=|(x1 , x2 , ..., xn)

where xi is the income of individual i. We may reasonably assume that |( } )
is a Schur-concave non-decreasing function of all incomes (the assumption
that |( } ) is Schur-concave is equivalent to the presumption that society
favours a more equitable distribution [see Dasgupta et al., [6]). Let 0
denote the set of non-decreasing Schur-concave welfare functions and write

xpx$ � |(x)�|(x$) for all |( } ) # 0.

A sufficient condition for this to hold is that x has both a higher mean and
a higher Lorenz curve than x$ (see Dasgupta et al. [6]). This sufficient con-
dition tends to obscure many important situations in which distributions
can be ranked. The Lorenz curve of any income distribution is the graph
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of the fraction of the total income owned by the lowest u-th fraction
(0�u�1) of the population, as a function of u. If a non-negative random
variable X represents the income of a society or community, with distribu-
tion function F(x) and finite expectation +X , then the Lorenz curve LX (u)
of X is given by (Gastwirth, [8])

LX (u)=
1

+X
|

u

0
F&1 (t) dt 0�u�1

where F&1 denotes the inverse of F:

F&1 (a)=inf[x : F(x)�a], a # [0, 1].

There is extensive discussion of the Lorenz curve in Gail and Gastwirth
[7] and a concise account of its properties in Dagum [5]. Shorrocks [16]
introduces the notion of a Generalized Lorenz curve, GLX (u), constructed
by scaling up the ordinary Lorenz curve by the mean of the distribution,
i.e.

GLX (u)=+X } LX (u)

and shows that

|(x)�|(x$) for all |( } ) # 0 iff GLX (u)�GLX$ (u) for all u.

Thus, scaling up the Lorenz curves to form the Generalized Lorenz curves
will often reveal a dominance relationship that is not apparent from an
examination of means and Lorenz curves on their own.

Let X and Y be two random variables with distribution functions F and
G respectively. The Generalized Lorenz curve can be used to define a par-
tial ordering on the class of distribution functions as follows:

F�gl G � GLX (u)�GLY (u) for every 0�u�1.

In this case, we say that Y is at least as unequal as X in the Shorrocks or
Generalized Lorenz sense.

In many distribution families, GLX (u) and the inverse of F do not have
simple closed forms. In this paper, a sufficient condition for non-negative
random variables to be ordered in the Generalized Lorenz sense is pre-
sented. This condition does not involve inverse distribution functions. In
Section 3 we apply our results to three income distribution models: the
Lognormal, the Pareto and the Gamma distributions. We conclude in
Section 4 with a brief discussion about other related orders.
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2. RESULTS

In what follows, we consider non-negative random variables X and Y
with finite means, having distribution functions F and G, respectively,
with supports supp(G)�supp(F )#[a, b], where 0�a<b��. Assume
that F and G are continuous and strictly increasing on their supports. The
following theorem shows that a ``single-crossing property'' on F and G
implies the Generalized Lorenz order.

Theorem 2.1. Suppose E[X]�E[Y] and there is some k in [a, b]
such that F(x)�G(x) for x in [a, k] and F(x)�G(x) for x in [k, b]. Then
G�gl F.

Proof. By the assumptions on F and G, there exists t0 # [0, 1] such
that F&1 (t)�G&1 (t) for t in [0, t0]. Therefore,

|
u

0
F&1 (t) dt�|

u

0
G&1 (t) dt (1)

for all u in [0, t0]. If

|
c

0
F &1 (t) dt>|

c

0
G&1 (t) dt

for some c in (t0 , 1], we must have �1
0 F&1 (t) dt>�1

0 G&1 (t) dt, because
F&1 (t)�G&1 (t) for all t in [c, 1]. But this means E[X]>E[Y], a con-
tradiction. Hence, (1) holds for all u in [0, 1] and, consequently, G�gl F.

Remark 2.1. If k=b in Theorem 2.1, then G is said to be stochastically
larger than F and the relation is denoted F�st G.

Suppose now that F and G are absolutely continuous with density func-
tions f and g, respectively (note that the sufficient condition in Theorem 2.1
does not involve the existence of f and g). By relating the unimodality of
the ratio g�f (where we understand unimodality of the function g(t)� f (t) to
be for t restricted to supp( f )) to single-crossing property we obtain the
next result, which provides a convenient sufficient condition for the
Generalized Lorenz comparison of two random variables.

Theorem 2.2. If E[X]�E[Y] and g(t)�f (t) is unimodal, where the
mode is a supremum, then G�gl F.
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Proof. Let S(h) be the number of sign changes of the function h(t).
Since the function g(t)� f (t) is unimodal, with the mode yielding a
supremum, we have that

S(g�f&1)=S(g& f )�2 (2)

with sign sequence &, +, & in case of equality.

By Lemma 2.1 of Shaked [15], condition (2) implies that there exists a k
in [a, b] such that F(t)�G(t) for t in [a, k] and F(t)�G(t) for t in [k, b].
Hence, by Theorem 2.1 it follows that G�gl F.

Corollary 2.1. If E[X]�E[Y] and g(t)�f (t) is log-concave, then
G�gl F.

Proof. The proof is immediate considering that a sufficient condition
for f�g to be unimodal is for f�g to be log-concave (Keilson and Gerber
[11]).

3. APPLICATIONS

In this section we will apply the results of Section 2 to three models of
income distributions: the Lognormal, the Pareto and the Gamma distribu-
tions.

3.1. The Lognormal Distribution

Let X be a lognormal random variable with parameters + and _. Its
probability density function is

f (x)=
1

x - 2?_
exp {&

1
2 _

ln x&+
_ &

2

= , x>0, + # R, _>0. (3)

Fix _>0 and for +i (i=1, 2), we denote by F+i the corresponding
distribution function. It is easy to see that +1<+2 implies F+1

�st F+2
.

Applying Theorem 2.1 it is concluded that F+2
�gl F+1

whenever +1<+2 .
Now, assume that X1 and X2 be lognormal random variables with

parameters (+1 , _1) and (+2 , _2) respectively and let f1 and f2 be the corre-
sponding densities. Let _1<_2 . Since E[Xi]=exp(+i+

1
2_2

i ), (i=1, 2), it
follows that E[X1]�E[X2] if and only if _2

2&_2
1�2(+1&+2). Besides,

elementary manipulation shows that the ratio f1 (x)� f2 (x) is unimodal for
x>0 and, by Theorem 2.2, F1�gl F2 holds.
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3.2. The Pareto Distribution

Let X be the Pareto random variable with parameters : and =. Its prob-
ability density function is:

f (x)=
:
x \x

=+
&:

, x�=, :>0 , =>0.

Its corresponding distribution function is

F(x)=1&\x
=+

&:

, x�=. (4)

From (4) it is easy to verify that F=1
�st F=2

for =1<=2 ( : fixed) and that
F:1

�st F:2
whenever :1<:2 (= fixed). It follows from Theorem 2.1 that

Pareto distributions are ordered in the Generalized Lorenz sense either by
their parameter : or by their parameter =.

Now consider the general case in which X1 and X2 have respective
parameters (:1 , =1) and (:2 , =2), densities f1 and f2 and distribution func-
tions F1 and F2 and suppose =1�=2 , that is, supp( f2)�supp( f1). Since
E[Xi]=:i =i �(: i&1) for :i>1, it follows that E[X1]�E[X2] whenever
:1�:2>1. In these conditions, f2 (x)�f1 (x) is unimodal on supp( f1).
Hence, from Theorem 2.2 it follows that

=1�=2 and :1�:2>1 implies F2�gl F1.

3.3. The Gamma Distribution

A random variable X follows the Gamma distribution with parameters
:, ; and # if its density has the form

f (x)=
(x&#):&1 exp[&(x&#)�;] ;&:

1(:)
, x>#, :>0, ;>0, #>0

(5)

where 1( } ) denotes the complete Gamma function.
It is known that Gamma distributions are stochastically ordered by their

parameters. Applying Theorem 2.1 it is concluded that these distributions
are ordered in the Generalized Lorenz sense according to their parameters.
Thus, we have the following results:

:1<:2 O F:2�gl F:1 (; and # fixed)

;1<;2 O F;2
�gl F;1

, (: and # fixed),

#1<#2 O F#2
�gl F#1

, (: and ; fixed).
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Now, fix # (assume without loss of generality #=0). Let X1 and X2 be
Gamma random variables with parameters :1 , ;1 and :2 , ;2 respectively
and assume :1�:2 . Then, clearly supp( f1)= supp( f2)=[x : x>0]. It
follows from (5) that f2 (x)�f1 (x) is log-concave whenever :1�:2 . On the
other hand, the mathematical expectation of the Gamma distribution with
parameters : and ; is :; so that E[X1]�E[X2] if and only if
:1 ;1�:2;2 . From Corollary 2.1 it follows that if :1�:2 and :1;1�:2;2

then F2�gl F1 .

4. RELATED TOPICS

The Generalized Lorenz order is closely related to the usual Lorenz
order (see Arnold [1]). We say that Y is at least as unequal as X in the
Lorenz sense if the Lorenz curve of X is nowhere below that of Y.
Obviously, if both random variables have the same mean, then Lorenz and
Generalized Lorenz orders are equivalent. The Lorenz order within the
Lognormal, Pareto or Gamma parametric families has been studied in
Arnold et al. [2]. They show that any two members of each family which
differ in their form parameters have nested Lorenz curves.

The relationship between the Lorenz curve and some notions of interest
in reliability theory has been studied by several authors (see, for example,
Klefsjo [12]). In this context, it can be seen that the sufficient condition
given in Theorem 2.1 can be also derived, by using Theorem 1.6 (i) of
Chong [4], from the inequality

|
x

a
F� (t) dt�|

x

a
G� (t) dt for all x in (a, b) (6)

where F� =1&F and G� =1&G are the survival functions of X and Y,
respectively. If E[X]=E[Y], then (6) is equivalent to

|
b

x
G� (t) dt�|

b

x
F� (t) dt for all x in (a, b). (7)

Stoyan [17] says that Y is ``smaller in mean residual life'' than X if (7)
holds and calls this ordering the ``convex order.'' If X and Y are non-
negatives random variables and E[X]=E[Y], then it follows from
Theorem 3.2 of Arnold [1] and Theorem 1.3.1 of Stoyan [17] that the
convex and the Lorenz orders are equivalent. The convex order within the
Lognormal and Gamma distributions has also been studied (Stoyan [17]).

On the other hand, the origins of the ``single-crossing property'' may be
found in Karlin and Novikoff [10]. This property has often been used to
compare distribution functions (see, for example, Arnold [1], Marshall
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and Proschan [13] and Stoyan [17]). Theorem 6.4 in Arnold [1]
provides a result for the Lorenz order similar to Theorem 2.1. When
E[X]=E[Y], both results are equivalent. In Theorem 6.5 he also
provides a sufficient condition for the Lorenz order in terms of two sign
changes of the densities corresponding to absolutely continuous distribu-
tion functions. Stoyan [17] (see Sections 1.3�1.6) discusses a very similar
property (called the ``cut criterion'') which provides a suitable condition for
the convex order.
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