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Integrable hierarchies associated with the singular sector of the Kadomtsev—
Petviashvili (KP) hierarchy, or equivalently, with d operators of nonzero index are
studied. They arise as the restriction of the standard KP hierarchy to submanifolds
of finite codimension in the space of independent variables. For higher J index
these hierarchies represent themselves as families of multidimensional equations
with multidimensional constraints. The d-dressing method is used to construct these
hierarchies. Hidden Korteweg—de Vries, Boussinesq, and hidden Gelfand-Dikii
hierarchies are considered, too. © 2000 American Institute of Physics.
[S0022-2488(99)02812-1]

1. INTRODUCTION

It is well established now that the Kadomtsev—Petviashvili (KP) hierarchy is the key ingre-
dient in a number of remarkable nonlinear problems, both in physics and mathematics (see, e.g.,
Refs. 1-4). In physics, its applications range from the shallow water waves (see Refs. 1-4) to the
modern string theory (see, e.g., Refs, 5~8). Resolution of the famous Schottky problem is one of
the most impressive manifestations of the KP hierarchy in pure mathematics.” Several methods
have been developed to describe and analyze the KP hierarchy and other integrable hierarchies, for

instance, the inverse scattering transform method,!™® Grassmannian approach,m'13 or §—dressing
method.*~16417 These methods have arisen to study generic properties of the KP hierarchy and
other integrable equations. In particular, the construction of everywhere regular solutions of inte-
grable systems (solitons, lumps, dromions, etc.), which may have applications in physics, was a
main interest.

Much less attention was paid to singular solutions of integrable equations. Pole-type solutions
of the Korteweg—de Vries (KdV) equation have been known for a long time. However, interest in
this class of solutions increased only when it was shown that the motion of poles for the KdV
equation is governed by the Calogero—Moser model.'®? Similar results for rational singular
solutions of the KP equation have been obtained in Ref. 20. The general study of generic singu-
larity manifolds began with the formulation of the Painlevé analysis method for partial differential
equations in Refs. 21 and 22. The structure of generic singularities of integrable equations turns
out to be connected with all their remarkable properties (Lax pairs, Backlund-transformations,
etc.) (see, e.g., Refs. 23 and 3). Characteristic singular manifolds (i.e., singular manifolds with
additional constraints) have been discussed in Refs. 24-26.

A new method to analyze singular sectors of integrable equations has been proposed in Ref.
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27. It uses the Birkhoff decomposition of the Grassmannian, its relation with zero sets of the 7
function and its derivatives, and properties of Backliind transformations. This method provides a
regular way to construct desingularized wave functions near the blow-up locus (Birkhoff strata).
Note that the connection between the Painlevé analysis and cell decomposition for the Toda lattice
has been discussed in Ref. 28 (see also Ref. 29). Note also that the characteristic singular mani-
folds considered in Refs. 24 and 26 correspond to the second Birkhoff stratum (7=0, 7,=0).

A problem closely refated to the study of these singular sectors is the following: A standard
KP (and KdV) hierarchy flows in the so-called big cell of the Grassmannian (dense open subset of
the Grassmannian). The Birkhoff strata are subsets with finite codimension. Are there any inte-
grable systems associated with the Birkhoff strata? A positive answer to this question has been
given recently in Ref. 30. It occurs that in the KdV case the corresponding integrable hierarchies
are connected to the Schrodinger equation with energy-dependent potential.

In the present paper we study integrable hicrarchies associated with the singular sector of the
KP hierarchy. This sector consists of different Birkhoff strata or equivalently of different Schubert
cells. The Schubert cells have finite dimension and are connected with the family of the Calogero—
Moser-type models which describe motion of poles. Here we will concentrate on integrable sys-
tems associated with Birkhoff strata. We show that they can be constructed by restricting the
standard KP hierarchy to submanifolds of finite codimension in the space of independent vari-
ables. To build these hierarchies we will mainly use the d-dressing method. Integrable systems
associated with Birkhoff strata are rather complicated as well as the corresponding linear prob-
lems. They are of high order, though there are effectively 2+1 dimensional hierarchies. For
higher Birkhoff strata these integrable equations clearly demonstrate a sort of quasi-
multidimensionality. We also discuss hidden Gelfand-Dikii hierarchies. Besides illustrating by
simpler formulas some of the results of this work, we can in this case provide useful methods to
construct solutions.

An important property of the hidden KP hierarchies is that they are associated with & opera-
tors of nonzero index. This result is due to the interpretation of the Grassmannian as the space of
boundary conditions for the J operator acting on the Hilbert space of square integrable functions.
We prove that the codimension of Birkhoff strata coincides with the index of corresponding J
operator up to sigh. ‘

We finish this introduction by describing the plan of the work. In Sec. II we recall some basic
facts about the KP hicrarchy. In Sec. IL A we briefly present the J-dressing method. In Sec. II B we
review the Grassmannian and its stratification. The relation between singular sectors of the KP
hierarchy and & operators of nonzero index is considered in Sec. IIC. Section Il is devoted to the
construction of the hidden KP hierarchies. In Sec. ITT A the case index d=—1 is carefully ana-
lyzed. The case index d=—2 is studied in Sec. IIB and the cases of index 3= —3 and higher
indices are discussed in Sec. III C. Finally, hidden Gelfand-Dikii hierarchies are analyzed in Sec.
IV. We prove that under certain conditions the only hidden Gelfand—Dikii hierarchies are the KdV
hidden hierarchy and the Boussinesq hidden hierarchy. The former is studied in Sec. IV A, the
latter in Sec. IV B. A method of constructing solutions is developed in Sec. IVC,

Il. THE STANDARD KP HIERARCHY AND SOME GENERAL METHODS

We start by recalling some basic facts about the KP hierarchy and some of the methods
developed to its study. The KP hierarchy can be described in various ways (see, e.g., Refs. 1-8).
The most compact form of it is given by the Lax equation

L -
‘ :Sit—,,:[(Ln)'* L1, n=1.23,..., 2.1
where

L=0+u 07 " uyd™ 2+ uyd 34+ , 2.2)
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is the formal pseudodifferential operator, = ¢/, and (L"), denotes the differential part of L",
Equation (2.1) is an infinite set of equations for scalar functions u;,us,us,... . These equations
allow one to express u,,us,... via i and its derivatives with respects to ¢; and #,. As a result one
gets the usual form of the KP hierarchy given by

du du du " 'u 245 )
31'" —fn i, &tlvc;tz!'“i ﬂtl yeee by R=0,%050, ( .3)
where u=u; and f,, are certain functions on u,du/dt; ,duldt5,...,0 'uldty,... . The simplest of
these equations is
du  Fu iy du 3 8\ 1 du 24
oy or o \aty) ek :

Equation (2.1) arises as the compatibility condition of the linear equations
L=Ny (2.5)

and

g A
5;‘4 =M+, n=123,.., (2.6)

where = u(t,\) is the wave function of the KP hierarchy, \ is a complex parameter (spectral
parameter), and t=(ty,f,...,¢,,...) €C”. This wave function has the form

q/,:exp( 21 )\"tn) x(t,\), @7
where

t t
X(t,)\)=1+%(—l+ )_(;_(22.;. for large X\. (2.8)

The functions {t,\) and the adjoin wave function y*(t,\) [solution of equations formally
adjoined to Egs. (2.5) and (2.6)] obey the famous Hirota bilinear equation

L ANP(EN) g (' \)=0 (all t and t'), 2.9)

where S, is a small circle around A=, ;
Finally, the wave function is connected with the 7 function via

— )\-1
x(t,x)=—-—«—~~-——-~—T(t TEt) ]), (2.10)

where [a]:=(a,ta? 1a3,...).

A. The J-dressing method

Now, we present a sketch of the J-dressing method (see, e. g, Refs. 14--16), It is based on the
nonlocal 4 problem:
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ax(t,n,N)

=f fduAdﬁx(t,u«,ﬁ)g(t,M)Ro(M,ﬁA,K)g“(tJ\), (2.11)
an G
where y is a scalar function, Ry(u,/Z,\,\) is an arbitrary function, the bar means complex

conjugation, G is a domain in C, and g(t,u) is a certain function of t and the spectral parameter.
R—?ho

It is assumed that y is properly normalized [ x —— 77(X\)] and Eq. (2.11) is uniquely solvable.
By virtue of the generalized Cauchy formula, the & problem (2.11) is equivalent to a linear integral
equation, The form of this linear equation [and corresponding nonlinear equations, associated with
(2.11)] is encoded in the dependence of the function g on t. To extract these equations, we
introduce long derivatives

a ‘
V,,=5t—-+g_l(t,)\)g,"(t,>\), (2.12)

where g, =38,/3t, . Then, we consider the Manakov ring of differential operators of the form

L= E ulllnzna'“(t)villlngvg3'” s (213)
Y Y e
where i, ,,,,...(t) are scalar functions. In this ring we select those L which obey the conditions
9
L,—|x=0 (2.14)
an

and Ly—0 as A— o, Condition (2.14) means that Ly has no singularities in G. The unique
solvability of (2.11) implies that for such L one has

LiX=O‘ (2.15)

The set of equations (2.15) is known as the system of linear problems. Note that taking into
account that (8/3t,) =gV ,x, Eq. (2.15) can be equivalently written as

L;y=0, (2.16)

where in operators L; one has to substitute V,, by d/dt, . The compatibility conditions of (2.15) [or
(2.16)] are equivalent to nonlinear equations for 'H"z"x“'(t)’ which are solvable by the J-dressing

method. One has to select a basis among an infinite set of linear equations (2.15) [or (2.16)]. If one
considers an infinite family of times ¢,(n=1,2,3,...) one has an infinite basis of operators L; and,
consequently an infinite hicrarchy of nonlinear integrable equation associated with (2.11).

- To get the standard KP hierarchy one can choose the canonical normalization of y (ie., ¥
— 14 x; N+ x, /N* 4+ as A\— ) and put

g=exp( 21 X"t,,) .
n=

The long derivatives V,, are V,=3d/dt,+\" (n=1,2,3,...) and the corresponding linear problems
take the form

n

Lnx=(v,.—k2=0 uk(t>vff)x=o, | 2.17)
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or equivalently

é’ n
v =2 k(t)_k_ n=123,., (2.18)
c?i‘n fam

where u,(t) are scalar functions. Equation (2.18) is just equation (2.6) and their compatibility

conditions are equivalent to the KP hierarchy in the usual form. The J-dressing method provides
a wide class of exact explicit solutions of the KP hierarchy which correspond to degenerate

kernels Ro(u,Z,\,\) of the d-problem (2.11) (see Refs. 14~16, and 4). It is worth realizing that
the J problem for ¢ and the adjoin d problem for ¢/*(t,\) imply the Hirota bilinear identity (2.9).

Note that in the KP case, the domain G is Dy=C—D,,, where D, is a small disk around A\
=0(dD,=7S). In a similar manner, one can formulate the KP hierarchy if one chooses G such
that G=S (S being the unit circle).

B. Grassmannian and stratification

Next, we comment on some basic facts about the Grassmannian approach in relation to the
standard KP hierarchy. Following Refs. 8 and 27, we consider the Grassmannian Gr as the set of
linear subspaces W of formal Laurent series on the circle S,,. That means that W possesses an
algebraic basis

W={wo(N),w (N),wy(N),...]} 2.19)

with the basis elements

Sy

wy(\)= 2, a\! (2.20)

i=—o

of finite order. Here so<s;<<s,<<''* and s,=n for large n. It can be proved that Gr is a connected
Banach manifold which exhibits a stratified structure.**’ To describe this structure one introduces
the set Sy of increasing sequences of integers

S={50,81,525.+4}5 (2.21)
such that s,=n for large n. One can associate to each W e Gr the set of integers
Sw={neZ:AweW of order n}es,.
On the other hand, given S e 8§, one may define the subset of Gr,
3, ={WeGr:Sy=S}, (2.22)

which is called the Birkhoff stratum associated with S. The stratum 2, is a submanifold of Gr of
finite codimension I(S) =2 ,=q(n—s,). In particular, if §={0,1,2,3,...} the corresponding stratum
has codimension zero and it is a dense open subset of Gr which is called the principal stratum or
the big cell. Lower Birkhoff strata correspond to S={s¢,5;,8,,...} different from {0,1,2,3,...}.

The KP hierarchy wave function #(t,\) (2.7), (2.8) leads naturally to a family W(t) in Gr.?’
In order to see it we start by introducing (A € S5,):

W=span{¢(t,\), all t}. (2.23)
Using (2.6) and Taylor expansions, one gets

W=Span{¢,&1 dip..}, (2.24)
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where d=9/dt;. Now, the flow defined as
W(t) =exp(—Z = A", W,
can be characterized as
W(t)=span{x(t,\),V x(t.X). Vix(tN)....}, (2.25)
where V= a/dt,+\. Since Vix=\"+O(\"""), one has
Swy=10,1,2,...}. (2.26)

So the flows W(t) generated by the standard KP hierarchy belong to the principal Birkhoff
stratum.?”*! Then, it seems natural to wonder if there exist integrable structures associated with
other Birkhoff strata. In this sense, only recently some progress has been made. In Ref, 30 it was
shown that for the KdV hierarchy, (reduction of the KP hierarchy) evolutions associated with the
Birkhoff strata are given by integrable hierarchies arising from the Schrodinger equations with
energy dependent potentials. One of the main goals of the present paper is the study of integrable
structures associated with the full KP hierarchy outside the principal stratum,

C. d operators of nonzero index and singular sector of KP

Finally, we propose a wider approach which reveals the connection of stratification of the
Grassmannian with the analytic properties of the @ operators. This upproach is based on the
observation that the Grassmannian can be viewed as the space of boundary conditions for the d
operatcvr.5 Let us consider the Hilbert space H of square integrable functions w=w(\,X) on
Q:=C— D, (where D, is a small disk around the point A =), with respect to the bilinear form:

_ _ dNAdX
(u,v)=jjn ”()\’)\)U()\’)\)W' (2.27)

Then, given W e Gr (described above) there is an associated domain Dy on H for d, given by
those functions w for which dw e H and such that their boundary values on S, are in W. Thus, we
have an elliptic boundary value problem. To formulate it correctly, that is to have a skew-
symmetric d operator:

(v,0u)=—{(dv,u) YueDy, YveDy (2.28)

one has to define W, the dual of an element W in the Grassmannian, as the space of formal Laurent
series v(N) of A & 5..(S.=dD..) which obey the condition

d\
j.vm Ty V(MuA)=0, YueWw. (2.29)

Properties of W and W are convenient to evaluate the index of the 3 operator. Let Sy and Sy
be subsets of integers determined by the orders of elements in W and W. Then, we have

Sig={~nlneSw}. (2.30)
Let dy denote the operator d acting on the domain Dy . The index of this operator is defined as

index Jy:=dim(ker dy)—dim(coker Ty).
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It can be determined as
index dy=card(Sy—N)—card(S3—N), (231

where N={0,1,2,..}. Note that the index of the dy operator is closely connected to the notion of
virtual dimension of W used in Ref. 13,

v.d(W)=card(Sy—N) —card(N—Sp).

Indeed,

Oe Sw'::‘ index gw= V. d( W) . (232)

Let us consider now subspaces W(t) generated by the standard KP hierarchy. Since Sy
={0,1,2,...} [see {2.26)] and Sy ={1,2,...}, one has that index dy,,=0. Thus, all the equations
of the standard KP hierarchy are associated with a sector of Gr with zero index of §.

Now, what about the case of nonzero index? How to characterize these sectors in Gr? Are
there integrable systems associated with them? Addressing these questions is the main subject of
our paper. The answer can be formulated as follows: Given the wave function (t,A) of the
standard KP hierarchy, we consider submanifolds M of finite codimension in the space C* which
are defined by m constraints '

fi(=0, i=12,..m (2.33)

(f; are some analytic functions) imposed on the independent variables t=(z,,¢,,...). The point is
that under appropriate conditions, the restriction i, of the wave function ¢ on A determines

families W, (s) in Gr which correspond to d operators of nonzero index. We will show that these
sectors of Gr are associated with integrable hierarchies.

The nonzero d-index sector of Gr is closely connected to its singular sector, Indeed, suppose
that the restriction of ¢ on the manifold (2.33) defines the corresponding family W, ..(s) such that

SW =N—{r1,r2,,..,r1}. (234)

res(s)

Then it is clear that
AT W e(5) ' (2.35)

are elements of Gr with zero virtual dimension and, consequently, the same holds for AT W s
Therefore, there is a 7 function, 7(t), associated with X ™'W, such that

t—[A 1)
Y“’“J“?[&r—'

On the other hand, the elements of minimal order in (2.35) are A~ "Xes(s,A). This means that the
function ¥ is singular on the submanifold M or, equivalently

TlMEO‘ . (2'36)

Then, the submanifolds M leading to the nonzero index sector of Gr are zero manifolds of the
~function of the KP hierarchy. This property is rather obvious if one observes that (2.35) deter-

mines a domain for the J operator with a nontrivial kernel. Consequently, the determinant of the
@ operator, which is proportional to 7(t(s)),"? vanishes. Therefore, the constrained wave function
thes(S,\) is a regularization of the wave function #(t,\) on the blow-up submanifold M.
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The above coincidence between a singular and nonzero & index sectors is an important feature

of the KP hierarchy. It demonstrates close relation between singular and nonzero J index aspects
of the integrable hierarchies.

Note that integrable hierarchies with constrained independent variables have been discussed in
different context also in Refs. 32 and 33.

lil. HIDDEN KP HIERARCHIES

Now, we proceed to the construction of nonlinear systems associated with manifolds of finite
codimensions given by constraints (2.33). First, we realize that for ‘‘good’” functions f;, the
theorem of implicit function implies that one can solve Eq. (2.33) with respect to any m variables,
i.e., one can express m variables lpplngseeestn, 88 functions of the others s=(...,7,,...)

X(n&{ny,...,n,}) in the form
t,,i=b,-(s), i=1,.m. (3.1)

Formula (3.1) gives us the parametrization of the manifold given by (2.33) by the independent
variables s. Since any set of m times can be chosen as 7, in (3.1), one has an infinite number of

different parametrizations of the same manifold (2.33).

The KP wave function #(t,\) restricted to the manifold (3.1), i.e., the function i (s,\) is
regularizable.?* Since in what follows, we have to consider i (s,A) and x,.(s,\) instead of y
and y we will omit the label res in both cases. In order to construct restricted KP hierachies we
start with the J-problem (2.11) for the regularized restricted function y(s,\). This function has
canonical normalization, the corresponding & problem is uniquely solvable and

g(s,k)=exp( > A”r,,(S)). (3.2)

n=1

Then, one can use all the machinery of the 3-dressing method.

A. The case index (§)=—1

We start our study of the hidden KP hierarchies by considering the simplest case m=1.
Suppose first that we solve the constraint f(£) =0 with respect to r{, then we have

t1=b1(s25s3=“-)1 (33)
g(s,)\)=exp()\b1(s)+ > }\”s,,) ‘ (3.4)
n=2
and the long derivatives V,, are
d i(s) |,
Vn_é;+)\ 75, +AN', o n=2.3,... (3.5)

Since in this case the operator of the first order in N is missing in the basis (2.25) one has

SW (S)=N_{1}!

res

consequently, due to (2.30) and (2.31),

index( gwm(s)) =-1. (3‘6)
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In order to get the linear problems (2.16) associated to (3.4), one has to construct the operators L
of the form (2.13) which obey conditions (2.14) and Ly—0 as A—c. This is a tedious but
straightforward calculation after which one gets the infinite set of linear problems

t?i Yr— c9§l/l= Ut u 9.t 18, Yt u3ﬂ31/1+ U430y, (3.7)
and
Fy b= Frh=voirt0 Ot v29,4h,
s =Dpo+p 3t pody Yt padeyt 9,0, (3.8)
b, Y= g+,

where n=4,5,6,..; n=2n,+3n; with n,=23,.. and n;=0,1, and we have made x:=s,,
y+=s3. By denoting b:=b, we have that the coefficients in (3.7) and (3.8) are given by

u0=bxxxX1 + szxXlx+3X2xx+3be1xx+3b,%X2x+ 3be3x+3X4x_byyX1 —ZbeIy_?’bxbxyXl
+bxbeIx_3b3}\'1y_3be2y+4be2.\'_bybxxX1_3be1X1x_3X3X1x_3b3bx.r/\’1
=3b. X220 1 X0y T 30 X2 X 15 3 X2 X2t 3X 1 XX 12X X 1y~ 2 X3y (3.9)

1y =3bb ot 3b.ox 153X 3X LK1~ 2X1y— by = biby,
u2=3bn_+bi+3x]x+bxb},, u3=—2by, ug=3b,,
Vo=2X1X1x~ 2X2x~2byX14» U1=—bF, Uy=—2b,.
P3=—by, pa=2bi=by, p1=by;=bb,~x1,

p0=X1X2x+Xlle_2be1Xlx_X%Xlx+X1xX2_X3x_X2y_be1x'—be1y+2be2x+2bz:Xlx-

The absence of an operator V of the pure first-order N imposes the constraints:

byt 3X1xx+3),(3x—byy—2/\’2y_ 3bxbxy—bely+belx—bxxby

=3 X1xX2= 3626 =3 Xax X1+ 3 X1 X +2X1,X1 =0,
(3.10)
by, — by —2x1,+2bb,+b1=0,

54
bss_b1y+bxbxx+bg—biby—bi_XZx_le+3belx+XIX1x=0

and so on. Higher linear problems and the expressions of the coefficients are complicated and we
omit them. The linear problems (3.7) and (3.8) represent themselves as an infinite hierarchy of the
linear problems for the restricted (hidden) KP hierarchy with index d= — 1. All these problems are
compatible by construction and the compatibility conditions for them give rise to an infinite
hierarchy of nonlinear evolution equations, a restricted (hidden) KP hierarchy. The simplest sys-
tem of this hidden KP hierarchy is the one associated with (3.7) and the first equation in (3.8) and
has the form
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(tr=54):
[ 8 — 35,2 4
Ugy™ T Uaxe™ gUglsy 9u4u4x+ 3u3u4x+2u2x ’

=—2 2,2 12 4 2 2.2 2

Uz = = Falany ™ Ty T 300, F Uyt 200 SUGHa — FURUL,— SUU3y T SULGy — GUsU4Usy
) ) s (3.11)

=2 -1 —2 2 2 - 2 -2 —

U= = SUgrext Uoge™ gUQlo ™ SUU4y T SU4yy — FU4lyy — 200yt SUal 4y — FTUQU4U Y, — UgV0x

2 2
T SUU 4T FU Uy,

=2 ) -~ L2 — 4 2. 2.2 2.,
U™ T gUalgxxy 9u4xu4xx+3v0xx+u1xx+zv0x YLD 3u1u4y+9u4u4yy+9u4y 3“4“1}’

— 2,2 2 _4 _2 2, .2 2
UgU oyt SUgUsxyt GU4 U gy~ SU MU~ SHAUAU g~ SU3UG,— 2 U3V 05t S Ualigy,
Un:=U + L2 4 - —2 - 2 — - —
0= Voxxx ™ Uoxx ™ l4qlox— TUollay — Ugyy — 3Ualloy = Ul gy — FTUU4U4;— U3V oy~ UpUgy — U1V 0x
where
A2, L2 2 B ST S SRS U T |
U= gguqls— gUs T SUalax— 5U Tt SUsy — 50,0, (Ug— 37Uyt gUsug).

Note that since due to (3.9) u4=3b, and u3=2b,, one can rewrite the system (3.11) as a system
of four equations for the variables b, u,, u,, and uy. Equation (3.11) and higher equations are
solvable by the §-dressing method, though all solutions would be expressed in implicit form.
Then, we have an infinite hierarchy of integrable 2 + 1-dimensional equations. This hierarchy is
associated with a restricted element in the Grassmannaian which satisfies

Wyeo(s) =span{V;Vx(s,\),n=0,m=0,1}. (3.12)

Note that the basis of the space W, (s) is formed by two-dimensional jets of special form in
contrast to the one-dimensional jets (2.25) for the standard KP hierarchy with index d=0.

Note also that if one tries to construct the linear problem starting with g of the form (3.4) with
b,=const, the procedure collapses. In this case (3.10) gives too strong constraints on the function
X (x1:=0, X2x+X]y=Or---)-

As has been mentioned before, the formula (3.3) gives only one possible parametrization of
the manifold defined by the equation f(t)=0. Let us take the one given by

1 =b3(51,83,54,..), (3.13)
o)
g(s,\)=exp )\s1+)\2b2(s)+23 \'s; (3.14)
'=
and long derivatives are
g ab, ;
=—+N2 —=+\", n=134,... 3.
V. o5, A as,,H‘ n=1,3,4 (3.15)

Similar to the previous case, one gets an infinite family of linear problems with the corresponding
family of constraints. The first linear problem is of the form (x:=5, y:=s;3, t:=54)

FY= s+ ugd Iyt us o5t undy Yt ug i,

S =012+ v2d, Y+ vt voi,
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The compatibility condition for this system leads to the first integrable system of this hidden KP
hierarchy. The expressions of the potentials, the constraints and the system are a bit more com-
plicated than in the above-studied case and we omit them here. Note that in this case we have

Wei(s) = span{V V] x(s,\),n=0,m=0,1} (3.16)

and consequently

index(ﬁwm(s)res) =—1, (3.17)
Let us consider now the next choice,
t3=b3(51,52,54,...). (3.18)

One has

®

g=exp| As;+ 225, +N3b5(8)+ 2, N, (3.19)
i=4

and the long derivatives have the form

Vo=l D am1045 (3.20)

" s, s, v T LA ’
Using these long derivatives we can find the corresponding hierarchy of linear problems and
nonlinear integrable equations. On first sight, one could think that as V,:=V, and V=V, are
third-order operators, the operators of the first and the second order are missing and consequently

index d= —2. However, by taking the linear combination of long derivatives (h:=b5 here)
bV, ~b,V,=b,d,+\Nby,—b,d,—\?b,,

we see that only the first order in \ is missing and then, we have index §=—1.
A similar situation takes place in the general case

tn=bn(31v""sn-l!sn+lﬁ“') (321)
for n=3. One has
\% =i+}\"%+)\’” m¥n (3.22)
" Bsm asm ’ ‘ '

In a similar way to the previous case, one gets the operators of the second, third, ..., (n—1)th
order by taking linear combinations of the operators V;, V,,..., V,,_;. Then, we have that in the
general case index d=—1.

We finally point out that all the hierarchies of linear problems and integrable systems consid-
ered in this section are closely connected. In fact, since they are associated with different param-
etrizations of the same manifold f(t)=0, they are related to each other by change of independent
and dependent variables.

B. The case index (d)=—2

Suppose now that we take m=2 in (2.33), i.e., the manifold M is defined as

f1()=0, f(t)=0.
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Then, one possible parametrization is

11=b(s3,54,...), f2=52(53,34,--‘),

and the function g and the long derivatives are given by

o

g(s\)=exp| Ab1(s)+\2ha(s)+ 2 Nis; |,
1=

J ob
Vi=o—+N —+A2 2

+Af, k=34,5,....
(?Sk 5Sk I?Sk }\ ’ ’ 3

In order to construct linear problems we look for the operators of the form
- Ry g L T
L=2) thypyng- V3 V3V,

satisfying Ly=0. It is easy to see that for n# 1,2 we have an order n operator of the form
VgW:‘*VgS with n3=0,1,2,... and n,, n5=0,1. On the other hand, as each long derivative is of a
order =3, there are not operators of order 1 and 2. Then,

Wes(8) =span{ V> V4V S x(s,1),n3=0,1,2,....n4,n5=0,1},
(3.23)
Swms(s) =N— {1,2}
and consequently

index( gwms(s)) =—-2.

In order to get the linear problems involving the minimum number of independent variables we
use, instead of (3.23), the more convenient system of generators of Wi.(s) given by

Wies(s) = span{ V53V 4 x(s,\),n3,n4=0,1,2,...V sx(s,\)}. (3.24)
The linear problems corresponding to the lowest orders are then

T3 — 04t uy 03050+ U003 4t o B3t Ug i+ Ug 3 Og it UgSY
+Llsaslﬁ‘i‘l£4a4l/f+u353l//+uol//=0, (325)

85— I+ V70305 + VI + Vs OsW+ 404+ U3d3ih+vohr=0, (3.26)

Osd4t— I3+ Pgdsds it Prdsdath+ psdath+ psds+padsh+ padstb+poyp=0, (3.27)

where u;, i=0,3,4,..,11, v, k=0,3,...,7, and p;, [=0,3....,8 can be expressed in terms of b, b,,
and y, (n=1). Due to the absence of operators of the first and second order in A we have two
constraints on b, by, and y,(n=1) associated to each equation (3.25)—(3.27).

Note that only two linear equations among (3.25)—(3.27) are independent (form the basis of
the Manakov ring). For instance, the problems (3.26) and (3.27) are equivalent modulo the prob-
lem (3.25). Indeed, acting by operator d4 on (3.26) and by the operator d; on (3.27), subtracting
the equations obtained and using (3.25) one gets an identity. Then, choosing, for instance, (3.25)
and (3.26) we have a system of two three-dimensional linear equations (variables sz, s4, 55).
However, it implies that ¢ satisfies also a two-dimensional linear equation. Indeed, using (3.25),
one can express dsi via the derivatives of ¢ with respect to s4 and s4 (since in general us%0).
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By substituting this expression into (3.26), one gets

33— O3+ 71403050+ 1130304+ P12 Y+ Frody 111039+ 1100304
+ 1@+ rada it r10304 U+ rgdatt radath+ryds it rop=0, (3.28)

where r; (i=0,3,4,6,7,...,14) and 7|, can be expressed in terms of u; (i=0,3.4,..,11) and v; (j
=0,3,4,...,7). Thus, one has the two-dimensional equation (3.28) with variables s; and s, and the
three-dimensional equation (3.25). The compatibility condition of the linear problem constituted
by these two equations [or equivalently (3.25) and (3.26)] gives rise to a three-dimensional non-
linear integrable system with independent variables s5,54,55.

In the same way, taking into account (3.24), the equations in linear problems which involve
higher times s, (n=6,7,...) can be written in the form

5l/f n

Kkz6;36441//‘*""+pk5851//'+"'+pkol/f, k=6,7,..., (3.29)
where k=3n3+4n,4 and p,, are certain functions and we have two constraints associated with
each equation (3.29). In order to eliminate d5¢ in (3.29), we use (3.25) so that

oy

n 1 o~ ¥ m
A > Pngn(8)03397 4, k=6T,....
Yk Ay My

By construction, these last equations are compatible with Eq. (3.28), thus, we have an infinite
hierarchy of commuting 2 + 1-dimensional integrable systems for the coefficients.

Finally, from (3.25) we can express Vsy as a linear combination of elements of the form
V;’VZ“ X, we can eliminate Vsy for the system of generators of We(s) [see (3.23), (3.24)]. In
fact, by using (3.25)~(3.27) in (3.23) we get

Wpes(8) = span{V?VZ“;ds,)\), ny=0,1,2,...,n,=0,1,2}.

C. Higher indices of the d operator

We finish Sec. TIT by discussing the basic properties of the case index 3= —3 [or equivalently
m=3 in (2.33)]. We will show that we have a hierarchy of integrable systems associated with
each manifold defined by (2.33) with m=3, but in this case the hierarchy consists of
3+ 1-dimensional nonlinear systems, instead of the 2+ 1 dimensional systems found in the cases
index d=—1 and index d= —2. As all the basic properties are exhibited for m=3, we start by
considering this particular case. Suppose then, that we take m=3 in (2.33) and solve the con-
straints with respect to t;, t,, and t3. We have

t1=by(s) t=by(s), t3=bs(s),
consequently

o0

g(s.\)=expl Nb,(8) +N2by(s) +\3bs(s)+ 2, Nis; |,
i=4

and the long derivatives are

o by _ ob, . ob
V= — A A2 A3

+\5, k=45,...
(9Sk &Sk l;Sk (9sk A
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From the expressions of the long derivatives, it is easy to see that, for n=4, we have an operator
of order n in \ of the form V,*V 3V (V.7 with n,=0, ns, ng, n,=0,1 (at most one of them equal
to 1). On the other hand, as every long derivative is of order =4, there are not operators of order
1, 2, and 3. Then

Wees(8) =5pan{V V3V SV x(s,\ ),y
z0,n5,n6,17
=0,1 at most one of ns,ng,n; equal to 1}, (3.30)
so that
Swo=N—{1,2,3}
and consequently
index(gwm(s)) =-3,

In order to get the linear problems involving the minimum number of independent variables we
use, instead of (3.30), the more convenient description of W (s) as

Wies(s)=s5pan{V*Vx,ns=015=0,1,2,3,Y6x,V7x, Vs Vex}. (3.31)
The lowest order linear equations constructed using the system of generators in (3.31) are
I3— 3+ 1190304 o+ w g O30+ 10305 Y 1604 Y 15O+ 1140304 Yt 1 3055 Yt w1p O30
F Uy O506 W+ U1d2 P+ Ugd405 it Ugdah+ UG+ UgOg+ UsOsih+ UgdahF ugh=0,
(3.32)

0406 — T2+ V93405 Y+ vgdaht V797 + Vst vsFs+t U dathtvop=0,  (3.33)

04070— 3506+ P 1002+ Podsds i+ padst P17+ s+ Dsdsi+padah+ potb= ?, )
3.34

O501Y— 3+ q11050s W+ 41005 Y+ Godsds Y+ qed U+ q70,+ qsds i+ qsds P+ qadstb+ qoy
=0, (3.35)

TZ— B3yt w1050+ w 1002 Yt Woda s Y+ Weda+ w107+ wedgii+ Wsds Y+ wad, b+ woys
=0, (3.36)

where u;, i=04,5,.,19; v;, j=04.5,.,9; pe, k=045,.,10; ¢q;, I=04,5,..,11; and w,, r
=0,4,5,...,11 are functions of b, b,, b3, X, (n=1) and their derivatives. Besides, we have three
constraints on the coefficients of the wave functions for each equation (3.32)—(3.36).

Again, among these five equations, there are only three independent ones modulo (3.32). For
instance, acting on (3.33) by 42, on (3.35) by 42 and using (3.32), (3.33), and (3.34) one gets an
identity. So (3.35) and similarly (3.36) are satisfied due to Egs. (3.32)—(3.34). These three equa-
tions provides a four-dimensional system (being the independent variables s4,55,54,57). How-
ever, using Eq. (3.33) one can get d;¢ in terms of derivatives of i with respect to the three others
independent variables, i.e.,

1 .
Ory=— ;)—7(‘94‘96‘/’— I3+ V90405 Y+ Vgt V6Ot vs st uadatued),  (3.37)
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and then this term can be eliminated from (3.32) and (3.34). As a result one gets two linear
equations for ¢ which contain only d4, ds, and dg. The linear problem determined by this couple
of equations is compatible by construction, and the compatibility condition gives rise to a system
of nonlinear equations in three dimensions (s4, s5, and s). A new system in the hierarchy can be
obtained as the compatibility condition of one of the equations considered before (where ¢, has
been eliminated) and (3.37). In this case we have a system of 3+ 1-dimensional nonlinear equa-
tions (spatial variables s4, 55, s4, and time s,). Linear problems containing higher times
$g.59,... have the form

= D Viun Oy 0P, k=89,.., (3.38)

Hyhigheg

where ny, ns=0, n=0,1 and v, ., are certain functions. Note that in (3. 38) we have already
eliminated the term J4y by using (3. 33)

The compatibility conditions of (3.38) with the equation obtained by eliminating 4,4 in (3.32)
defines an infinite hierarchy of 3+ 1 dimensional nonlinear systems with four independent vari-
ables: 54, S5, 5S¢, and time s,. Now, one could eliminate also dgi from Egs. (3.32), (3.33), and
(3.34), in order to get a single linear equation containing derivatives with respect to only two
independent variables, s, and s5. But in order to do it, one has to invert an involved differential
operator. Consequently, the corresponding 2+ 1 dimensional equation is a complicated integro-
differential one.

Finally, from the above discussion, it is clear that we can eliminate Vx from (3.31), then we
get a basis of W,.(s) in the form:

Wiees(8)=span{V,*Vx,n,=0,n5=0,1,2,3,V5x,VsVex}.

We finish the study of the hidden KP hierarchies by summarizing the results for the general
case m=3. Solving Eq. (2.33) with respect to the first m times one has

tk=bk(s,,,+1,sm+2,...), k=1,2,...,ﬂ'l,

then
m
g=exp E )\kbk(s)+ E )\ksk
k=m+
and
k—— 2)\1 +N\E E=mtImt2,...

&Sk =1

In this case

SWres(s) =N-— { 1,2,...,m},
and consequently
index(gwm(s)) =-—m

Now, by constructing operators of the form

— Myt | m+2
L= E u"m+1"m+2,.‘vlﬂ+l Vm+2""
At 1+ 2,
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which satisfy the condition (2.14), one gets an infinite hierarchy of linear equations. One can see
that there are m of them which form a basis of Manakov ring of operators of lowest order with
minimal number of independent variables (5,41, Sm+2:--+» Som+1). AS above, one can in gen-
eral eliminate d;,,41%,d2m,....0p+4 from these subsystem, and get a system of three-
dimensional linear problems. In this way, the whole hierarchy consists in 3+1 dimensional
nonlinear systems with constraints.

We finally point out that 3 +1 hierarchies of integrable systems with constraints have been
discussed in a different situations in Refs. 34-36.

IV. HIDDEN GELFAND-DIKH HIERARCHIES ON THE GRASSMANNIAN

As a particular case of hidden KP hierarchies associated with sectors of Gr with nonzero J
index, we discuss here the hidden Gelfand-Dikii (GD) hierarchies, 1+ 1-dimensional integrable
hierarchies associated with energy-dependent spectral problems. We prove that under certain
assumptions the only hidden GD hierarchies are those associated with Schrodinger equations with
energy-dependent potentials (hidden KdV hierarchies)

2m
Py= k2m+‘+2O w,(S)k™ |, k=\?,

and that associated to the third-order equation (hidden Boussinesq hierarchy)
Fir= (k2 + w1 (k+ug(s)) Y+ (V1 (k+vg(8) deth,  ki=\>.

The hidden KdV hierarchies were already introduced and studied from the point of view of
the Hamiltonian formalism in Ref. 37 and they were further generalized and analyzed in Refs. 38
and 39. As for the hidden Boussinesq hierarchy, it is one of the four cases studied in Ref. 40 in
connection with the theory of energy-dependent third-order Lax operators. In both cases we
manage to formulate a general solution method.

The start point here is an /-GD wave function. It is a particular KP wave function ¢(t,\)
verifying the reduction conditions:

Opyx=0, m=12,... 4.1)
As a consequence, its corresponding flow can be characterized as
W(t)=span{\™V]x(t\),m=00<n<i-1}.

Note that W(t) does not depend on the parameters ¢,,, m=1,2,..., so from now on they will be
supposed to be set equal zero, or equivalently

t=(t1,....t,,...), n&(l)={1,21,3],...}.
In the J-dressing method, reductions (4.1) correspond to kernels of the form
Ro( s BN N) = 81! = NDRo (),

then, we have the d problem

ax(t,\)

)N

!
=§1 X(t,g MR (tN), @.2)

where
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2ari . - -
g= exp(—l—) , Ra(tN)=go(t. MR L(N)gg ' (tg™\)

with go(t,\)=expCeqy tA) and R (N\)a=1.2,..,] are [ arbitrary functions. Note that the 3
problem (4.2) is invariant under multiplication by \’,

We now focus our attention on the study of the hidden 1-GD hierarchy. In order to do that,
given an integer number r>0,r & (1), we consider restriction under d,=r—1—[(r—1)/I] con-
straints (2.33), (here [-] denotes integer part), solved with respect to the first consecutive d,
parameters. It means

t;=bs,) 1<i<r, i¢(l)
with §,=(s,,....8,,...)n>r,n & (I). We have then that

W,es(sr)=span{)\"‘lV:.ll'V;?...X(s,.,)\),m,nl ,nz,‘..BO,il ,iz,...Br,il,iz,,.. & (l)} (4.3)

and long derivatives are here defined as

/] . 0b;
=— T n =
V. PR +E A 7 +A n=r,

n i<r
Clearly, if we look for (1 + 1)-dimensional hierarchies associated with these restrictions we need
Wres(sr)=span{)\’"lfo(s,. A),m=00sn<i-1} 4.4)

where x stands now for s,. Consequently we are interested in those submanifolds MM for which
the corresponding W (s,) verifies (4.4). In this sense we have:

Proposition 1: The family W .(8,) satisfies (4.4) if and only if the function y(s,,\} obeys an
infinite system of linear equations of the form

ai(ﬁ: Efn_——-loum(srik) aftn I)b’
-1 m (45)
all¢=zill=0afllil(sl"k)ax ‘)[” n>r, n‘$(l)’

where u,, and o, are polynomials in k:=\'.

Proof- The function x{s,,\) as well as its long derivatives of all orders with respect to the
variables s, belong to W,.(s,). Then, if (4.4) holds all these functions can be decomposed in
terms of the basis k”V%y. Therefore (4.5) follows.

Reciprocally, if y satisfies a system of the form (4.5) then from (4.3) and by using Taylor
expansion we deduce (4.4) at once. O

The next statement describes the cases in which (4.4) may arise.

Proposition 2: Only two classes of parametrized submanifolds M satisfying (4.4) are al-
lowed.

(i) Submanifolds M of the form

tri—1=b{(Som+1), i=l,..,m, m=1,

for the second GD hierarchy.
(ii) Submanifolds M® of the form

tl=b(52)7

for the third GD hierarchy.
Proof: Let us assume that (4.4) holds then W, (s,) has no elements with order n such that
0 <n<minr,l). Moreover
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order(\"™V"x)=Im+nr.

Let us first consider the case »>1. It implies that [+ <27, and therefore if there are i ¢ (I) such
that »<<i<<I+r then the functions V;x are elements of order i which cannot be decomposed in
terms of the basis }\’"’sz. The only way to avoid these functions is to take /=2, and conse-
quently the allowed r are the odd integers r=2m+1 (m=1).

Consider now the case r<<I. We have

order(V.,.y)< order(Vi ) <order(A'V_y).

Thus, given i ¢ (1) such that »<<\i<(2r then the functions V,y are elements of order i which cannot
be decomposed in terms of the basis A"V”"y. But it is obvious that these functions will arise
unless we take r=2 and [=3, O

As it will be proved below one can construct explicit examples of submanifolds Mf,,z) and
M®) satisfying (4.4). Observe that in these cases the corresponding families of subspaces in the
Grassmannian lead to the following values of the index of &:

(1) For M2

=N-{1,3,..2m—1},

Swres(52m+l) -

so that

index(dy ~m.

res(52m+1)) -

(2) For M®):
Sw = N—{1},
and as a consequence |
index(dy_(s,))=—1.

In both cases the families of subspaces in the Grassmannian lie outside the zero index sector of the
d operator. Next, we are going to show that for both classes of submanifolds described above there
exist hierarchies of integrable systems.

Before analyzing these two cases, it is worth noticing that we have only looked for submani-
folds associated to (1-1)-dimensional hierarchies of integrable systems, obtained by solving
constraints (2.33) with respect to the first variables. Nevertheless, by using the methods of Sec. III
and solving the constraints with respect to any set of variables, we can get in general multidimen-
sional hidden [-Gelfand—Dikii hierarchies for arbitrary [ and r(r ¢ (l)). It is also clear that all
these hierarchies belong to sectors in the Grassmannian with nonzero index.

A. Hidden KdV hierarchies

Consider first submanifolds M,zn verifying (4.4). From Proposition 1 the constrained wave
function t(s;,,+1,\) satisfies an infinite linear system of the form

‘9,3 lﬁ': u(52m+ 1 ,k) l/l,
(4.6)
3211+1 ‘/’z an(52m+ 1 ’k) ‘/f+ 311(52m+1 »k) ax‘:b’ n>m,

where k:=\%, u=u(Syy+,k) =k 1+32" Ly (s,,41), and a,, B, are polynomials in k. By
introducing the bilinear form
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1
B(¢,¢)==—:Kmrr

¥(\) @(K)’
Y(=A) (=N

we may write the coefficients a, and 8, in (4.6) as

_B(‘?2n+1¢:‘9x¢) _B(‘/""92n+1‘/’)

Y= TBan P B “7)
Then, we have a,,=— 8, . Furthermore, the compatibility conditions for (4.6) imply
On+ 1U=J By,
where
Ji=—18+2ud, +u,. (4.8)

On the other hand, the function 3, is related to the trace of the resolvent of the Schrodinger
operator

¢(521n+1 ) l)[/(SZm+1 »— M)
B(4,d:4)

Thus, from (4.7) and the polynomial character of 8, as a function of k it follows that
Bu={k"""R) 4,

where (¥""™R); stands for the polynomial part of "~™R with R being substituted by its expan-
sion as k— oo,

R(Slnﬁ-l :k) =

Rn(SZm+1)
R=1 +n§;)1 .
Therefore
Bopr1¥=J(k"""R) . (4.9)

It turns out’’ that the coefficients R, are differential polynomials in the potential functions
(atg,u41,...,Uy,). They can be determined by identifying coefficients of powers of k in the equa-
tion

JR=0.

In this way the set of equations (4.9) constitutes a hierarchy of integrable systems associated with
the Schrodinger operator in (4.6). We will refer to this hierarchy as KdV,, ;. Solutions of the
members of the hierarchies can be derived from the functions b; and y,, .

For example, for m=1, using our standard techniques and the method considered above to
construct the hierarchy, we have that the potential function is given by

u2=2bx,

{(4.10)
u]=b§+2xh,

o= 2X3x—" 2X2X1x+)(lbzz+ 2X1xbx

where b:=b,. The first integrable system in the hierarchy corresponds to #:=s5 and takes the form
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Oyt T nx— UoUax— TU2U0x »
O =—SUglyy— U gyt Uoy s 4.11)
dUy=— %u2u2x+u1x .
The second equation in (4.6) is in this case
=gyt (k= u3) 3.4,
and the absence of the pure first order A in W ,(s,) means [Eq. (4.6)] the constraints
X1x=b3+bi,  Xox=XX1x— Thsx- (4.12)

Note also, that using (4.10) and the first equation in (4.12), system (4.11) is equivalent to a system
of two equations for & and ug,

10r= 1D xxxx— 2Bt o= Bllos s
(2b,+3b2),+2b,(2b,+3b%) —ug, + b(2b,+3b2),=0.
Analogously, for m=2, we have that the potential function is given by
Us=2b,,,
uy=2b;,.+ b%x,
Ur=2b by +2x1y,
U1 =2 X232~ 2X2X 15 X1b 2t + 20102, b,
10 =2X5: = 2X4X1: T X3b2ext 2X3xb2at X10 100 2b 1 X 15— (1~ D1 ) Xas -
The second equation in (4.6) is
=gt (k= u4) 8,40,
and the absence of orders A and A* means the constraints
batby—b1,=0, X1;—bab1—b1,=0, 2X2,+bor—2x1.:X:=0,
2xX4xt b1 = 2(X1X3)x T h2ex (X2~ Xi=b2:) +2x2X1X1:=0.

Finally, we point out that although we have only considered constraints solved with respect to
the first parameters, submanifolds of the form M,(,%) can be parametrized in other ways and we
also get hierarchies of integrable systems. Unfortunately, in this case, there are not available direct
methods to construct the hierarchies, as the one discussed above to construct the KdV,,,,, hier-

archy, but we can always use standard techniques to get integrable systems. For example, taking
the case m=1 with the parametrization

t3=b(S), s==(SI’S5""’S2m+1’--~)
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and taking x:=s;, f:=55 we have the. linear problem

2= (usk® + k> + u k+ug) rtv40, 0,

(4.13)
= ooh+ (B1k+ Bo) I,
where
u3=b§, u,=2b,, uy=1+2b,x1,,
_ bxx )
uO'——_TXI_2be1xX2+2X1x+2be3xv (414)
x
b.tx 2x l_ul
vo=-—, on=—72 - s =, =72 .
0=, 0 Pl B ” Bo "
and the absence of order \ in Eq. (4.13) means the constraints
] b = + b 4.15
Xlx—bx tr X2xT XX1x EEZ (4.15)

By imposing the compatibility condition in the linear problem (4.13) we have the integrable
system

U3 =2 By T2 Botat+ Britgrt Boltay,
Uz =2ty +2Boguat Briyxt Bouay,
U1,=2PB 150+ 2 Botiy T Bridox T Bok 1y,
U= 0o5x T2 Boxtot Botiox— @oxlos
o= (2a0F BortvoBol:x
that using (4.14) and (4.15) can be reduced to a system of two equations for » and ug:

b, 1 1 b, 1
'b——‘b—r_;‘ (3—2bxb,)+2—b—'u0x"‘ b_—'l—)—z b.b,=0,
X X X

X/ x x

by b, 1 b, 1 bys (brx)
b—i -2 b_,\_gi ity *b—: bz UQy 2b, b?c =0.
xx x x

B. Hidden Boussinesq hierarchy

b
(bsbe)i= 37 U+
X

1
u0,+ 5‘

Our next task is to show that the submanifolds M® satisfying (4.4) are also associated with
a hierarchy of integrable systems. From Proposition 1, now, we have

Sy th=u(sy, k) i+ (s, k)3, 1h,
(4.16)
(.9"!//= an(Sz 9k) ¢+ﬁn(52 ’k)baxdf"" ')’n(sz ,k)(?ii,[/,

where k:=\3, wi=ug(s,) -+ ku (s,) + k%, vi=vo(s,) +kv(sy) and a,, B,, and v, are polynomi-
als-in k. By introducing the trilinear form
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P(N) ®(N) 7(\)
w(eN) @(eN) n(en) |,
W(e*\)  @(e’N\)  n(eN)

T(, @, m)=
(¢ @.m) SN

where e=(~1+4{v3)/2, we may write the coefficients in (4.16) as

L _TOhonaiy)  T(0udid)
"I Bg) T (o)

_ T( ll/’ ax lp’ ﬁ?l l/l)
T g g )

By now using (4.16) it immediately follows that

== %[21) Yt Voxx T3 ,an]'

Furthermore, the compatibility conditions for (4.16) imply

(5111}} — <7nx+.8n.>
=F ,
Oyl Vn
where J is the matrix operator given by
593 e A2 _
Ji=—280,+2vd, v, Jypp==d—0;-v+39, u—u,,
Typime v
213 = x Uﬂx+3u&x+ Uy,
J=H28—2(val+d2-v)+ (02 +3u,) d,+ .- (v2+3u,)].

The standard technique shows that these equations are related to the resolvent trace functions

T(4h, 840, N0 ) T, 3 N20.40)
N T(4,3,4,324) e T(4,9,4,024)
R k= regang |1 5= rg oty |
T(¢,9:4,054) T(4, 3,4, 054h)
in the form
F3p+1V| _ o, O3p—10\
(&3n+]u)_‘}(k R)+, (‘9311—11")_J(k 1S)+ ' (4‘17)

In these expressions R and S are substituted by their expansion as k— e,

R= 2 Rn(:Z) , §= 2 Sn(SZ) '

n=1 k n={0 k"

The coefficients R,, are §, are differential polynomials in the potential functions u;,v;(i=0,1).
They can be determined by identifying coefficients of powers of k in

JR=0, JS§=0.
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It is easy to prove that Eq. (4.17) constitutes an evolution equation for # and v. The set of these
equations is a hierarchy of integrable systems associated with the third-order operator in (4.16).
We will refer to this hierarchy as the hidden Boussinesq hierarchy. Solutions of the members of
the hierarchy can be derived from the functions b and x,,

L‘O:bxxxX1—3X1xX3+3X4x+3[JXX3X+ 3b§X2x+3bxxX1x+3X2xx+3be1xx+3X1xX1X2
~3x2X2— 30 X1xX2— 30ub i X1 T 3 X 1aX bs 3X2:X1bx—3b3x X1 >
u1=bi+3bxx+3)(1x»
(4.18)
v0=3bxxbx_3X1xX1+3X2x+3be1x-
vlngx-

The first equation of the hidden Boussinesq hierarchy corresponds to the time parameter
t:=s, and takes the form -

2 8 2.2 _2 _2 2 _ 2
U= 35U 1V xaxx T 50 120 1xxx T 5V L™ V0V 1V 1~ 9V QU1 ~ 5UQU 1V 1x

1 2_2 2
oMUy FV0xxx T §U0V0xt Upex

2 2 1 2.2 2
dpuy=-— %v%lex— %'U W~ 30V~ gl V30 Lot E(UOU l)x+u1xx ’
(4.19)
Apa=2 + 4 _4 L2 _ +2u
V0= UV aex T 3V 14V 10— V0V 10 1™ 9V 1V 0x T Vuen T S8y
—__ 5.2 — +2
GV 1= TV V 1, Ui T 20Uy,
The second equation in the linear problem (4.16) is
2
dup={aptonk)p+ Bodsh+ ok
with
2 2 — 2 —_L.2
W=V V1" V0, M= 501, Bo= vy,
Finally, the constraints imposed by the absence of the first order in W(s,) are given by
1 2 2_
T = X1 X2t Xar T X1zt X10XT — X2:X 1~ Db =0,
@.20

bi+by—b g 2X1,=0.

C. Methods of solution of hidden Gelfand—Dikii Hierarchies

A solution method for the hierarchies studied above was discussed for the hidden KdV
hierarchies in Ref. 41 and some solutions were exhibited there. The main idea is that taking a
particular /-GD wave function (/=2 for M,(,f‘) and =3 for M®) the constraints imposed by the
absence of some orders in W (s,) determine differential equations for the functions &; associated
with the submanifolds M) and M® satisfying (4.4). If these equations can be solved, they lead
to solutions of the corresponding hierarchy. In general, these differential equations are too com-
plicated to be solved. Nevertheless, we may provide appropriate methods of solution directly
based on the Grassmannian. To this end it is required an element W of Gr associated to a wave
function ¢ for the I-Gelfand—Dikii hierarchy, such that the functions of W admit meromorphic
expansions in the disk Dy=C—D, with fixed poles \;,i=1,.,n of maximal orders r;,
i=1,..,n. Under these conditions any linear functional on W of the form



408 J. Math, Phys., Vol. 41, No. 1, January 2000 Konopelchenko, Alonso, and Medina

s "
=2 ¢; 5o (@), lgl<t, ge{hii=l..n}
j=I
admits a representation
3€ 7 A ar VweW 421
)= § BOWN 7or VweW, @421)
with a finite order function w. For example in the case r;=1, Vi=1,...,n we have

I d"w _é
T

Proposition 3: Given W e Gr associated to a wave function i for the KdV hierarchy and a

linearly independent set of m functionals {l;}{L | such that for certain numbers c

d\

A A 1
wlk) 2

A=A
()\_q)n+1_; (}\-j_Q)n+l 1]-;[1 }‘j_)\i

2}
WCKer()\zl;—'z c,-,-lj), i=1,.,m, @.22)
T

where (N21))(w)=1,(\*w). Then, a submanifold M? satisfies (4.4) if
L(P(EN)=0, i=1,..m, (4.23)

for all te MP,
Proof: Let {W;:i=1,..,m} be the functions representing the functionals /;. From (4.22) it
follows that

2 = '
A w,-—z CyWit i, i=1,..,m,
J

where @I; are elements of W. Moreover, from (4.21) we have that the equations (4.23) are equiva-
lent to

_ an |
é W(N) () TN =0, i=1,..,m.

Therefore, if t5;—1=0,(Sy+1), i=1,...,m are the functions characterizing the parametrized sub-
manifold M?, then, the restricted wave function ¥(s,,,+,\) generates a subspace W, such
that

~—~——

Woes= W span{w; ,i=1,...,m}.
As a consequence
vid.(Weg)=v.d(W)—m=—~m.

Moreover, it is known*? that the virtual dimension of a subspace W does not change under the
action of an invertible multiplication operator. Then, by taking (2.32) into account we have

Indcxgwm(82er N V.d(Weeg(Saim+1)) = Vedo(Wiee) = —m.
Hence, it is easy to deduce that

Swms(52m+ l)=N_ {1,3,...,2"1 - 1},
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so that the statement follows at once.

In the same way one proves:

Proposition 4. Given W associated to a wave function i for the Boussinesq hierarchy and a
nontrivial functional | on W verifying

WCKer(k*1—cl),
for a certain number c. Then a submanifold M satisfies (4.4) if
K(t,\))=0, (4.24)

for all te M.

These results allow us to determine the functions b;=5;(s,) from constraints of the types
(4.23) and (4.24).

We devote the rest of the section to illustrating this method by constructing some solutions.
We concentrate first on the hidden KdV hierarchies. Our first example is based on the subspace
W e Gr of boundary values of functions w=w(\) analytic on the unit disk |\|<1, with the
possible exception of a single real pole —1<g<1 and such that

NWCW, Res(w,q)=cw(—q),

for a given ¢>0. This subspace determines a KdV wave function

. oa(t) _2g¢(t)
(”r—‘a)’ U= 507eD”

n=1

l/’(tvk)=exp( 2 Ny,

where

c(t)=c GXP( _22 q2n_1t2n—l) .
nzl]
We may construct solutions of the KdV; hierarchy from W by means of the functional
1m)=22(0
(w)=—(0),

which obviously satisfies A*/=0. The implicit equation [((t,\))=0 reads

(v a(t)) a(t)
t

l-—=—.
g/ ¢
By introducing the new variables

y=2qgt;, Xi=$3,
2=2¢°x—logc+2 2, % spni1,
nz=2
the equation reduces to

y+z=log (4.25)

L

29 qy|
For ¢>0 it defines two branches y¥=2gb%(z) (i=1,2), while for g<<0 it leads to only one
branch y¥=2¢b®)(z). Moreover, from (4.25) we have
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dy 4

PP AR CE )k

This relation together with (4.10) leads to the following expressions for the corresponding solu-
tions of the KdV; hierarchy

(y+4)(*+4y—4)
(y+2)° ’

“o=3q6 ?

Y+ +4y—8)
B (y+2)* ’

(4.26)

U

_ 2 t4)
T
They represent coherent structures which propagate freely without deformation. In the case of y®
it determines a singular solution.

More general solutions of this type can be defined by increasing the number of poles. Thus,
one may take the subspace W e Gr of boundary values of analytic functions w=w(X\) on the disk
IN|<1, with the possible exception of n single poles at given real numbers (0<|g,|<1i
=1,....,n) and such that

ANWCW, Res(w,g)=cw(—q,),

with ¢;>0. The corresponding KdV wave function reads

n

1+E ai(t))’

i1 A—gqy

n=

Y(t,\) =exp( 21 P DY

where the coefficients a; satisfy the system

a_’(
+

t)
=c
qi i

7 i(t)

a,-(t)+c,-(t)j21

with

ci(t)=c; exp

2n—1
“2;1 q;" t2n-—1)'

By using again the functional I(w)=w'(0), the implicit equation [()=0 is now

(-3 40)-5

j=t 4j =1 q;

It can be shown that the corresponding solutions of the KdV; hierarchy represent composite
structures which decompose asymptotically into solutions of the form (4.26).

Another kind of solution is obtained by considering the subspace W e Gr of boundary values
of analytic functions w=w(\) on the disk |\|<1, with the possible exception of a single pole at
A =0 and such that

NWCW, (w.q)=cw(—q),

for given ¢>0 and g € R such that —1<g<(1. The wave function is
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a(t) c(t)—1
(I-I-T), a(t =qz‘-(~t)—_ri',

iﬁ(t’}\):eXP(nzl s 2

where

e(t)=c exp( -2 qz"‘lrz,,_,).

n=1

Solutions of the KdV; hierarchy can be derived by taking the functional
Hw)y= dw . dw
W)= (@+ec 7 (—q)

which verifies

WCKer(\2[—qg*l).

The implicit equation I((t,\))=0 leads to

1 1
2n — [ —
"E>O (2n+1)g* 1 iq (C(t) C(t))'
By introducing the new variables
y:=22u?0q2n+]t2n+l—log <, ==8g,

=4’ x+logc+43,2mg" P isan a1,
the equation reduces (o
y+z=—sinhy.
It defines one implicit branch y=y(z) which satisfies

dy 1
dz  1+coshy’

From this relation and (4.10) we get the following expressions for the associated solution of the
KdVj hierarchy:

2 3
=gt +
“=ea (1+ cosh? (y/2)  cosh? (y/2))’

1
2
up=-2q (1+ cosh? (y/2))'

They again represent coherent structures propagating freely and without deformation.

The same strategy can be applied for characterizing solutions of the hidden Boussinesq hier-
archy. Let us first take the subspace W.e Gr of boundary values of functions w=w(\) analytic on
the unit disk |\| <1, with the possible exception of a single pole ¢ and such that
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Nwew ﬂ(0)=0
T d) -

This subspace determines a wave function for the Boussinesq hierarchy given by

2
9t

Yt )y=g(t,A)| 1+ m .

Consider now the functional
I(w)= ii—z-v;(o),
d\
which obviously satisfies A3 1=0. The equation I((t,\))=0 implies
gti+2t,—2qt,=0,
so that one finds the following explicit solution of the hidden Boussinesq hierarchy:
1245 PE

7o RS P

3q4 3q
PO w2450 YT r2¢%0) ™

Other solutions can be generated by starting with the same subspace W e Gr and by taking the
functional

“w
I(w)= 3—7\7(0)

so that WC Ker(\3I). The constraint /(4(t,\))=0 takes the form
Pri+4g i +4q(2+ g%+ 8(1+ g%ty t — 463 (214 +13) =0.

A particular solution ¢ =b(s;) of this equation is

1 1
by=— =+ =V 1-2¢%,+ 2V +2q%s, +24%, + 24"},
q q

It can be seen that the corresponding solution, as a function of x, is globally defined on R only for

54> — 1/4q*, otherwise its domain is R—[—g%(1 + v~ 1—44¢%,), —q*(1——1—44%s,)].
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